AMBIGUITY

Definition 1. For a language L over Σ , define

$$
\text{suff}(L) = \{ p \in \Sigma^+ | \exists u \in L : up \in L \}
$$

 $\text{pref}(L) = \{p \in \Sigma^+ | \exists v \in L : pv \in L\}$

Note that suff(L) and pref(L) do not contain ϵ . Note also that we only take prefixes and suffixes that can be expanded to a word in L with another word in L , not any word in Σ^* .

The set suff(L) is identical to the left quotient $L^{-1}L$ of L by itself. Similarly, $\text{pref}(L)=LL^{-1}.$

Definition 2. Two languages L_1 and L_2 are unambiguosuly concatenable, written L_1 ¹ L_2 , iff for every $u_1, v_1 \in L_1$ and $u_2, v_2 \in L_2$, if $u_1u_2 = v_1v_2$ then $u_1 = v_1$ and $u_2 = v_2$.

Lemma 1. The languages L_1 and L_2 are unambiguously concatenable if and only if $\text{suffix}(L_1) \cap \text{pref}(L_2) = \emptyset$.

Proof. Let L_1 and L_2 not unambiguously concatenable, i.e. there exist u_1, v_1 in L_1 and u_2 , v_2 in L_2 such that $u_1u_2 = v_1v_2$ and $u_1 \neq v_1$ and therefore $u_2 \neq v_2$. Assume u_1 is strictly shorter than v_1 , therefore $v_1 = u_1 p, p \neq \epsilon$. With that $v_1v_2 = u_1pv_2$ and $u_2 = pv_2$ and $p \in \text{suffix}(L_1) \cap \text{pref}(L_2)$

Let $p \in \text{suffix}(L_1) \cap \text{pref}(L_2)$. That implies that there are $u \in L_1$ and $v \in L_2$ such that $up \in L_1$ and $pv \in L_2$. The word upv can be split as $up \cdot v$ and as $u \cdot pv$ and therefore L_1 and L_2 are not unambiguously concatenable.

To ease notation we write $L_{\setminus \epsilon}$ for $L \setminus \{\epsilon\}.$

Definition 3. A language L is unambiguously iterable, written $L^{!*}$, iff for every $u_1, \ldots, u_m, v_1, \ldots, v_n \in L_{\setminus \epsilon}$ with $u_1 \cdots u_m = v_1 \cdots v_n$, $m = n$ and $u_i = v_i$.

It is very important that we exclude ϵ in the definition of unambiguous iteration, since otherwise *any* language L that contains ϵ is trivially not ambiguously iterable, even though that presents no problems for our purposes, since we never split ϵ into more than one word.

Lemma 2. The language L is unambiguously iterable if and only if $L_{\setminus \epsilon}$ and $L^*_{\setminus \epsilon}$ are unambiguously concatenable.

Proof. Let L be unambiguously iterable, and assume that there is $u_1v_1 = u_2v_2$ with $u_i \in L_{\setminus \epsilon}$ and $v_i \in L^*_{\setminus \epsilon}$ and $u_1 \neq u_2$. This contradicts $L^{!*}$ since $L_{\setminus \epsilon} \cdot L^*_{\setminus \epsilon} \subseteq L^*$.

Let $L_{\setminus \epsilon} \cdot^! L^*_{\setminus \epsilon}$ and assume there are $u_1, \ldots, u_m, v_1, \ldots, v_n \in L_{\setminus \epsilon}$ with $u_1 \cdots u_m =$ $v_1 \cdots v_n$, but there is an $i \leq \min(m, n)$ with $u_i \neq v_i$. We can assume that $u_1 \neq v_1$ ¹, and therefore $\min(m, n) \geq 2$. Since u_1 and v_1 are in $L_{\setminus \epsilon}$, we have an ambiguous split of a word from $L_{\setminus \epsilon} \cdot L^*_{\setminus \epsilon}$, contradicting the initial assumption.

Example. Using regular expression notation, the language $L = (a|b|c|abc)$ is unambiguously concatenable with itself, but not unambiguosly iterable. $L^* = (a|b|c)^*$ and the word *abcabc* can be split into $abc \cdot abc$ and $a \cdot bcabc$. This example shows that $L \cdot L$ does not imply $L^{!*}$, but as the previous lemma showed, $L_{\setminus \epsilon} \cdot L^*_{\setminus \epsilon}$ does.

If you have $P = \text{suffix}(L_1) \cap \text{pref}(L_2)$, how do you generate a word that is ambiguous ?

¹if $u_1 = v_1$, we simply use $u_2 \cdots u_m$ and $v_2 \cdots v_n$ for this argument