
CUPTI

DA-05679-001 _v11.5 | November 2021

User's Guide

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | ii

TABLE OF CONTENTS

Overview..v
What's New...v

Chapter 1. Usage... 1
1.1. CUPTI Compatibility and Requirements...1
1.2. CUPTI Initialization... 1
1.3. CUPTI Activity API.. 2

1.3.1. SASS Source Correlation..4
1.3.2. PC Sampling.. 4
1.3.3. NVLink... 6
1.3.4. OpenACC.. 6
1.3.5. CUDA Graphs... 7
1.3.6. External Correlation.. 7
1.3.7. Dynamic Attach and Detach... 8

1.4. CUPTI Callback API... 9
1.4.1. Driver and Runtime API Callbacks.. 9
1.4.2. Resource Callbacks...11
1.4.3. Synchronization Callbacks.. 11
1.4.4. NVIDIA Tools Extension Callbacks..11

1.5. CUPTI Event API... 13
1.5.1. Collecting Kernel Execution Events... 16
1.5.2. Sampling Events.. 17

1.6. CUPTI Metric API.. 17
1.6.1. Metrics Reference..19

1.6.1.1. Metrics for Capability 3.x... 19
1.6.1.2. Metrics for Capability 5.x... 27
1.6.1.3. Metrics for Capability 6.x... 36
1.6.1.4. Metrics for Capability 7.0... 45

1.7. CUPTI Profiling API..54
1.7.1. Multi Pass Collection.. 54
1.7.2. Range Profiling... 55

1.7.2.1. Auto Range.. 55
1.7.2.2. User Range...59

1.7.3. CUPTI Profiler Definitions.. 61
1.7.4. Differences from event and metric APIs... 61

1.8. Perfworks Metric API..62
1.8.1. Derived metrics.. 64
1.8.2. Raw Metrics... 69
1.8.3. Metrics Mapping Table.. 69
1.8.4. Events Mapping Table... 75

1.9. Migration to the Profiling API... 78

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | iii

1.10. CUPTI PC Sampling API... 79
1.10.1. Configuration Attributes...80
1.10.2. Stall Reasons Mapping Table.. 81
1.10.3. Data Structure Mapping Table.. 83
1.10.4. Data flushing.. 83
1.10.5. SASS Source Correlation... 84
1.10.6. API Usage.. 86
1.10.7. Limitations... 87

1.11. CUPTI Checkpoint API... 87
1.11.1. Usage... 87
1.11.2. Restrictions.. 89
1.11.3. Examples... 90

1.12. CUPTI overhead.. 92
1.12.1. Tracing Overhead... 92

1.12.1.1. Execution overhead... 92
1.12.1.2. Memory overhead... 92

1.12.2. Profiling Overhead..93
1.13. Multi Instance GPU.. 94
1.14. NVIDIA Virtual GPU (vGPU)...95
1.15. Samples.. 95

Chapter 2. Library Support...99
2.1. OptiX...99

Chapter 3. Limitations... 100
Chapter 4. Changelog.. 105

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | iv

LIST OF TABLES

Table 1 Capability 3.x Metrics ..20

Table 2 Capability 5.x Metrics ..27

Table 3 Capability 6.x Metrics ..36

Table 4 Capability 7.x (7.0 and 7.2) Metrics ...45

Table 5 Metrics Mapping Table from CUPTI to Perfworks for Compute Capability 7.070

Table 6 Events Mapping Table from CUPTI events to Perfworks metrics for Compute
Capability 7.0... 75

Table 7 PC Sampling Configuration Attributes ...80

Table 8 Stall Reasons Mapping Table from PC Sampling Activity APIs to PC Sampling APIs 82

Table 9 Data structure Mapping Table from PC Sampling Activity APIs to PC Sampling APIs83

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | v

OVERVIEW

The CUDA Profiling Tools Interface (CUPTI) enables the creation of profiling and tracing
tools that target CUDA applications. CUPTI provides the following APIs: the Activity
API, the Callback API, the Event API, the Metric API and the Profiler API. Using these
APIs, you can develop profiling tools that give insight into the CPU and GPU behavior
of CUDA applications. CUPTI is delivered as a dynamic library on all platforms
supported by CUDA.

What's New
CUPTI contains below changes as part of the CUDA Toolkit 11.5 release.

‣ A new API cuptiProfilerDeviceSupported is introduced to expose overall
Profiling API support and specific requirements for a given device. Profiling API
must be initialized by calling cuptiProfilerInitialize before testing device
support.

‣ PC Sampling struct CUpti_PCSamplingData introduces a new field
nonUsrKernelsTotalSamples to provide information about the number of
samples collected for all non-user kernels.

‣ Activity record CUpti_ActivityDevice2 for device information has been
deprecated and replaced by a new activity record CUpti_ActivityDevice3. New
record adds a flag isCudaVisible to indicate whether device is visible to CUDA.

‣ Activity record CUpti_ActivityNvLink3 for NVLINK information has been
deprecated and replaced by a new activity record CUpti_ActivityNvLink4. New
record can accommodate NVLINK port information upto a maximum of 32 ports.

‣ A new CUPTI Checkpoint API is introduced, enabling automatic saving and
restoring of device state, and facilitating development of kernel replay tools. This
is helpful for User Replay mode of the CUPTI Profiler API, but is not limited to use
with CUPTI.

‣ Tracing is supported on the Windows Subsystem for Linux version 2 (WSL2).
‣ CUPTI is not supported on NVIDIA Crypto Mining Processors (CMP). A new error

code CUPTI_ERROR_CMP_DEVICE_NOT_SUPPORTED is introduced to indicate it.

Overview

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | vi

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 1

Chapter 1.
USAGE

1.1. CUPTI Compatibility and Requirements
New versions of the CUDA driver are backwards compatible with older versions
of CUPTI. For example, a developer using a profiling tool based on CUPTI 10.0 can
update to a more recently released CUDA driver. Refer to the table CUDA Toolkit and
Compatible Driver Versions for minimum version of the CUDA driver required for each
release of CUPTI from the corresponding CUDA Toolkit release. CUPTI calls will fail
with error code CUPTI_ERROR_NOT_INITIALIZED if the CUDA driver version is not
compatible with the CUPTI version.

1.2. CUPTI Initialization
CUPTI initialization occurs lazily the first time you invoke any CUPTI function. For
the Activity, Event, Metric, and Callback APIs there are no requirements on when this
initialization must occur (i.e. you can invoke the first CUPTI function at any point).
See the CUPTI Activity API section for more information on CUPTI initialization
requirements for the activity API.

It is recommended for CUPTI clients to call the API cuptiSubscribe()
before starting the profiling session i.e. API cuptiSubscribe() should be
called before calling any other CUPTI API. This API will return the error code
CUPTI_ERROR_MULTIPLE_SUBSCRIBERS_NOT_SUPPORTED when another CUPTI
client is already subscribed. CUPTI client should error out and not make further CUPTI
calls if cuptiSubscribe() returns an error. This would prevent multiple CUPTI
clients to be active at the same time otherwise those might interfere with the profiling
state of each other.

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 2

1.3. CUPTI Activity API
The CUPTI Activity API allows you to asynchronously collect a trace of an application's
CPU and GPU CUDA activity. The following terminology is used by the activity API.
Activity Record

CPU and GPU activity is reported in C data structures called activity records. There
is a different C structure type for each activity kind (e.g. CUpti_ActivityAPI).
Records are generically referred to using the CUpti_Activity type. This
type contains only a field that indicates the kind of the activity record. Using
this kind, the object can be cast from the generic CUpti_Activity type to the
specific type representing the activity. See the printActivity function in the
activity_trace_async sample for an example.

Activity Buffer
An activity buffer is used to transfer one or more activity records from CUPTI to
the client. CUPTI fills activity buffers with activity records as the corresponding
activities occur on the CPU and GPU. But CUPTI doesn't guarantee any ordering
of the activities in the activity buffer as activity records for few activity kinds are
added lazily. The CUPTI client is responsible for providing empty activity buffers as
necessary to ensure that no records are dropped.

An asynchronous buffering API is implemented by
cuptiActivityRegisterCallbacks and cuptiActivityFlushAll.

It is not required that the activity API be initalized before CUDA initialization. All
related activities occuring after initializing the activity API are collected. You can
force initialization of the activity API by enabling one or more activity kinds using
cuptiActivityEnable or cuptiActivityEnableContext, as shown in the
initTrace function of the activity_trace_async sample. Some activity kinds cannot be
directly enabled, see the API documentation for CUpti_ActivityKind for details. The
functions cuptiActivityEnable and cuptiActivityEnableContext will return
CUPTI_ERROR_NOT_COMPATIBLE if the requested activity kind cannot be enabled.

The activity buffer API uses callbacks to request and return buffers of activity records.
To use the asynchronous buffering API, you must first register two callbacks using
cuptiActivityRegisterCallbacks. One of these callbacks will be invoked
whenever CUPTI needs an empty activity buffer. The other callback is used to deliver
a buffer containing one or more activity records to the client. To minimize profiling
overhead the client should return as quickly as possible from these callbacks. Client can
pre-allocate a pool of activity buffers and return an empty buffer from the pool when
requested by CUPTI. Activity buffer size should be chosen carefully, smaller buffers
can result in frequent requests by CUPTI and bigger buffers can delay the automatic
delivery of completed activity buffers. For typical workloads, it's suggested to choose
a size between 1 and 10 MB. The functions cuptiActivityGetAttribute and

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 3

cuptiActivitySetAttribute can be used to read and write attributes that control
how the buffering API behaves. See the API documentation for more information.

Flushing of the activity buffers
CUPTI is expected to deliver the activity buffer automatically as soon as it gets full
and all the activity records in it are completed. For performance reasons, CUPTI calls
the underlying methods based on certain heuristics, thus it can cause delay in the
delivery of the buffer. However client can make a request to deliver the activity buffer/
s at any time, and this can be achieved using the APIs cuptiActivityFlushAll and
cuptiActivityFlushPeriod. Behavior of these APIs is as follows:

‣ For on-demand flush using the API cuptiActivityFlushAll with the flag
set as 0, CUPTI returns all the activity buffers which have all the activity records
completed, buffers need not to be full though. It doesn't return buffers which have
one or more incomplete records. This flush can be done at a regular interval in a
separate thread.

‣ For on-demand forced flush using the API cuptiActivityFlushAll with the flag
set as CUPTI_ACTIVITY_FLAG_FLUSH_FORCED, CUPTI returns all the activity
buffers including the ones which have one or more incomplete activity records. It's
suggested to do the forced flush before the termination of the profiling session to
allow remaining buffers to be delivered.

‣ For periodic flush using the API cuptiActivityFlushPeriod, CUPTI returns
only those activity buffers which are full and have all the activity records completed.
It's allowed to use the API cuptiActivityFlushAll to flush the buffers on-
demand, even when client sets the periodic flush.

Note that activity record is considered as completed if it has all the information filled up
including the timestamps (if any).

The activity_trace_async sample shows how to use the activity buffer API to collect a
trace of CPU and GPU activity for a simple application.

CUPTI Threads
CUPTI creates a worker thread to minimize the perturbance for the application
created threads. CUPTI offloads certain operations from the application threads to
the worker thread, this incldues synchronization of profiling resources between host
and device, delivery of the activity buffers to the client using the buffer completed
callback registered in the API cuptiActivityRegisterCallbacks etc. To minimize
the overhead, CUPTI wakes up the worker thread based on certain heuristics. API
cuptiActivityFlushPeriod introduced in CUDA 11.1 can be used to control the
flush period of the worker thread. This setting overrides the CUPTI heurtistics. It's
allowed to use the API cuptiActivityFlushAll to flush the data on-demand, even
when client sets the periodic flush.

Further, CUPTI creates separate threads when certain activity kinds
are enabled. For example, CUPTI creates one thread each for activity

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 4

kinds CUPTI_ACTIVITY_KIND_UNIFIED_MEMORY_COUNTER and
CUPTI_ACTIVITY_KIND_ENVIRONMENT to collect the information from the backend.

1.3.1. SASS Source Correlation
While high-level languages for GPU programming like CUDA C offer a useful level of
abstraction, convenience, and maintainability, they inherently hide some of the details of
the execution on the hardware. It is sometimes helpful to analyze performance problems
for a kernel at the assembly instruction level. Reading assembly language is tedious and
challenging; CUPTI can help you to build the correlation between lines in your high-
level source code and the executed assembly instructions.

Building SASS source correlation for a PC can be split into two parts:

‣ Correlation of the PC to SASS instruction - subscribe to any
one of the CUPTI_CBID_RESOURCE_MODULE_LOADED,
CUPTI_CBID_RESOURCE_MODULE_UNLOAD_STARTING, or
CUPTI_CBID_RESOURCE_MODULE_PROFILED callbacks. This returns a
CUpti_ModuleResourceData structure having the CUDA binary. The binary can
be disassembled using the nvdisasm utility that comes with the CUDA toolkit. An
application can have multiple functions and modules, to uniquely identify there is
a functionId field in all source level activity records. This uniquely corresponds
to a CUPTI_ACTIVITY_KIND_FUNCTION, which has the unique module ID and
function ID in the module.

‣ Correlation of the SASS instruction to CUDA source line - every source level
activity has a sourceLocatorId field which uniquely maps to a record of kind
CUPTI_ACTIVITY_KIND_SOURCE_LOCATOR, containing the line and file name
information. Please note that multiple PCs can correspond to a single source line.

When any source level activity (global access, branch, PC Sampling, etc.) is
enabled, a source locator record is generated for the PCs that have the source
level results. The record CUpti_ActivityInstructionCorrelation can be
used, along with source level activities, to generate SASS assembly instructions
to CUDA C source code mapping for all the PCs of the function, and not just the
PCs that have the source level results. This can be enabled using the activity kind
CUPTI_ACTIVITY_KIND_INSTRUCTION_CORRELATION.

The sass_source_map sample shows how to map SASS assembly instructions to CUDA
C source.

1.3.2. PC Sampling
CUPTI supports device-wide sampling of the program counter (PC). The PC Sampling
gives the number of samples for each source and assembly line with various stall
reasons. Using this information, you can pinpoint portions of your kernel that are
introducing latencies and the reason for the latency. Samples are taken in round robin

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 5

order for all active warps at a fixed number of cycles, regardless of whether the warp is
issuing an instruction or not.

Devices with compute capability 6.0 and higher have a new feature that gives latency
reasons. The latency samples indicate the reasons for holes in the issue pipeline. While
collecting these samples, there is no instruction issued in the respective warp scheduler,
hence these give the latency reasons. The latency reasons will be one of the stall reasons
listed in the enum CUpti_ActivityPCSamplingStallReason, except stall reason
CUPTI_ACTIVITY_PC_SAMPLING_STALL_NOT_SELECTED.

The activity record CUpti_ActivityPCSampling3, enabled using activity kind
CUPTI_ACTIVITY_KIND_PC_SAMPLING, outputs the stall reason along with PC and
other related information. The enum CUpti_ActivityPCSamplingStallReason
lists all the stall reasons. Sampling period is configurable and can be tuned using
API cuptiActivityConfigurePCSampling. A wide range of sampling
periods, ranging from 2^5 cycles to 2^31 cycles per sample, is supported. This
can be controlled through the field samplingPeriod2 in the PC sampling
configuration struct CUpti_ActivityPCSamplingConfig. The activity record
CUpti_ActivityPCSamplingRecordInfo provides the total and dropped samples
for each kernel profiled for PC sampling.

This feature is available on devices with compute capability 5.2
and higher, excluding mobile devices. For Pascal and older chips
cuptiActivityConfigurePCSampling api must be called before enabling
activity kind CUPTI_ACTIVITY_KIND_PC_SAMPLING, for Volta and newer
chips order does not matter. For Volta and newer GPU architectures if
cuptiActivityConfigurePCSampling API is called in the middle of execution, PC
sampling configuration will be updated for subsequent kernel launches. PC sampling
can significantly change the overall performance characteristics of the application
because all kernel executions are serialized on the GPU.

The pc_sampling sample shows how to use these APIs to collect PC Sampling profiling
information for a kernel.

A new set of PC Sampling APIs was introduced in the CUDA 11.3 release, which
supports continuous mode data collection without serializing kernel execution and
have a lower runtime overhead. Refer to the section CUPTI PC Sampling API for more
details. PC Sampling APIs from the header cupti_activity.h would be referred
as PC Sampling Activity APIs and APIs from the header cupti_pcsampling.h
would be referred as PC Sampling APIs.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 6

1.3.3. NVLink
NVIDIA NVLink is a high-bandwidth, energy-efficient interconnect that enables fast
communication between the CPU and GPU, and between GPUs. CUPTI provides
NVLink topology information and NVLink transmit/receive throughput metrics.

The activity record CUpti_ActivityNVLink3, enabled using activity kind
CUPTI_ACTIVITY_KIND_NVLink, outputs NVLink topology information in terms
of logical NVLinks. A logical NVLink is connected between 2 devices, the device can
be of type NPU (NVLink Processing Unit), which can be CPU or GPU. Each device
can support up to 12 NVLinks, hence one logical link can comprise of 1 to 12 physical
NVLinks. The field physicalNvLinkCount gives the number of physical links in
this logical link. The fields portDev0 and portDev1 give information about the slot
in which physical NVLinks are connected for a logical link. This port is the same as
the instance of NVLink metrics profiled from a device. Therefore, port and instance
information should be used to correlate the per-instance metric values with the physical
NVLinks, and in turn to the topology. The field flag gives the properties of a logical
link, whether the link has access to system memory or peer device memory, and has
capabilities to do system memory or peer memmory atomics. The field bandwidth
gives the bandwidth of the logical link in kilobytes/sec.

CUPTI provides some metrics for each physical link. Metrics are provided for data
transmitted/received, transmit/receive throughput, and header versus user data
overhead for each physical NVLink. These metrics are also provided per packet type
(read/write/ atomics/response) to get more detailed insight in the NVLink traffic.

This feature is available on devices with compute capability 6.0 and 7.0. For devices
with compute capability 8.0, the NVLink topology information is available but NVLink
performance metrics (nvlrx__* and nvltx__*) are not supported due to a potential
application hang during data collection.

The nvlink_bandwidth sample shows how to use these APIs to collect NVLink metrics
and topology, as well as how to correlate metrics with the topology.

1.3.4. OpenACC
CUPTI supports collecting information for OpenACC applications using the OpenACC
tools interface implementation of the PGI runtime. OpenACC profiling is available only
on Linux x86_64, IBM POWER and Arm server platform (arm64 SBSA) platforms. This
feature also requires PGI runtime version 19.1 or higher.

The activity records CUpti_ActivityOpenAccData,
CUpti_ActivityOpenAccLaunch, and CUpti_ActivityOpenAccOther
are created, representing the three groups of callback events specified in
the OpenACC tools interface. CUPTI_ACTIVITY_KIND_OPENACC_DATA,
CUPTI_ACTIVITY_KIND_OPENACC_LAUNCH, and

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 7

CUPTI_ACTIVITY_KIND_OPENACC_OTHER can be enabled to collect the respective
activity records.

Due to the restrictions of the OpenACC tools interface, CUPTI cannot record OpenACC
records from within the client application. Instead, a shared library that exports
the acc_register_library function defined in the OpenACC tools interface
specification must be implemented. Parameters passed into this function from the
OpenACC runtime can be used to initialize the CUPTI OpenACC measurement using
cuptiOpenACCInitialize. Before starting the client application, the environment
variable ACC_PROFLIB must be set to point to this shared library.

cuptiOpenACCInitialize is defined in cupti_openacc.h, which is included by
cupti_activity.h. Since the CUPTI OpenACC header is only available on supported
platforms, CUPTI clients must define CUPTI_OPENACC_SUPPORT when compiling.

The openacc_trace sample shows how to use CUPTI APIs for OpenACC data collection.

1.3.5. CUDA Graphs
CUPTI can collect trace of CUDA Graphs applications without breaking driver
performance optimizations. CUPTI has added fields graphId and graphNodeId
in the kernel, memcpy and memset activity records to denote the unique ID of the
graph and the graph node respectively of the GPU activity. CUPTI issues callbacks for
graph operations like graph and graph node creation/destruction/cloning and also for
executable graph creation/destruction. The cuda_graphs_trace sample shows how to
collect GPU trace and API trace for CUDA Graphs and how to correlate a graph node
launch to the node creation API by using CUPTI callbacks for graph operations.

1.3.6. External Correlation
CUPTI supports correlation of CUDA API activity records with external APIs. Such
APIs include OpenACC, OpenMP, and MPI. This associates CUPTI correlation IDs with
IDs provided by the external API. Both IDs are stored in a new activity record of type
CUpti_ActivityExternalCorrelation.

CUPTI maintains a stack of external correlation IDs per CPU thread
and per CUpti_ExternalCorrelationKind. Clients must use
cuptiActivityPushExternalCorrelationId to push an external ID of a
specific kind to this stack and cuptiActivityPopExternalCorrelationId
to remove the latest ID. If a CUDA API activity record is generated while
any CUpti_ExternalCorrelationKind-stack on the same CPU thread
is non-empty, one CUpti_ActivityExternalCorrelation record per
CUpti_ExternalCorrelationKind-stack is inserted into the activity
buffer before the respective CUDA API activity record. The CUPTI client is
responsible for tracking passed external API correlation IDs, in order to eventually
associate external API calls with CUDA API calls. Along with the activity kind

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 8

CUPTI_ACTIVITY_KIND_EXTERNAL_CORRELATION, it is necessary to enable
the CUDA API activity kinds i.e. CUPTI_ACTIVITY_KIND_RUNTIME and
CUPTI_ACTIVITY_KIND_DRIVER to generate external correlation activity records.

If both CUPTI_ACTIVITY_KIND_EXTERNAL_CORRELATION and any of
CUPTI_ACTIVITY_KIND_OPENACC_* activity kinds are enabled, CUPTI will
generate external correlation activity records for OpenACC with externalKind
CUPTI_EXTERNAL_CORRELATION_KIND_OPENACC.

The cupti_external_correlation sample shows how to use CUPTI APIs for external
correlation.

1.3.7. Dynamic Attach and Detach
CUPTI provides mechanisms for attaching to or detaching from a running process to
support on-demand profiling. CUPTI can be attached by calling any CUPTI API as
CUPTI supports lazy initialization. To detach CUPTI, call the API cuptiFinalize()
which destroys and cleans up all the resources associated with CUPTI in the current
process. After CUPTI detaches from the process, the process will keep on running
with no CUPTI attached to it. Any subsequent CUPTI API call will reinitialize the
CUPTI. You can attach and detach CUPTI any number of times. For safe operation
of the API, it is recommended that API cuptiFinalize() is invoked from the exit
callsite of any of the CUDA Driver or Runtime API. Otherwise CUPTI client needs to
make sure that required CUDA synchronization and CUPTI activity buffer flush is done
before calling the API cuptiFinalize(). Sample code showing the usage of the API
cuptiFinalize() in the cupti callback handler code:

void CUPTIAPI
cuptiCallbackHandler(void *userdata, CUpti_CallbackDomain domain,
 CUpti_CallbackId cbid, void *cbdata)
{
 const CUpti_CallbackData *cbInfo = (CUpti_CallbackData *)cbdata;

 // Take this code path when CUPTI detach is requested
 if (detachCupti) {
 switch(domain)
 {
 case CUPTI_CB_DOMAIN_RUNTIME_API:
 case CUPTI_CB_DOMAIN_DRIVER_API:
 if (cbInfo->callbackSite == CUPTI_API_EXIT) {
 // call the CUPTI detach API
 cuptiFinalize();
 }
 break;
 default:
 break;
 }
 }
}

Full code can be found in the sample cupti_finalize.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 9

1.4. CUPTI Callback API
The CUPTI Callback API allows you to register a callback into your own code. Your
callback will be invoked when the application being profiled calls a CUDA runtime
or driver function, or when certain events occur in the CUDA driver. The following
terminology is used by the callback API.
Callback Domain

Callbacks are grouped into domains to make it easier to associate your callback
functions with groups of related CUDA functions or events. There are currently
four callback domains, as defined by CUpti_CallbackDomain: a domain for
CUDA runtime functions, a domain for CUDA driver functions, a domain for CUDA
resource tracking, and a domain for CUDA synchronization notification.

Callback ID
Each callback is given a unique ID within the corresponding callback domain
so that you can identify it within your callback function. The CUDA driver API
IDs are defined in cupti_driver_cbid.h and the CUDA runtime API IDs are
defined in cupti_runtime_cbid.h. Both of these headers are included for you
when you include cupti.h. The CUDA resource callback IDs are defined by
CUpti_CallbackIdResource, and the CUDA synchronization callback IDs are
defined by CUpti_CallbackIdSync.

Callback Function
Your callback function must be of type CUpti_CallbackFunc. This function type
has two arguments that specify the callback domain and ID so that you know why
the callback is occurring. The type also has a cbdata argument that is used to pass
data specific to the callback.

Subscriber
A subscriber is used to associate each of your callback functions with one or
more CUDA API functions. There can be at most one subscriber initialized with
cuptiSubscribe() at any time. Before initializing a new subscriber, the existing
subscriber must be finalized with cuptiUnsubscribe().

Each callback domain is described in detail below. Unless explicitly stated, it is not
supported to call any CUDA runtime or driver API from within a callback function.
Doing so may cause the application to hang.

1.4.1. Driver and Runtime API Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_DRIVER_API or
CUPTI_CB_DOMAIN_RUNTIME_API domains, you can associate a callback function
with one or more CUDA API functions. When those CUDA functions are invoked in the
application, your callback function is invoked as well. For these domains, the cbdata
argument to your callback function will be of the type CUpti_CallbackData.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 10

It is legal to call cudaThreadSynchronize(), cudaDeviceSynchronize(),
cudaStreamSynchronize(), cuCtxSynchronize(), and
cuStreamSynchronize() from within a driver or runtime API callback function.

The following code shows a typical sequence used to associate a callback function with
one or more CUDA API functions. To simplify the presentation, error checking code has
been removed.
 CUpti_SubscriberHandle subscriber;
 MyDataStruct *my_data = ...;
 ...
 cuptiSubscribe(&subscriber,
 (CUpti_CallbackFunc)my_callback , my_data);
 cuptiEnableDomain(1, subscriber,
 CUPTI_CB_DOMAIN_RUNTIME_API);

First, cuptiSubscribe is used to initialize a subscriber with the my_callback
callback function. Next, cuptiEnableDomain is used to associate that callback with all
the CUDA runtime API functions. Using this code sequence will cause my_callback to
be called twice each time any of the CUDA runtime API functions are invoked, once on
entry to the CUDA function and once just before exit from the CUDA function. CUPTI
callback API functions cuptiEnableCallback and cuptiEnableAllDomains can
also be used to associate CUDA API functions with a callback (see reference below for
more information).

The following code shows a typical callback function.
void CUPTIAPI
my_callback(void *userdata, CUpti_CallbackDomain domain,
 CUpti_CallbackId cbid, const void *cbdata)
{
 const CUpti_CallbackData *cbInfo = (CUpti_CallbackData *)cbdata;
 MyDataStruct *my_data = (MyDataStruct *)userdata;

 if ((domain == CUPTI_CB_DOMAIN_RUNTIME_API) &&
 (cbid == CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020)) {
 if (cbInfo->callbackSite == CUPTI_API_ENTER) {
 cudaMemcpy_v3020_params *funcParams =
 (cudaMemcpy_v3020_params *)(cbInfo->
 functionParams);

 size_t count = funcParams->count;
 enum cudaMemcpyKind kind = funcParams->kind;
 ...
 }
 ...

In your callback function, you use the CUpti_CallbackDomain and
CUpti_CallbackID parameters to determine which CUDA API function invocation
is causing this callback. In the example above, we are checking for the CUDA runtime
cudaMemcpy function. The cbdata parameter holds a structure of useful information
that can be used within the callback. In this case, we use the callbackSite member
of the structure to detect that the callback is occurring on entry to cudaMemcpy, and
we use the functionParams member to access the parameters that were passed to
cudaMemcpy. To access the parameters, we first cast functionParams to a structure
type corresponding to the cudaMemcpy function. These parameter structures are

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 11

contained in generated_cuda_runtime_api_meta.h, generated_cuda_meta.h,
and a number of other files. When possible, these files are included for you by cupti.h.

The callback_event and callback_timestamp samples described on the samples page
both show how to use the callback API for the driver and runtime API domains.

1.4.2. Resource Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_RESOURCE domain, you can
associate a callback function with some CUDA resource creation and destruction
events. For example, when a CUDA context is created, your callback function will be
invoked with a callback ID equal to CUPTI_CBID_RESOURCE_CONTEXT_CREATED.
For this domain, the cbdata argument to your callback function will be of the type
CUpti_ResourceData.

Note that APIs cuptiActivityFlush and cuptiActivityFlushAll will result in
deadlock when called from stream destroy starting callback identified using callback ID
CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING.

1.4.3. Synchronization Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_SYNCHRONIZE domain, you can
associate a callback function with CUDA context and stream synchronizations. For
example, when a CUDA context is synchronized, your callback function will be invoked
with a callback ID equal to CUPTI_CBID_SYNCHRONIZE_CONTEXT_SYNCHRONIZED.
For this domain, the cbdata argument to your callback function will be of the type
CUpti_SynchronizeData.

1.4.4. NVIDIA Tools Extension Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_NVTX domain, you can associate
a callback function with NVIDIA Tools Extension (NVTX) API functions. When an
NVTX function is invoked in the application, your callback function is invoked as well.
For these domains, the cbdata argument to your callback function will be of the type
CUpti_NvtxData.

The NVTX library has its own convention for discovering the profiling library that will
provide the implementation of the NVTX callbacks. To receive callbacks, you must
set the NVTX environment variables appropriately so that when the application calls
an NVTX function, your profiling library receives the callbacks. The following code
sequence shows a typical initialization sequence to enable NVTX callbacks and activity
records.
/* Set env so CUPTI-based profiling library loads on first nvtx call. */
char *inj32_path = "/path/to/32-bit/version/of/cupti/based/profiling/library";
char *inj64_path = "/path/to/64-bit/version/of/cupti/based/profiling/library";
setenv("NVTX_INJECTION32_PATH", inj32_path, 1);
setenv("NVTX_INJECTION64_PATH", inj64_path, 1);

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 12

The following code shows a typical sequence used to associate a callback function with
one or more NVTX functions. To simplify the presentation, error checking code has been
removed.
CUpti_SubscriberHandle subscriber;
MyDataStruct *my_data = ...;
...
cuptiSubscribe(&subscriber,
 (CUpti_CallbackFunc)my_callback , my_data);
cuptiEnableDomain(1, subscriber,
 CUPTI_CB_DOMAIN_NVTX);

First, cuptiSubscribe is used to initialize a subscriber with the my_callback
callback function. Next, cuptiEnableDomain is used to associate that callback with
all the NVTX functions. Using this code sequence will cause my_callback to be called
once each time any of the NVTX functions are invoked. CUPTI callback API functions
cuptiEnableCallback and cuptiEnableAllDomains can also be used to associate
NVTX API functions with a callback (see reference below for more information).

The following code shows a typical callback function.
void CUPTIAPI
my_callback(void *userdata, CUpti_CallbackDomain domain,
 CUpti_CallbackId cbid, const void *cbdata)
{
 const CUpti_NvtxData *nvtxInfo = (CUpti_NvtxData *)cbdata;
 MyDataStruct *my_data = (MyDataStruct *)userdata;

 if ((domain == CUPTI_CB_DOMAIN_NVTX) &&
 (cbid == CUPTI_CBID_NVTX_nvtxRangeStartEx)) {
 nvtxRangeStartEx_params *params = (nvtxRangeStartEx_params *)nvtxInfo->
 functionParams;
 nvtxRangeId_t *id = (nvtxRangeId_t *)nvtxInfo->functionReturnValue;
 ...
 }
 ...

In your callback function, you use the CUpti_CallbackDomain and
CUpti_CallbackID parameters to determine which NVTX API function
invocation is causing this callback. In the example above, we are checking for
the nvtxRangeStartEx function. The cbdata parameter holds a structure
of useful information that can be used within the callback. In this case, we use
the functionParams member to access the parameters that were passed to
nvtxRangeStartEx. To access the parameters, we first cast functionParams
to a structure type corresponding to the nvtxRangeStartEx function.
These parameter structures are contained in generated_nvtx_meta.h. We
also use functionReturnValue member to access the value returned by
nvtxRangeStartEx. To access the return value, we first cast functionReturnValue
to the return type corresponding to the nvtxRangeStartEx function. If there is no
return value for the NVTX function, functionReturnValue is NULL.

The sample cupti_nvtx shows the initialization sequence to enable NVTX callbacks and
activity records.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 13

If your CUPTI-based profiling library links static CUPTI library, you can define and
export your own NvtxInitializeInjection and NvtxInitializeInjection2 functions, which
would be called by setting the NVTX environment variables.

If you want CUPTI to handle NVTX calls, these functions should call CUPTI's
corresponding initialization functions, as shown in the example below so that when
the application calls a NVTX function, your profiling library receives the callbacks. The
following code sequence shows how this can be done to receive callbacks and activity
records when linking static CUPTI library.
/* Set env so CUPTI-based profiling library loads on first nvtx call. */
char *inj32_path = "/path/to/32-bit/version/of/cupti/based/profiling/library";
char *inj64_path = "/path/to/64-bit/version/of/cupti/based/profiling/library";
setenv("NVTX_INJECTION32_PATH", inj32_path, 1);
setenv("NVTX_INJECTION64_PATH", inj64_path, 1);

/* Extern the CUPTI NVTX initialization APIs. The APIs are thread-safe */
extern "C" CUptiResult CUPTIAPI cuptiNvtxInitialize(void* pfnGetExportTable);
extern "C" CUptiResult CUPTIAPI cuptiNvtxInitialize2(void* pfnGetExportTable);

extern "C" int InitializeInjectionNvtx(void* p)
{
 CUptiResult res = cuptiNvtxInitialize(p);
 return (res == CUPTI_SUCCESS) ? 1 : 0;
}

extern "C" int InitializeInjectionNvtx2(void* p)
{
 CUptiResult res = cuptiNvtxInitialize2(p);
 return (res == CUPTI_SUCCESS) ? 1 : 0;
}

Alternatively, if you want to handle NVTX calls directly in your profiling library, you can
attach your own callbacks to the NVTX client in these functions.

NVTX v1 and v2 both have the initialization code in a single injection library shared by
all users of NVTX in the whole process, so the initialization will happen only once per
process. NVTX v3 embeds the initialization code into your own binaries, so if NVTX
v3 is in multiple dynamic libraries, each one of those sites will initialize the first time
a NVTX call is made from that dynamic library. These first calls could be on different
threads. So if you are wiring up your own NVTX handlers, you should ensure that code
is thread-safe when called from multiple threads at once.

1.5. CUPTI Event API
The CUPTI Event API allows you to query, configure, start, stop, and read the event
counters on a CUDA-enabled device. The following terminology is used by the event
API.
Event

An event is a countable activity, action, or occurrence on a device.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 14

Event ID
Each event is assigned a unique identifier. A named event will represent the same
activity, action, or occurrence on all device types. But the named event may have
different IDs on different device families. Use cuptiEventGetIdFromName to get
the ID for a named event on a particular device.

Event Category
Each event is placed in one of the categories defined by CUpti_EventCategory.
The category indicates the general type of activity, action, or occurrence measured by
the event.

Event Domain
A device exposes one or more event domains. Each event domain represents a group
of related events available on that device. A device may have multiple instances of a
domain, indicating that the device can simultaneously record multiple instances of
each event within that domain.

Event Group
An event group is a collection of events that are managed together. The number and
type of events that can be added to an event group are subject to device-specific
limits. At any given time, a device may be configured to count events from a limited
number of event groups. All events in an event group must belong to the same event
domain.

Event Group Set
An event group set is a collection of event groups that can be enabled at the same
time. Event group sets are created by cuptiEventGroupSetsCreate and
cuptiMetricCreateEventGroupSets.

You can determine the events available on a device using the
cuptiDeviceEnumEventDomains and cuptiEventDomainEnumEvents functions.
The cupti_query sample described on the samples page shows how to use these
functions. You can also enumerate all the CUPTI events available on any device using
the cuptiEnumEventDomains function.

Configuring and reading event counts requires the following steps. First, select
your event collection mode. If you want to count events that occur during the
execution of a kernel, use cuptiSetEventCollectionMode to set mode
CUPTI_EVENT_COLLECTION_MODE_KERNEL. If you want to continuously sample
the event counts, use mode CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS.
Next, determine the names of the events that you want to count, and then
use the cuptiEventGroupCreate, cuptiEventGetIdFromName, and
cuptiEventGroupAddEvent functions to create and initialize an event group
with those events. If you are unable to add all the events to a single event group,
then you will need to create multiple event groups. Alternatively, you can use the
cuptiEventGroupSetsCreate function to automatically create the event group(s)
required for a set of events.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 15

It's possible that all the requested events can't be collected in the single pass due
to hardware or software limitations, one needs to replay the exact same set of
GPU workloads multiple times. Number of passes can be queried using the API
cuptiEventGroupSetsCreate. Profiling one event always takes single pass. Multiple
passes might be required when we want to profile multiple events together. Code
snippet showing how to query number of passes:

CUpti_EventGroupSets *eventGroupSets = NULL;
size_t eventIdArraySize = sizeof(CUpti_EventID) * numEvents;
CUpti_EventID *eventIdArray = (CUpti_EventID *)malloc(sizeof(CUpti_EventID) *
 numEvents);
// fill in event Ids
cuptiEventGroupSetsCreate(context, eventIdArraySize, eventIdArray,
 &eventGroupSets);
// number of passes required to collect all the events
passes = eventGroupSets->numSets;

To begin counting a set of events, enable the event group or groups that contain those
events by using the cuptiEventGroupEnable function. If your events are contained
in multiple event groups, you may be unable to enable all of the event groups at the
same time i.e. in the same pass. In this case, you can gather the events across multiple
executions of the application or you can enable kernel replay. If you enable kernel replay
using cuptiEnableKernelReplayMode, you will be able to enable any number of
event groups and all the contained events will be collected.

Use the cuptiEventGroupReadEvent and/or cuptiEventGroupReadAllEvents
functions to read the event values. When you are done collecting events, use the
cuptiEventGroupDisable function to stop counting the events contained in an
event group. The callback_event sample described on the samples page shows how to
use these functions to create, enable, and disable event groups, and how to read event
counts.

For event collection mode CUPTI_EVENT_COLLECTION_MODE_KERNEL,
event or metric collection may significantly change the overall performance
characteristics of the application because all kernel executions that occur
between the cuptiEventGroupEnable and cuptiEventGroupDisable
calls are serialized on the GPU. This can be avoided by using mode
CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS, and restricting profiling to
events and metrics that can be collected in a single pass.

All the events and metrics except NVLink metrics are collected at the context level,
irrespective of the event collection mode. That is, events or metrics can be attributed
to the context being profiled and values can be accurately collected, when multiple
contexts are executing on the GPU. NVLink metrics are collected at device level for
all event collection modes.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 16

In a system with multiple GPUs, events can be collected simultaneously on all the GPUs;
in other words, event profiling doesn't enforce any serialization of work across GPUs.
The event_multi_gpu sample shows how to use the CUPTI event and CUDA APIs on
such setups.

Event APIs from the header cupti_events.h are not supported for devices with
compute capability 7.5 and higher. It is advised to use the CUPTI Profiling API instead.
Refer to the section Migration to the Profiling API.

1.5.1. Collecting Kernel Execution Events
A common use of the event API is to count a set of events during the execution
of a kernel (as demonstrated by the callback_event sample). The following
code shows a typical callback used for this purpose. Assume that the callback
was enabled only for a kernel launch using the CUDA runtime (i.e., by
cuptiEnableCallback(1, subscriber, CUPTI_CB_DOMAIN_RUNTIME_API,
CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020). To simplify the presentation,
error checking code has been removed.
static void CUPTIAPI
getEventValueCallback(void *userdata,
 CUpti_CallbackDomain domain,
 CUpti_CallbackId cbid,
 const void *cbdata)
{
 const CUpti_CallbackData *cbData =
 (CUpti_CallbackData *)cbdata;

 if (cbData->callbackSite == CUPTI_API_ENTER) {
 cudaDeviceSynchronize();
 cuptiSetEventCollectionMode(cbInfo->context,
 CUPTI_EVENT_COLLECTION_MODE_KERNEL);
 cuptiEventGroupEnable(eventGroup);
 }

 if (cbData->callbackSite == CUPTI_API_EXIT) {
 cudaDeviceSynchronize();
 cuptiEventGroupReadEvent(eventGroup,
 CUPTI_EVENT_READ_FLAG_NONE,
 eventId,
 &bytesRead, &eventVal);

 cuptiEventGroupDisable(eventGroup);
 }
}

Two synchronization points are used to ensure that events are counted only for the
execution of the kernel. If the application contains other threads that launch kernels,
then additional thread-level synchronization must also be introduced to ensure that
those threads do not launch kernels while the callback is collecting events. When the
cudaLaunch API is entered (that is, before the kernel is actually launched on the device),
cudaDeviceSynchronize is used to wait until the GPU is idle. The event collection
mode is set to CUPTI_EVENT_COLLECTION_MODE_KERNEL so that the event counters

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 17

are automatically started and stopped just before and after the kernel executes. Then
event collection is enabled with cuptiEventGroupEnable.

When the cudaLaunch API is exited (that is, after the kernel is queued for execution
on the GPU) another cudaDeviceSynchronize is used to cause the CPU thread
to wait for the kernel to finish execution. Finally, the event counts are read with
cuptiEventGroupReadEvent.

1.5.2. Sampling Events
The event API can also be used to sample event values while a kernel or kernels
are executing (as demonstrated by the event_sampling sample). The sample shows
one possible way to perform the sampling. The event collection mode is set to
CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS so that the event counters run
continuously. Two threads are used in event_sampling: one thread schedules the
kernels and memcpys that perform the computation, while another thread wakes up
periodically to sample an event counter. In this sample, there is no correlation of the
event samples with what is happening on the GPU. To get some coarse correlation, you
can use cuptiDeviceGetTimestamp to collect the GPU timestamp at the time of the
sample and also at other interesting points in your application.

1.6. CUPTI Metric API
The CUPTI Metric API allows you to collect application metrics calculated from one or
more event values. The following terminology is used by the metric API.
Metric

A characteristic of an application that is calculated from one or more event values.
Metric ID

Each metric is assigned a unique identifier. A named metric will represent the same
characteristic on all device types. But the named metric may have different IDs on
different device families. Use cuptiMetricGetIdFromName to get the ID for a
named metric on a particular device.

Metric Category
Each metric is placed in one of the categories defined by CUpti_MetricCategory.
The category indicates the general type of the characteristic measured by the metric.

Metric Property
Each metric is calculated from input values. These input values can be events
or properties of the device or system. The available properties are defined by
CUpti_MetricPropertyID.

Metric Value
Each metric has a value that represents one of the kinds defined by
CUpti_MetricValueKind. For each value kind, there is a corresponding member
of the CUpti_MetricValue union that is used to hold the metric's value.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 18

The tables included in this section list the metrics available for each device, as
determined by the device's compute capability. You can also determine the metrics
available on a device using the cuptiDeviceEnumMetrics function. The cupti_query
sample described on the samples page shows how to use this function. You can also
enumerate all the CUPTI metrics available on any device using the cuptiEnumMetrics
function.

CUPTI provides two functions for calculating a metric value. cuptiMetricGetValue2
can be used to calculate a metric value when the device is not available. All
required event values and metric properties must be provided by the caller.
cuptiMetricGetValue can be used to calculate a metric value when the device is
available (as a CUdevice object). All required event values must be provided by the
caller, but CUPTI will determine the appropriate property values from the CUdevice
object.

Configuring and calculating metric values requires the following steps. First,
determine the name of the metric that you want to collect, and then use the
cuptiMetricGetIdFromName to get the metric ID. Use cuptiMetricEnumEvents
to get the events required to calculate the metric, and follow instructions
in the CUPTI Event API section to create the event groups for those events.
When creating event groups in this manner, it is important to use the result of
cuptiMetricGetRequiredEventGroupSets to properly group together events that
must be collected in the same pass to ensure proper metric calculation.

Alternatively, you can use the cuptiMetricCreateEventGroupSets function to
automatically create the event group(s) required for metrics' events. When using this
function, events will be grouped as required to most accurately calculate the metric; as a
result, it is not necessary to use cuptiMetricGetRequiredEventGroupSets.

If you are using cuptiMetricGetValue2, then you must also collect the required
metric property values using cuptiMetricEnumProperties.

Collect event counts as described in the CUPTI Event API section, and then use either
cuptiMetricGetValue or cuptiMetricGetValue2 to calculate the metric value
from the collected event and property values. The callback_metric sample described on
the samples page shows how to use the functions to calculate event values and calculate
a metric using cuptiMetricGetValue. Note that as shown in the example, you should
collect event counts from all domain instances, and normalize the counts to get the most
accurate metric values. It is necessary to normalize the event counts because the number
of event counter instances varies by device and by the event being counted.

For example, a device might have 8 multiprocessors but only have event counters
for 4 of the multiprocessors, and might have 3 memory units and only have events
counters for one memory unit. When calculating a metric that requires a multiprocessor
event and a memory unit event, the 4 multiprocessor counters should be summed and
multiplied by 2 to normalize the event count across the entire device. Similarly, the one
memory unit counter should be multiplied by 3 to normalize the event count across the

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 19

entire device. The normalized values can then be passed to cuptiMetricGetValue or
cuptiMetricGetValue2 to calculate the metric value.

As described, the normalization assumes the kernel executes a sufficient number of
blocks to completely load the device. If the kernel has only a small number of blocks,
normalizing across the entire device may skew the result.

It's possible that all the requested metrics can't be collected in the single pass due
to hardware or software limitations, one needs to replay the exact same set of
GPU workloads multiple times. Number of passes can be queried using the API
cuptiMetricCreateEventGroupSets. Profiling a single metric can also take
multiple passes depending on the number and type of events it is calculated from. Code
snippet showing how to query number of passes:

CUpti_EventGroupSets *eventGroupSets = NULL;
size_t metricIdArraySize = sizeof(CUpti_MetricID) * numMetrics;
CUpti_MetricID metricIdArray = (CUpti_MetricID *)malloc(sizeof(CUpti_MetricID) *
 numMetrics);
// fill in metric Ids
cuptiMetricCreateEventGroupSets(context, metricIdArraySize, metricIdArray,
 &eventGroupSets);
// number of passes required to collect all the metrics
passes = eventGroupSets->numSets;

Metric APIs from the header cupti_metrics.h are not supported for devices with
compute capability 7.5 and higher. It is advised to use the CUPTI Profiling API instead.
Refer to the section Migration to the Profiling API.

1.6.1. Metrics Reference
This section contains detailed descriptions of the metrics that can be collected by the
CUPTI. A scope value of "Single-context" indicates that the metric can only be accurately
collected when a single context (CUDA or graphics) is executing on the GPU. A scope
value of "Multi-context" indicates that the metric can be accurately collected when
multiple contexts are executing on the GPU. A scope value of "Device" indicates that the
metric will be collected at device level, that is, it will include values for all the contexts
executing on the GPU.

1.6.1.1. Metrics for Capability 3.x
Devices with compute capability 3.x implement the metrics shown in the following
table. Note that for some metrics, the "Multi-context" scope is supported only for specific
devices. Such metrics are marked with "Multi-context*" under the "Scope" column. Refer
to the note at the bottom of the table.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 20

Table 1 Capability 3.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

alu_fu_utilization The utilization level of the multiprocessor
function units that execute integer and floating-
point arithmetic instructions on a scale of 0 to
10

Multi-context

atomic_replay_overhead Average number of replays due to atomic and
reduction bank conflicts for each instruction
executed

Multi-context

atomic_throughput Global memory atomic and reduction
throughput

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of non-divergent branches to total
branches expressed as percentage. This is
available for compute capability 3.0.

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

dram_read_throughput Device memory read throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

dram_read_transactions Device memory read transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

dram_write_throughput Device memory write throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

dram_write_transactions Device memory write transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

ecc_throughput ECC throughput from L2 to DRAM. This is
available for compute capability 3.5 and 3.7.

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 21

Metric Name Description Scope

ecc_transactions Number of ECC transactions between L2 and
DRAM. This is available for compute capability
3.5 and 3.7.

Multi-
context*

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads

Multi-context

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads

Multi-context

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

Multi-context

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads

Multi-context

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage

Multi-
context*

gld_requested_throughput Requested global memory load throughput Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 22

Metric Name Description Scope

gld_throughput Global memory load throughput Multi-
context*

gld_transactions Number of global memory load transactions Multi-
context*

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load

Multi-
context*

global_cache_replay_overhead Average number of replays due to global
memory cache misses for each instruction
executed

Multi-context

global_replay_overhead Average number of replays due to global
memory cache misses

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage

Multi-
context*

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-
context*

gst_transactions Number of global memory store transactions Multi-
context*

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-
context*

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 23

Metric Name Description Scope

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

ipc_instance Instructions executed per cycle for a single
multiprocessor

Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l1_cache_global_hit_rate Hit rate in L1 cache for global loads Multi-
context*

l1_cache_local_hit_rate Hit rate in L1 cache for local loads and stores Multi-
context*

l1_shared_utilization The utilization level of the L1/shared memory
relative to peak utilization on a scale of 0 to 10.
This is available for compute capability 3.0, 3.5
and 3.7.

Multi-
context*

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-
context*

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-
context*

l2_l1_read_hit_rate Hit rate at L2 cache for all read requests
from L1 cache. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_l1_read_throughput Memory read throughput seen at L2 cache for
read requests from L1 cache. This is available
for compute capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_l1_read_transactions Memory read transactions seen at L2 cache
for all read requests from L1 cache. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

l2_l1_write_throughput Memory write throughput seen at L2 cache for
write requests from L1 cache. This is available
for compute capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_l1_write_transactions Memory write transactions seen at L2 cache
for all write requests from L1 cache. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-
context*

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 24

Metric Name Description Scope

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-
context*

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-
context*

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-
context*

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-
context*

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
shared memory instructions on a scale of 0 to 10

Multi-context

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_load_throughput Local memory load throughput Multi-
context*

local_load_transactions Number of local memory load transactions Multi-
context*

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-
context*

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-
context*

local_replay_overhead Average number of replays due to local memory
accesses for each instruction executed

Multi-context

local_store_throughput Local memory store throughput Multi-
context*

local_store_transactions Number of local memory store transactions Multi-
context*

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-
context*

nc_cache_global_hit_rate Hit rate in non coherent cache for global loads Multi-
context*

nc_gld_efficiency Ratio of requested non coherent global memory
load throughput to required non coherent

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 25

Metric Name Description Scope

global memory load throughput expressed as
percentage

nc_gld_requested_throughput Requested throughput for global memory loaded
via non-coherent cache

Multi-context

nc_gld_throughput Non coherent global memory load throughput Multi-
context*

nc_l2_read_throughput Memory read throughput for non coherent
global read requests seen at L2 cache

Multi-
context*

nc_l2_read_transactions Memory read transactions seen at L2 cache for
non coherent global read requests

Multi-
context*

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-
context*

shared_load_throughput Shared memory load throughput Multi-
context*

shared_load_transactions Number of shared memory load transactions Multi-
context*

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-
context*

shared_replay_overhead Average number of replays due to shared
memory conflicts for each instruction executed

Multi-context

shared_store_throughput Shared memory store throughput Multi-
context*

shared_store_transactions Number of shared memory store transactions Multi-
context*

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-
context*

sm_efficiency The percentage of time at least one warp is
active on a multiprocessor averaged over all
multiprocessors on the GPU

Multi-
context*

sm_efficiency_instance The percentage of time at least one warp is
active on a specific multiprocessor

Multi-
context*

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss. This is
available for compute capability 3.2, 3.5 and
3.7.

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to
the required resources not being available or

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 26

Metric Name Description Scope

fully utilized, or because too many requests of a
given type are outstanding.

stall_memory_throttle Percentage of stalls occurring because of
memory throttle.

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected.

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy. This is
available for compute capability 3.2, 3.5 and
3.7.

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

sysmem_read_throughput System memory read throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_read_transactions System memory read transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 3.0,
3.5 and 3.7.

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 3.0,
3.5 and 3.7.

Multi-
context*

sysmem_write_throughput System memory write throughput. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_write_transactions System memory write transactions. This is
available for compute capability 3.0, 3.5 and
3.7.

Multi-
context*

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10. This is available for compute
capability 3.0, 3.5 and 3.7.

Multi-context

tex_cache_hit_rate Texture cache hit rate Multi-
context*

tex_cache_throughput Texture cache throughput Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 27

Metric Name Description Scope

tex_cache_transactions Texture cache read transactions Multi-
context*

tex_fu_utilization The utilization level of the multiprocessor
function units that execute texture instructions
on a scale of 0 to 10

Multi-context

tex_utilization The utilization level of the texture cache
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage

Multi-context

* The "Multi-context" scope for this metric is supported only for devices with compute
capability 3.0, 3.5, and 3.7.

1.6.1.2. Metrics for Capability 5.x
Devices with compute capability 5.x implement the metrics shown in the following
table. Note that for some metrics, the "Multi-context" scope is supported only for specific
devices. Such metrics are marked with "Multi-context*" under the "Scope" column. Refer
to the note at the bottom of the table.

Table 2 Capability 5.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of non-divergent branches to total
branches expressed as percentage

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 28

Metric Name Description Scope

double_precision_fu_utilization The utilization level of the multiprocessor
function units that execute double-precision
floating-point instructions on a scale of 0 to 10

Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_read_throughput Device memory read throughput. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_read_transactions Device memory read transactions. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

dram_write_bytes Total bytes written from L2 cache to DRAM. This
is available for compute capability 5.0 and 5.2.

Multi-
context*

dram_write_throughput Device memory write throughput. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

dram_write_transactions Device memory write transactions. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

ecc_throughput ECC throughput from L2 to DRAM. This is
available for compute capability 5.0 and 5.2.

Multi-
context*

ecc_transactions Number of ECC transactions between L2 and
DRAM. This is available for compute capability
5.0 and 5.2.

Multi-
context*

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_hp Number of half-precision floating-point
operations executed by non-predicated threads
(add, multiply and multiply-accumulate). Each
multiply-accumulate operation contributes
2 to the count. This is available for compute
capability 5.3.

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 29

Metric Name Description Scope

flop_count_hp_add Number of half-precision floating-point add
operations executed by non-predicated threads.
This is available for compute capability 5.3.

Multi-
context*

flop_count_hp_fma Number of half-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count. This is available for compute capability
5.3.

Multi-
context*

flop_count_hp_mul Number of half-precision floating-point multiply
operations executed by non-predicated threads.
This is available for compute capability 5.3.

Multi-
context*

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

Multi-context

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads.

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision
floating-point operations. This is available for
compute capability 5.3.

Multi-
context*

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage.

Multi-
context*

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-
context*

gld_transactions Number of global memory load transactions Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 30

Metric Name Description Scope

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load.

Multi-
context*

global_atomic_requests Total number of global atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

global_hit_rate Hit rate for global loads in unified l1/tex cache.
Metric value maybe wrong if malloc is used in
kernel.

Multi-
context*

global_load_requests Total number of global load requests from
Multiprocessor

Multi-context

global_reduction_requests Total number of global reduction requests from
Multiprocessor

Multi-context

global_store_requests Total number of global store requests from
Multiprocessor. This does not include atomic
requests.

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage.

Multi-
context*

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-
context*

gst_transactions Number of global memory store transactions Multi-
context*

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-
context*

half_precision_fu_utilization The utilization level of the multiprocessor
function units that execute 16 bit floating-
point instructions and integer instructions on a
scale of 0 to 10. This is available for compute
capability 5.3.

Multi-
context*

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and
atom cas

Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 31

Metric Name Description Scope

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and
atom CAS

Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and
atom cas

Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.) This is available for
compute capability 5.3.

Multi-
context*

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 32

Metric Name Description Scope

l2_global_atomic_store_bytes Bytes written to L2 from Unified cache for
global atomics (ATOM and ATOM CAS)

Multi-
context*

l2_global_load_bytes Bytes read from L2 for misses in Unified Cache
for global loads

Multi-
context*

l2_global_reduction_bytes Bytes written to L2 from Unified cache for
global reductions

Multi-
context*

l2_local_global_store_bytes Bytes written to L2 from Unified Cache for local
and global stores. This does not include global
atomics.

Multi-
context*

l2_local_load_bytes Bytes read from L2 for misses in Unified Cache
for local loads

Multi-
context*

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-
context*

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-
context*

l2_surface_atomic_store_bytes Bytes transferred between Unified Cache and L2
for surface atomics (ATOM and ATOM CAS)

Multi-
context*

l2_surface_load_bytes Bytes read from L2 for misses in Unified Cache
for surface loads

Multi-
context*

l2_surface_reduction_bytes Bytes written to L2 from Unified Cache for
surface reductions

Multi-
context*

l2_surface_store_bytes Bytes written to L2 from Unified Cache for
surface stores. This does not include surface
atomics.

Multi-
context*

l2_tex_hit_rate Hit rate at L2 cache for all requests from
texture cache

Multi-
context*

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache. This is available for compute
capability 5.0 and 5.2.

Multi-
context*

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-
context*

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from
texture cache. This is available for compute
capability 5.0 and 5.2.

Multi-
context*

l2_tex_write_throughput Memory write throughput seen at L2 cache for
write requests from the texture cache

Multi-
context*

l2_tex_write_transactions Memory write transactions seen at L2 cache for
write requests from the texture cache

Multi-
context*

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-
context*

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 33

Metric Name Description Scope

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-
context*

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute shared load, shared
store and constant load instructions on a scale
of 0 to 10

Multi-context

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_hit_rate Hit rate for local loads and stores Multi-
context*

local_load_requests Total number of local load requests from
Multiprocessor

Multi-
context*

local_load_throughput Local memory load throughput Multi-
context*

local_load_transactions Number of local memory load transactions Multi-
context*

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-
context*

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage

Multi-
context*

local_store_requests Total number of local store requests from
Multiprocessor

Multi-
context*

local_store_throughput Local memory store throughput Multi-
context*

local_store_transactions Number of local memory store transactions Multi-
context*

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-
context*

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-
context*

shared_load_throughput Shared memory load throughput Multi-
context*

shared_load_transactions Number of shared memory load transactions Multi-
context*

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-
context*

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 34

Metric Name Description Scope

shared_store_throughput Shared memory store throughput Multi-
context*

shared_store_transactions Number of shared memory store transactions Multi-
context*

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-
context*

shared_utilization The utilization level of the shared memory
relative to peak utilization on a scale of 0 to 10

Multi-
context*

single_precision_fu_utilization The utilization level of the multiprocessor
function units that execute single-precision
floating-point instructions and integer
instructions on a scale of 0 to 10

Multi-context

sm_efficiency The percentage of time at least one warp is
active on a specific multiprocessor

Multi-
context*

special_fu_utilization The utilization level of the multiprocessor
function units that execute sin, cos, ex2, popc,
flo, and similar instructions on a scale of 0 to 10

Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to
the required resources not being available or
fully utilized, or because too many requests of a
given type are outstanding

Multi-context

stall_memory_throttle Percentage of stalls occurring because of
memory throttle

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 35

Metric Name Description Scope

surface_load_requests Total number of surface load requests from
Multiprocessor

Multi-context

surface_reduction_requests Total number of surface reduction requests from
Multiprocessor

Multi-context

surface_store_requests Total number of surface store requests from
Multiprocessor

Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-
context*

sysmem_read_throughput System memory read throughput Multi-
context*

sysmem_read_transactions Number of system memory read transactions Multi-
context*

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 5.0
and 5.2.

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 5.0
and 5.2.

Multi-
context*

sysmem_write_bytes Number of bytes written to system memory Multi-
context*

sysmem_write_throughput System memory write throughput Multi-
context*

sysmem_write_transactions Number of system memory write transactions Multi-
context*

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10. This is available for compute
capability 5.0 and 5.2.

Multi-
context*

tex_cache_hit_rate Unified cache hit rate Multi-
context*

tex_cache_throughput Unified cache throughput Multi-
context*

tex_cache_transactions Unified cache read transactions Multi-
context*

tex_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
texture memory instructions on a scale of 0 to
10

Multi-context

tex_utilization The utilization level of the unified cache
relative to the peak utilization on a scale of 0 to
10

Multi-
context*

texture_load_requests Total number of texture Load requests from
Multiprocessor

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 36

Metric Name Description Scope

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor

Multi-context

* The "Multi-context" scope for this metric is supported only for devices with compute
capability 5.0 and 5.2.

1.6.1.3. Metrics for Capability 6.x
Devices with compute capability 6.x implement the metrics shown in the following
table.

Table 3 Capability 6.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of non-divergent branches to total
branches expressed as percentage

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

double_precision_fu_utilization The utilization level of the multiprocessor
function units that execute double-precision
floating-point instructions on a scale of 0 to 10

Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache Multi-context

dram_read_throughput Device memory read throughput. This is
available for compute capability 6.0 and 6.1.

Multi-context

dram_read_transactions Device memory read transactions. This is
available for compute capability 6.0 and 6.1.

Multi-context

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

dram_write_bytes Total bytes written from L2 cache to DRAM Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 37

Metric Name Description Scope

dram_write_throughput Device memory write throughput. This is
available for compute capability 6.0 and 6.1.

Multi-context

dram_write_transactions Device memory write transactions. This is
available for compute capability 6.0 and 6.1.

Multi-context

ecc_throughput ECC throughput from L2 to DRAM. This is
available for compute capability 6.1.

Multi-context

ecc_transactions Number of ECC transactions between L2 and
DRAM. This is available for compute capability
6.1.

Multi-context

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_hp Number of half-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_hp_add Number of half-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_hp_fma Number of half-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_hp_mul Number of half-precision floating-point multiply
operations executed by non-predicated threads.

Multi-context

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

Multi-context

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads.

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 38

Metric Name Description Scope

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads.

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision
floating-point operations

Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage.

Multi-context

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-context

gld_transactions Number of global memory load transactions Multi-context

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load.

Multi-context

global_atomic_requests Total number of global atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

global_hit_rate Hit rate for global loads in unified l1/tex cache.
Metric value maybe wrong if malloc is used in
kernel.

Multi-context

global_load_requests Total number of global load requests from
Multiprocessor

Multi-context

global_reduction_requests Total number of global reduction requests from
Multiprocessor

Multi-context

global_store_requests Total number of global store requests from
Multiprocessor. This does not include atomic
requests.

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage.

Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-context

gst_transactions Number of global memory store transactions Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 39

Metric Name Description Scope

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-context

half_precision_fu_utilization The utilization level of the multiprocessor
function units that execute 16 bit floating-point
instructions on a scale of 0 to 10

Multi-context

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and
atom cas

Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and
atom CAS

Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and
atom cas

Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 40

Metric Name Description Scope

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-context

l2_global_atomic_store_bytes Bytes written to L2 from Unified cache for
global atomics (ATOM and ATOM CAS)

Multi-context

l2_global_load_bytes Bytes read from L2 for misses in Unified Cache
for global loads

Multi-context

l2_global_reduction_bytes Bytes written to L2 from Unified cache for
global reductions

Multi-context

l2_local_global_store_bytes Bytes written to L2 from Unified Cache for local
and global stores. This does not include global
atomics.

Multi-context

l2_local_load_bytes Bytes read from L2 for misses in Unified Cache
for local loads

Multi-context

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-context

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-context

l2_surface_atomic_store_bytes Bytes transferred between Unified Cache and L2
for surface atomics (ATOM and ATOM CAS)

Multi-context

l2_surface_load_bytes Bytes read from L2 for misses in Unified Cache
for surface loads

Multi-context

l2_surface_reduction_bytes Bytes written to L2 from Unified Cache for
surface reductions

Multi-context

l2_surface_store_bytes Bytes written to L2 from Unified Cache for
surface stores. This does not include surface
atomics.

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 41

Metric Name Description Scope

l2_tex_hit_rate Hit rate at L2 cache for all requests from
texture cache

Multi-context

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache. This is available for compute
capability 6.0 and 6.1.

Multi-context

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from
texture cache. This is available for compute
capability 6.0 and 6.1.

Multi-context

l2_tex_write_throughput Memory write throughput seen at L2 cache for
write requests from the texture cache

Multi-context

l2_tex_write_transactions Memory write transactions seen at L2 cache for
write requests from the texture cache

Multi-context

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-context

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-context

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-context

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute shared load, shared
store and constant load instructions on a scale
of 0 to 10

Multi-context

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_hit_rate Hit rate for local loads and stores Multi-context

local_load_requests Total number of local load requests from
Multiprocessor

Multi-context

local_load_throughput Local memory load throughput Multi-context

local_load_transactions Number of local memory load transactions Multi-context

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-context

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage

Multi-context

local_store_requests Total number of local store requests from
Multiprocessor

Multi-context

local_store_throughput Local memory store throughput Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 42

Metric Name Description Scope

local_store_transactions Number of local memory store transactions Multi-context

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-context

nvlink_overhead_data_received Ratio of overhead data to the total data,
received through NVLink. This is available for
compute capability 6.0.

Device

nvlink_overhead_data_transmitted Ratio of overhead data to the total data,
transmitted through NVLink. This is available for
compute capability 6.0.

Device

nvlink_receive_throughput Number of bytes received per second through
NVLinks. This is available for compute capability
6.0.

Device

nvlink_total_data_received Total data bytes received through NVLinks
including headers. This is available for compute
capability 6.0.

Device

nvlink_total_data_transmitted Total data bytes transmitted through NVLinks
including headers. This is available for compute
capability 6.0.

Device

nvlink_total_nratom_data_transmitted Total non-reduction atomic data bytes
transmitted through NVLinks. This is available
for compute capability 6.0.

Device

nvlink_total_ratom_data_transmitted Total reduction atomic data bytes transmitted
through NVLinks This is available for compute
capability 6.0.

Device

nvlink_total_response_data_received Total response data bytes received through
NVLink, response data includes data for
read requests and result of non-reduction
atomic requests. This is available for compute
capability 6.0.

Device

nvlink_total_write_data_transmitted Total write data bytes transmitted through
NVLinks. This is available for compute capability
6.0.

Device

nvlink_transmit_throughput Number of Bytes Transmitted per second
through NVLinks. This is available for compute
capability 6.0.

Device

nvlink_user_data_received User data bytes received through NVLinks,
doesn't include headers. This is available for
compute capability 6.0.

Device

nvlink_user_data_transmitted User data bytes transmitted through NVLinks,
doesn't include headers. This is available for
compute capability 6.0.

Device

nvlink_user_nratom_data_transmitted Total non-reduction atomic user data bytes
transmitted through NVLinks. This is available
for compute capability 6.0.

Device

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 43

Metric Name Description Scope

nvlink_user_ratom_data_transmitted Total reduction atomic user data bytes
transmitted through NVLinks. This is available
for compute capability 6.0.

Device

nvlink_user_response_data_received Total user response data bytes received
through NVLink, response data includes data
for read requests and result of non-reduction
atomic requests. This is available for compute
capability 6.0.

Device

nvlink_user_write_data_transmitted User write data bytes transmitted through
NVLinks. This is available for compute capability
6.0.

Device

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-context

shared_load_throughput Shared memory load throughput Multi-context

shared_load_transactions Number of shared memory load transactions Multi-context

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-context

shared_store_throughput Shared memory store throughput Multi-context

shared_store_transactions Number of shared memory store transactions Multi-context

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-context

shared_utilization The utilization level of the shared memory
relative to peak utilization on a scale of 0 to 10

Multi-context

single_precision_fu_utilization The utilization level of the multiprocessor
function units that execute single-precision
floating-point instructions and integer
instructions on a scale of 0 to 10

Multi-context

sm_efficiency The percentage of time at least one warp is
active on a specific multiprocessor

Multi-context

special_fu_utilization The utilization level of the multiprocessor
function units that execute sin, cos, ex2, popc,
flo, and similar instructions on a scale of 0 to 10

Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 44

Metric Name Description Scope

the required resources not being available or
fully utilized, or because too many requests of a
given type are outstanding

stall_memory_throttle Percentage of stalls occurring because of
memory throttle

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

surface_load_requests Total number of surface load requests from
Multiprocessor

Multi-context

surface_reduction_requests Total number of surface reduction requests from
Multiprocessor

Multi-context

surface_store_requests Total number of surface store requests from
Multiprocessor

Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-context

sysmem_read_throughput System memory read throughput Multi-context

sysmem_read_transactions Number of system memory read transactions Multi-context

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 6.0
and 6.1.

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10. This is available for compute capability 6.0
and 6.1.

Multi-context

sysmem_write_bytes Number of bytes written to system memory Multi-context

sysmem_write_throughput System memory write throughput Multi-context

sysmem_write_transactions Number of system memory write transactions Multi-context

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10. This is available for compute
capability 6.0 and 6.1.

Multi-context

tex_cache_hit_rate Unified cache hit rate Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 45

Metric Name Description Scope

tex_cache_throughput Unified cache throughput Multi-context

tex_cache_transactions Unified cache read transactions Multi-context

tex_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
texture memory instructions on a scale of 0 to
10

Multi-context

tex_utilization The utilization level of the unified cache
relative to the peak utilization on a scale of 0 to
10

Multi-context

texture_load_requests Total number of texture Load requests from
Multiprocessor

Multi-context

unique_warps_launched Number of warps launched. Value is unaffected
by compute preemption.

Multi-context

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor

Multi-context

1.6.1.4. Metrics for Capability 7.0
Devices with compute capability 7.0 implement the metrics shown in the following
table.

Table 4 Capability 7.x (7.0 and 7.2) Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active
cycle to the maximum number of warps
supported on a multiprocessor

Multi-context

atomic_transactions Global memory atomic and reduction
transactions

Multi-context

atomic_transactions_per_request Average number of global memory atomic and
reduction transactions performed for each
atomic and reduction instruction

Multi-context

branch_efficiency Ratio of branch instruction to sum of branch and
divergent branch instruction

Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor
function units that execute control-flow
instructions on a scale of 0 to 10

Multi-context

cf_issued Number of issued control-flow instructions Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 46

Metric Name Description Scope

double_precision_fu_utilization The utilization level of the multiprocessor
function units that execute double-precision
floating-point instructions on a scale of 0 to 10

Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache Multi-context

dram_read_throughput Device memory read throughput Multi-context

dram_read_transactions Device memory read transactions Multi-context

dram_utilization The utilization level of the device memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

dram_write_bytes Total bytes written from L2 cache to DRAM Multi-context

dram_write_throughput Device memory write throughput Multi-context

dram_write_transactions Device memory write transactions Multi-context

eligible_warps_per_cycle Average number of warps that are eligible to
issue per active cycle

Multi-context

flop_count_dp Number of double-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate operation contributes 2 to
the count.

Multi-context

flop_count_dp_add Number of double-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_dp_fma Number of double-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_dp_mul Number of double-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_hp Number of half-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each
multiply-accumulate contributes 2 or 4 to the
count based on the number of inputs.

Multi-context

flop_count_hp_add Number of half-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_hp_fma Number of half-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate contributes 2 or 4 to the count
based on the number of inputs.

Multi-context

flop_count_hp_mul Number of half-precision floating-point multiply
operations executed by non-predicated threads.

Multi-context

flop_count_sp Number of single-precision floating-point
operations executed by non-predicated threads
(add, multiply, and multiply-accumulate). Each

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 47

Metric Name Description Scope

multiply-accumulate operation contributes 2 to
the count. The count does not include special
operations.

flop_count_sp_add Number of single-precision floating-point add
operations executed by non-predicated threads.

Multi-context

flop_count_sp_fma Number of single-precision floating-point
multiply-accumulate operations executed
by non-predicated threads. Each multiply-
accumulate operation contributes 1 to the
count.

Multi-context

flop_count_sp_mul Number of single-precision floating-point
multiply operations executed by non-predicated
threads.

Multi-context

flop_count_sp_special Number of single-precision floating-point special
operations executed by non-predicated threads.

Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision
floating-point operations

Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision
floating-point operations

Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision
floating-point operations

Multi-context

gld_efficiency Ratio of requested global memory load
throughput to required global memory load
throughput expressed as percentage.

Multi-context

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-context

gld_transactions Number of global memory load transactions Multi-context

gld_transactions_per_request Average number of global memory load
transactions performed for each global memory
load.

Multi-context

global_atomic_requests Total number of global atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

global_hit_rate Hit rate for global load and store in unified l1/
tex cache

Multi-context

global_load_requests Total number of global load requests from
Multiprocessor

Multi-context

global_reduction_requests Total number of global reduction requests from
Multiprocessor

Multi-context

global_store_requests Total number of global store requests from
Multiprocessor. This does not include atomic
requests.

Multi-context

gst_efficiency Ratio of requested global memory store
throughput to required global memory store
throughput expressed as percentage.

Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 48

Metric Name Description Scope

gst_throughput Global memory store throughput Multi-context

gst_transactions Number of global memory store transactions Multi-context

gst_transactions_per_request Average number of global memory store
transactions performed for each global memory
store

Multi-context

half_precision_fu_utilization The utilization level of the multiprocessor
function units that execute 16 bit floating-point
instructions on a scale of 0 to 10. Note that this
doesn't specify the utilization level of tensor
core unit

Multi-context

inst_bit_convert Number of bit-conversion instructions executed
by non-predicated threads

Multi-context

inst_compute_ld_st Number of compute load/store instructions
executed by non-predicated threads

Multi-context

inst_control Number of control-flow instructions executed by
non-predicated threads (jump, branch, etc.)

Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and
atom cas

Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and
atom CAS

Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and
atom cas

Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_fp_32 Number of single-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 49

Metric Name Description Scope

inst_fp_64 Number of double-precision floating-point
instructions executed by non-predicated threads
(arithmetic, compare, etc.)

Multi-context

inst_integer Number of integer instructions executed by non-
predicated threads

Multi-context

inst_inter_thread_communication Number of inter-thread communication
instructions executed by non-predicated threads

Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed
by non-predicated threads

Multi-context

inst_per_warp Average number of instructions executed by
each warp

Multi-context

inst_replay_overhead Average number of replays for each instruction
executed

Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one
instruction, averaged across all cycles

Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for
atomic and reduction requests

Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for
atomic and reduction requests

Multi-context

l2_global_atomic_store_bytes Bytes written to L2 from L1 for global atomics
(ATOM and ATOM CAS)

Multi-context

l2_global_load_bytes Bytes read from L2 for misses in L1 for global
loads

Multi-context

l2_local_global_store_bytes Bytes written to L2 from L1 for local and global
stores. This does not include global atomics.

Multi-context

l2_local_load_bytes Bytes read from L2 for misses in L1 for local
loads

Multi-context

l2_read_throughput Memory read throughput seen at L2 cache for
all read requests

Multi-context

l2_read_transactions Memory read transactions seen at L2 cache for
all read requests

Multi-context

l2_surface_load_bytes Bytes read from L2 for misses in L1 for surface
loads

Multi-context

l2_surface_store_bytes Bytes read from L2 for misses in L1 for surface
stores

Multi-context

l2_tex_hit_rate Hit rate at L2 cache for all requests from
texture cache

Multi-context

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from
texture cache

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 50

Metric Name Description Scope

l2_tex_read_throughput Memory read throughput seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_read_transactions Memory read transactions seen at L2 cache for
read requests from the texture cache

Multi-context

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from
texture cache

Multi-context

l2_tex_write_throughput Memory write throughput seen at L2 cache for
write requests from the texture cache

Multi-context

l2_tex_write_transactions Memory write transactions seen at L2 cache for
write requests from the texture cache

Multi-context

l2_utilization The utilization level of the L2 cache relative to
the peak utilization on a scale of 0 to 10

Multi-context

l2_write_throughput Memory write throughput seen at L2 cache for
all write requests

Multi-context

l2_write_transactions Memory write transactions seen at L2 cache for
all write requests

Multi-context

ldst_executed Number of executed local, global, shared and
texture memory load and store instructions

Multi-context

ldst_fu_utilization The utilization level of the multiprocessor
function units that execute shared load, shared
store and constant load instructions on a scale
of 0 to 10

Multi-context

ldst_issued Number of issued local, global, shared and
texture memory load and store instructions

Multi-context

local_hit_rate Hit rate for local loads and stores Multi-context

local_load_requests Total number of local load requests from
Multiprocessor

Multi-context

local_load_throughput Local memory load throughput Multi-context

local_load_transactions Number of local memory load transactions Multi-context

local_load_transactions_per_request Average number of local memory load
transactions performed for each local memory
load

Multi-context

local_memory_overhead Ratio of local memory traffic to total memory
traffic between the L1 and L2 caches expressed
as percentage

Multi-context

local_store_requests Total number of local store requests from
Multiprocessor

Multi-context

local_store_throughput Local memory store throughput Multi-context

local_store_transactions Number of local memory store transactions Multi-context

local_store_transactions_per_request Average number of local memory store
transactions performed for each local memory
store

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 51

Metric Name Description Scope

nvlink_overhead_data_received Ratio of overhead data to the total data,
received through NVLink.

Device

nvlink_overhead_data_transmitted Ratio of overhead data to the total data,
transmitted through NVLink.

Device

nvlink_receive_throughput Number of bytes received per second through
NVLinks.

Device

nvlink_total_data_received Total data bytes received through NVLinks
including headers.

Device

nvlink_total_data_transmitted Total data bytes transmitted through NVLinks
including headers.

Device

nvlink_total_nratom_data_transmitted Total non-reduction atomic data bytes
transmitted through NVLinks.

Device

nvlink_total_ratom_data_transmitted Total reduction atomic data bytes transmitted
through NVLinks.

Device

nvlink_total_response_data_received Total response data bytes received through
NVLink, response data includes data for read
requests and result of non-reduction atomic
requests.

Device

nvlink_total_write_data_transmitted Total write data bytes transmitted through
NVLinks.

Device

nvlink_transmit_throughput Number of Bytes Transmitted per second
through NVLinks.

Device

nvlink_user_data_received User data bytes received through NVLinks,
doesn't include headers.

Device

nvlink_user_data_transmitted User data bytes transmitted through NVLinks,
doesn't include headers.

Device

nvlink_user_nratom_data_transmitted Total non-reduction atomic user data bytes
transmitted through NVLinks.

Device

nvlink_user_ratom_data_transmitted Total reduction atomic user data bytes
transmitted through NVLinks.

Device

nvlink_user_response_data_received Total user response data bytes received through
NVLink, response data includes data for read
requests and result of non-reduction atomic
requests.

Device

nvlink_user_write_data_transmitted User write data bytes transmitted through
NVLinks.

Device

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput
to required shared memory throughput
expressed as percentage

Multi-context

shared_load_throughput Shared memory load throughput Multi-context

shared_load_transactions Number of shared memory load transactions Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 52

Metric Name Description Scope

shared_load_transactions_per_request Average number of shared memory load
transactions performed for each shared memory
load

Multi-context

shared_store_throughput Shared memory store throughput Multi-context

shared_store_transactions Number of shared memory store transactions Multi-context

shared_store_transactions_per_request Average number of shared memory store
transactions performed for each shared memory
store

Multi-context

shared_utilization The utilization level of the shared memory
relative to peak utilization on a scale of 0 to 10

Multi-context

single_precision_fu_utilization The utilization level of the multiprocessor
function units that execute single-precision
floating-point instructions on a scale of 0 to 10

Multi-context

sm_efficiency The percentage of time at least one warp is
active on a specific multiprocessor

Multi-context

special_fu_utilization The utilization level of the multiprocessor
function units that execute sin, cos, ex2, popc,
flo, and similar instructions on a scale of 0 to 10

Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of
immediate constant cache miss

Multi-context

stall_exec_dependency Percentage of stalls occurring because an input
required by the instruction is not yet available

Multi-context

stall_inst_fetch Percentage of stalls occurring because the next
assembly instruction has not yet been fetched

Multi-context

stall_memory_dependency Percentage of stalls occurring because a
memory operation cannot be performed due to
the required resources not being available or
fully utilized, or because too many requests of a
given type are outstanding

Multi-context

stall_memory_throttle Percentage of stalls occurring because of
memory throttle

Multi-context

stall_not_selected Percentage of stalls occurring because warp was
not selected

Multi-context

stall_other Percentage of stalls occurring due to
miscellaneous reasons

Multi-context

stall_pipe_busy Percentage of stalls occurring because a
compute operation cannot be performed
because the compute pipeline is busy

Multi-context

stall_sleeping Percentage of stalls occurring because warp was
sleeping

Multi-context

stall_sync Percentage of stalls occurring because the warp
is blocked at a __syncthreads() call

Multi-context

stall_texture Percentage of stalls occurring because the
texture sub-system is fully utilized or has too
many outstanding requests

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 53

Metric Name Description Scope

surface_atomic_requests Total number of surface atomic(Atom and Atom
CAS) requests from Multiprocessor

Multi-context

surface_load_requests Total number of surface load requests from
Multiprocessor

Multi-context

surface_reduction_requests Total number of surface reduction requests from
Multiprocessor

Multi-context

surface_store_requests Total number of surface store requests from
Multiprocessor

Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-context

sysmem_read_throughput System memory read throughput Multi-context

sysmem_read_transactions Number of system memory read transactions Multi-context

sysmem_read_utilization The read utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

sysmem_utilization The utilization level of the system memory
relative to the peak utilization on a scale of 0 to
10

Multi-context

sysmem_write_bytes Number of bytes written to system memory Multi-context

sysmem_write_throughput System memory write throughput Multi-context

sysmem_write_transactions Number of system memory write transactions Multi-context

sysmem_write_utilization The write utilization level of the system
memory relative to the peak utilization on a
scale of 0 to 10

Multi-context

tensor_precision_fu_utilization The utilization level of the multiprocessor
function units that execute tensor core
instructions on a scale of 0 to 10

Multi-context

tensor_int_fu_utilization The utilization level of the multiprocessor
function units that execute tensor core int8
instructions on a scale of 0 to 10. This metric
is only available for device with compute
capability 7.2.

Multi-context

tex_cache_hit_rate Unified cache hit rate Multi-context

tex_cache_throughput Unified cache to Multiprocessor read throughput Multi-context

tex_cache_transactions Unified cache to Multiprocessor read
transactions

Multi-context

tex_fu_utilization The utilization level of the multiprocessor
function units that execute global, local and
texture memory instructions on a scale of 0 to
10

Multi-context

tex_utilization The utilization level of the unified cache
relative to the peak utilization on a scale of 0 to
10

Multi-context

texture_load_requests Total number of texture Load requests from
Multiprocessor

Multi-context

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 54

Metric Name Description Scope

warp_execution_efficiency Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor

Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp
executing non-predicated instructions to
the maximum number of threads per warp
supported on a multiprocessor

Multi-context

1.7. CUPTI Profiling API
Starting with CUDA 10.0, a new set of metric APIs are added for devices with compute
capability 7.0 and higher. These APIs provide low and deterministic profiling overhead
on the target system. These are supported on all CUDA supported platforms except
Android, and are not supported under MPS (Multi-Process Service), Confidential
Compute, or SLI configured systems. In order to determine whether a device is
compatible with this API, a new function cuptiProfilerDeviceSupported is
introduced in CUDA 11.5 which exposes overall Profiler API support and specific
requirements for a given device. Profiling API must be initialized by calling
cuptiProfilerInitialize before testing device support.

This section covers performance profiling Host and Target APIs for CUDA. Broadly
profiling APIs are divided into following four sections:

‣ Enumeration (Host)
‣ Configuration (Host)
‣ Collection (Target)
‣ Evaluation (Host)

Host APIs provide a metric interface for enumeration, configuration and evaluation
that doesn't require a compute(GPU) device, and can also run in an offline mode. In the
samples section under extensions, profiler host utility covers the usage of host APIs.
Target APIs are used for data collection of the metrics and requires a compute (GPU)
device. Refer to samples auto_rangeProfiling and userrange_profiling for usage of
profiling APIs.

The list of metrics has been overhauled from earlier generation metrics
and event APIs, to support a standard naming convention based upon
unit__(subunit?)_(pipestage?)_quantity_qualifiers

1.7.1. Multi Pass Collection
NVIDIA GPU hardware has a limited number of counter registers and cannot collect
all possible counters concurrently. There are also limitations on which counters can be
collected together in a single pass. This is resolved by replaying the exact same set of
GPU workloads multiple times, where each replay is termed a pass. On each pass, a

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 55

different subset of requested counters are collected. Once all passes are collected, the
data is available for evaluation. Certain metrics have many counters as inputs; adding
a single metric may require many passes to collect. CUPTI APIs support multi pass
collection through different collection attributes.

Sample cupti_metric_properties shows how to query number of passes required to
collect a set of counters.

1.7.2. Range Profiling
Each profiling session runs a series of replay passes, where each pass contains a
sequence of ranges. Every metric enabled in the session's configuration is collected
separately per unique range-stack in the pass. CUPTI supports auto and user defined
ranges.

1.7.2.1. Auto Range

In a session with auto range mode, ranges are defined around each kernel automatically
with a unique name assigned to each range, while profiling is enabled. This mode
is useful for tight metric collection around each kernel. A user can choose one of the
supported replay modes, pseudo code for each is described below:

Kernel Replay

The replay logic (multiple pass, if needed) is done by CUPTI implicitly (opaque
to the user), and usage of CUPTI replay API's cuptiProfilerBeginPass and
cuptiProfilerEndPass will be a no-op in this mode. This mode is useful for collecting
metrics around a kernel in tight control. Each kernel launch is synchronized to segregate
its metrics into a separate range, and a CPU-GPU sync is made to ensure the profiled
data is collected from GPU. Counter Collection can be enabled and disabled with

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 56

cuptiProfilerEnableProfiling and cuptiProfilerDisableProfiling. Refer to
the sample autorange_profiling

/* Assume Inputs(counterDataImagePrefix and configImage) from configuration
 phase at host */
void Collection(std::vector<uint8_t>& counterDataImagePrefix,
 std::vector<uint8_t>& configImage)
{
 CUpti_Profiler_Initialize_Params profilerInitializeParams =
 { CUpti_Profiler_Initialize_Params_STRUCT_SIZE };
 cuptiProfilerInitialize(&profilerInitializeParams);

 std::vector<uint8_t> counterDataImages;
 std::vector<uint8_t> counterDataScratchBuffer;
 CreateCounterDataImage(counterDataImages, counterDataScratchBuffer,
 counterDataImagePrefix);

 CUpti_Profiler_BeginSession_Params beginSessionParams =
 { CUpti_Profiler_BeginSession_Params_STRUCT_SIZE };
 CUpti_ProfilerRange profilerRange = CUPTI_AutoRange;
 CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_KernelReplay;

 beginSessionParams.ctx = NULL;
 beginSessionParams.counterDataImageSize = counterDataImage.size();
 beginSessionParams.pCounterDataImage = &counterDataImage[0];
 beginSessionParams.counterDataScratchBufferSize =
 counterDataScratchBuffer.size();
 beginSessionParams.pCounterDataScratchBuffer = &counterDataScratchBuffer[0];
 beginSessionParams.range = profilerRange;
 beginSessionParams.replayMode = profilerReplayMode;
 beginSessionParams.maxRangesPerPass = num_ranges;
 beginSessionParams.maxLaunchesPerPass = num_ranges;

 cuptiProfilerBeginSession(&beginSessionParams));

 CUpti_Profiler_SetConfig_Params setConfigParams =
 { CUpti_Profiler_SetConfig_Params_STRUCT_SIZE };
 setConfigParams.pConfig = &configImage[0];
 setConfigParams.configSize = configImage.size();

 cuptiProfilerSetConfig(&setConfigParams));

 kernelA <<<grid, tids >>>(...); // KernelA not profiled

 CUpti_Profiler_EnableProfiling_Params enableProfilingParams =
 { CUpti_Profiler_EnableProfiling_Params_STRUCT_SIZE };
 cuptiProfilerEnableProfiling(&enableProfilingParams);
 {

 kernelB <<<grid, tids >>>(...); // KernelB profiled and captured
 in an unique range.
 kernelC <<<grid, tids >>>(...); // KernelC profiled and captured
 in an unique range.
 kernelD <<<grid, tids >>>(...); // KernelD profiled and captured
 in an unique range.
 }

 CUpti_Profiler_DisableProfiling_Params disableProfilingParams =
 { CUpti_Profiler_DisableProfiling_Params_STRUCT_SIZE };
 cuptiProfilerDisableProfiling(&disableProfilingParams);

 kernelE <<<grid, tids >>>(...); // KernelE not profiled

 CUpti_Profiler_UnsetConfig_Params unsetConfigParams =
 { CUpti_Profiler_UnsetConfig_Params_STRUCT_SIZE };
 cuptiProfilerUnsetConfig(&unsetConfigParams);

 CUpti_Profiler_EndSession_Params endSessionParams =
 { CUpti_Profiler_EndSession_Params_STRUCT_SIZE };
 cuptiProfilerEndSession(&endSessionParams);
}

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 57

User Replay

The replay (multiple passes, if needed) is done by the user using the replay API's
cuptiProfilerBeginPass and cuptiProfilerEndPass. It is user responsibility to
flush the counter data cuptiProfilerFlushCounterData before ending the session to
ensure collection of metric data in CPU. Counter collection can be enabled and disabled

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 58

with cuptiProfilerEnableProfiling/ cuptiProfilerDisableProfiling. Refer
to the sample autorange_profiling

 /* Assume Inputs(counterDataImagePrefix and configImage) from configuration
 phase at host */

 void Collection(std::vector<uint8_t>& counterDataImagePrefix,
 std::vector<uint8_t>& configImage)
 {
 CUpti_Profiler_Initialize_Params profilerInitializeParams =
 {CUpti_Profiler_Initialize_Params_STRUCT_SIZE};
 cuptiProfilerInitialize(&profilerInitializeParams);

 std::vector<uint8_t> counterDataImages;
 std::vector<uint8_t> counterDataScratchBuffer;
 CreateCounterDataImage(counterDataImages, counterDataScratchBuffer,
 counterDataImagePrefix);

 CUpti_Profiler_BeginSession_Params beginSessionParams =
 {CUpti_Profiler_BeginSession_Params_STRUCT_SIZE};
 CUpti_ProfilerRange profilerRange = CUPTI_AutoRange;
 CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_UserReplay;

 beginSessionParams.ctx = NULL;
 beginSessionParams.counterDataImageSize = counterDataImage.size();
 beginSessionParams.pCounterDataImage = &counterDataImage[0];
 beginSessionParams.counterDataScratchBufferSize =
 counterDataScratchBuffer.size();
 beginSessionParams.pCounterDataScratchBuffer =
 &counterDataScratchBuffer[0];
 beginSessionParams.range = profilerRange;
 beginSessionParams.replayMode = profilerReplayMode;
 beginSessionParams.maxRangesPerPass = num_ranges;
 beginSessionParams.maxLaunchesPerPass = num_ranges;

 cuptiProfilerBeginSession(&beginSessionParams));

 CUpti_Profiler_SetConfig_Params setConfigParams =
 {CUpti_Profiler_SetConfig_Params_STRUCT_SIZE};
 setConfigParams.pConfig = &configImage[0];
 setConfigParams.configSize = configImage.size();

 cuptiProfilerSetConfig(&setConfigParams));

 CUpti_Profiler_FlushCounterData_Params cuptiFlushCounterDataParams =
 {CUpti_Profiler_FlushCounterData_Params_STRUCT_SIZE};

 CUpti_Profiler_EnableProfiling_Params enableProfilingParams =
 {CUpti_Profiler_EnableProfiling_Params_STRUCT_SIZE};

 CUpti_Profiler_DisableProfiling_Params disableProfilingParams =
 {CUpti_Profiler_DisableProfiling_Params_STRUCT_SIZE};

 kernelA<<<grid, tids>>>(...); // KernelA neither
 profiled, nor replayed

 CUpti_Profiler_BeginPass_Params beginPassParams =
 {CUpti_Profiler_BeginPass_Params_STRUCT_SIZE};
 CUpti_Profiler_EndPass_Params endPassParams =
 {CUpti_Profiler_EndPass_Params_STRUCT_SIZE};

 cuptiProfilerBeginPass(&beginPassParams);
 {
 kernelB<<<grid, tids>>>(...); // KernelB replayed but
 not profiled

 cuptiProfilerEnableProfiling(&enableProfilingParams);

 kernelC<<<grid, tids>>>(...); // KernelC profiled and
 captured in an unique range.
 kernelD<<<grid, tids>>>(...); // KernelD profiled and
 captured in an unique range.

 cuptiProfilerDisableProfiling(&disableProfilingParams);
 }
 cuptiProfilerEndPass(&endPassParams);

 cuptiProfilerFlushCounterData(&cuptiFlushCounterDataParams);

 kernelE<<<grid, tids>>>(...); // KernelE not profiled

 CUpti_Profiler_UnsetConfig_Params unsetConfigParams =
 {CUpti_Profiler_UnsetConfig_Params_STRUCT_SIZE};
 cuptiProfilerUnsetConfig(&unsetConfigParams);

 CUpti_Profiler_EndSession_Params endSessionParams =
 {CUpti_Profiler_EndSession_Params_STRUCT_SIZE};
 cuptiProfilerEndSession(&endSessionParams);
 }

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 59

Application Replay

This replay mode is same as user replay, instead of in process replay, you can replay the
whole process again. You will need to update the pass index while setting the config
cuptiProfilerSetConfig and reload the intermediate counterDataImage on each
pass.

1.7.2.2. User Range

In a session with user range mode, ranges are defined by you,
cuptiProfilerPushRange and cuptiProfilerPopRange. Kernel launches are
concurrent within a range. This mode is useful for metric data collection around
a specific section of code, instead of per-kernel metric collection. Kernel replay
is not supported in user range mode. You own the responsibility of replay using
cuptiProfilerBeginPass and cuptiProfilerEndPass.

User Replay

The replay (multiple passes, if needed) is done by the user using the replay
API's cuptiProfilerBeginPass and cuptiProfilerEndPass. It is your
responsibility to flush the counter data using cuptiProfilerFlushCounterData
before ending the session. Counter collection can be enabled/disabled with

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 60

cuptiProfilerEnableProfiling and cuptiProfilerDisableProfiling. Refer to
the sample userrange_profiling
>
 /* Assume Inputs(counterDataImagePrefix and configImage) from configuration
 phase at host */

 void Collection(std::vector<uint8_t>& counterDataImagePrefix,
 std::vector<uint8_t>& configImage)
 {
 CUpti_Profiler_Initialize_Params profilerInitializeParams =
 {CUpti_Profiler_Initialize_Params_STRUCT_SIZE};
 cuptiProfilerInitialize(&profilerInitializeParams);

 std::vector<uint8_t> counterDataImages;
 std::vector<uint8_t> counterDataScratchBuffer;
 CreateCounterDataImage(counterDataImages, counterDataScratchBuffer,
 counterDataImagePrefix);

 CUpti_Profiler_BeginSession_Params beginSessionParams =
 {CUpti_Profiler_BeginSession_Params_STRUCT_SIZE};
 CUpti_ProfilerRange profilerRange = CUPTI_UserRange;
 CUpti_ProfilerReplayMode profilerReplayMode = CUPTI_UserReplay;

 beginSessionParams.ctx = NULL;
 beginSessionParams.counterDataImageSize = counterDataImage.size();
 beginSessionParams.pCounterDataImage = &counterDataImage[0];
 beginSessionParams.counterDataScratchBufferSize =
 counterDataScratchBuffer.size();
 beginSessionParams.pCounterDataScratchBuffer =
 &counterDataScratchBuffer[0];
 beginSessionParams.range = profilerRange;
 beginSessionParams.replayMode = profilerReplayMode;
 beginSessionParams.maxRangesPerPass = num_ranges;
 beginSessionParams.maxLaunchesPerPass = num_ranges;

 cuptiProfilerBeginSession(&beginSessionParams));

 CUpti_Profiler_SetConfig_Params setConfigParams =
 {CUpti_Profiler_SetConfig_Params_STRUCT_SIZE};
 setConfigParams.pConfig = &configImage[0];
 setConfigParams.configSize = configImage.size();

 cuptiProfilerSetConfig(&setConfigParams));

 CUpti_Profiler_FlushCounterData_Params cuptiFlushCounterDataParams =
 {CUpti_Profiler_FlushCounterData_Params_STRUCT_SIZE};

 kernelA<<<grid, tids>>>(...); // KernelA neither
 profiled, nor replayed

 CUpti_Profiler_BeginPass_Params beginPassParams =
 {CUpti_Profiler_BeginPass_Params_STRUCT_SIZE};
 CUpti_Profiler_EndPass_Params endPassParams =
 {CUpti_Profiler_EndPass_Params_STRUCT_SIZE};

 cuptiProfilerBeginPass(&beginPassParams);
 {
 kernelB<<<grid, tids>>>(...); // KernelB replayed but
 not profiled

 CUpti_Profiler_PushRange_Params enableProfilingParams =
 {CUpti_Profiler_PushRange_Params_STRUCT_SIZE};
 pushRangeParams.pRangeName = "RangeA";
 cuptiProfilerPushRange(&pushRangeParams);

 kernelC<<<grid, tids>>>(...);
 kernelD<<<grid, tids>>>(...);

 cuptiProfilerPopRange(&popRangeParams); // Kernel C and Kernel D
 are captured in rangeA without any serialization introduced by profiler
 }
 cuptiProfilerEndPass(&endPassParams);
 cuptiProfilerFlushCounterData(&cuptiFlushCounterDataParams);

 kernelE<<<grid, tids>>>(...); // KernelE not Profiled

 CUpti_Profiler_UnsetConfig_Params unsetConfigParams =
 {CUpti_Profiler_UnsetConfig_Params_STRUCT_SIZE};
 cuptiProfilerUnsetConfig(&unsetConfigParams);

 CUpti_Profiler_EndSession_Params endSessionParams =
 {CUpti_Profiler_EndSession_Params_STRUCT_SIZE};
 cuptiProfilerEndSession(&endSessionParams);
 }

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 61

Application Replay

This replay mode is same as user replay, instead of in process replay, you can replay
the whole process again. You will need to update the pass index while setting the
config using the cuptiProfilerSetConfig API, and reload the intermediate
counterDataImage on each pass.

1.7.3. CUPTI Profiler Definitions
Definitions of glossary used in this section.
Counter:

The number of occurrences of a specific event on the device.
Configuration Image:

A Blob to configure the session for counters to be collected.
CounterData Image:

A Blob which contains the values of collected counters
CounterData Prefix:

A metadata header for CounterData Image
Device:

A physical NVIDIA GPU.
Event:

An event is a countable activity, action, or occurrence on device.
Metric:

A high-level value derived from counter values.
Pass:

A repeatable set of operations, with consistently labeled ranges.
Range:

A labeled region of execution
Replay:

Performing the repeatable set of operation.
Session:

A profiling session where GPU resources needed for profiling are allocated. The
profiler is in armed state at session boundaries, and power management may be
disabled at session boundaries. Outside of a session, the GPU will return to its normal
operating state.

1.7.4. Differences from event and metric APIs
Here is the list of features which are supported by the event and metric APIs but these
are not available with the Profiling API:

‣ Continuous mode or sampling of the metrics.
‣ Profiling API provides closest equivalent metrics for most of the events and

metrics supported by the event and metric APIs. However, there are some events
and metrics, for example NVLink performance metrics, for which there is no

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 62

equivalent metrics in the Profiling API. Tables Metrics Mapping Table and Events
Mapping Table can be referred to find the equivalent Perfworks metrics for compute
capability 7.0.

‣ Per-instance metrics i.e. users can't collect metrics for each instance of the hardware
units like SM, FB etc separately. However Profiling API provides sub-metrics which
can be used to get the avg/sum/min/max across all instances of a hardware unit.

1.8. Perfworks Metric API

Introduction:

The Perfworks Metric API supports the enumeration, configuration and evaluation of
metrics. The binary outputs of the configuration phase are inputs to the CUPTI Range
Profiling API. The output of Range Profiling is the CounterData, which is passed to the
Derived Metrics Evaluation APIs.

GPU Metrics are generally presented as counts, ratios and percentages. The underlying
values collected from hardware are raw counters (analogous to CUPTI events), but those
details are hidden behind derived metric formulas.

The Metric APIs are split into two layers: Derived Metrics and Raw Metrics. Derived
Metrics contains the list of named metrics and performs evaluation to numeric results,
serving a similar purpose as the previous CUPTI Metric API. Most user interaction will
be with derived metrics. Raw Metrics contains the list of raw counters and generates
configuration file images analogous to the previous CUPTI Event API.

Metric Enumeration

Metric Enumeration is the process of listing available counters and metrics.

Refer to file List.cpp used by the cupti_metric_properties sample.

Metrics are grouped into three types i.e. counters, ratios and throughput. Except ratios
metric type each metrics have four type of sub-metrics also known as rollup metrics i.e.
sum, avg, min, max.

For enumerating supported metrics for a chip, we need to calculate the scratch buffer
needed for host operation and to initialize the Metric Evaluator.

‣ Call NVPW_CUDA_MetricsEvaluator_CalculateScratchBufferSize for
calculating scratch buffer size required for allocating memory for host operations.

‣ Call NVPW_CUDA_MetricsEvaluator_Initialize for initializing the Metrics
Evaluator which creates a NVPW_MetricsEvaluator object.

The outline for enumerating supported counter metrics for a chip:

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 63

‣ Call NVPW_MetricsEvaluator_GetMetricNames for
NVPW_METRIC_TYPE_COUNTER metric type for listing all the counter metrics
supported.

‣ Call NVPW_MetricsEvaluator_GetSupportedSubmetrics to list all the sub-
metric supported for NVPW_METRIC_TYPE_COUNTER metric type.

‣ Call NVPW_MetricsEvaluator_GetCounterProperties to give description of the
counter and the collection hardware unit.

Similarly, for enumerating ratio and throughput metrics we need to pass
NVPW_METRIC_TYPE_RATIO and NVPW_METRIC_TYPE_THROUGHPUT
as metric types to NVPW_MetricsEvaluator_GetMetricNames and
NVPW_MetricsEvaluator_GetSupportedSubmetrics.

For more details about the metric properties call
NVPW_MetricsEvaluator_GetRatioMetricProperties and
NVPW_MetricsEvaluator_GetThroughputMetricProperties respectively.

Configuration Workflow

Configuration is the process of specifying the metrics that will be collected and how
those metrics should be collected. The inputs for this phase are the metric names
and metric collection properties. The output for this phase is a ConfigImage and a
CounterDataPrefix Image.

Refer to file Metric.cpp used by the userrange_profiling sample.

The outline for configuring metrics:

‣ As input, take a list of metric names.
‣ Before creating ConfigImage or CounterDataPrefixImage, we need a list of

NVPA_RawMetricRequest for the metrics listed for collection.

‣ We need to calculate the scratch buffer size required for the host operation and
to initialize the Metric Evaluator like in the Enumeration phase.

‣ For each metric, Call
NVPW_MetricsEvaluator_ConvertMetricNameToMetricEvalRequest for
creating a NVPW_MetricEvalRequest.

‣ Call NVPW_MetricsEvaluator_GetMetricRawDependencies which takes the
NVPW_MetricsEvaluator and NVPW_MetricEvalRequest as input, for getting
raw dependencies for given metrics.

‣ Create an NVPA_RawMetricRequest with keepInstances=true and
isolated=true

‣ Pass the NVPA_RawMetricRequest to NVPW_RawMetricsConfig_AddMetrics for
the ConfigImage.

‣ Pass the NVPA_RawMetricRequest to NVPW_CounterDataBuilder_AddMetrics
for the CounterDataPrefix.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 64

‣ Generate binary configuration "images" (file format in memory):

‣ ConfigImage from NVPW_RawMetricsConfig_GetConfigImage
‣ CounterDataPrefix from

NVPW_CounterDataBuilder_GetCounterDataPrefix

Metric Evaluation

Metric Evaluation is the process of forming metrics from the counters stored in the
CounterData image.

Refer to file Eval.cpp used by the userrange_profiling sample.

The outline for configuring metrics:

‣ As input, take the same list of metric names as used during configuration.
‣ As input, take a CounterDataImage collected on a target device.
‣ We need to calculate the scratch buffer size required for the host operation and to

initialize the Metric Evaluator like in the Enumeration phase.
‣ Query the number of ranges collected via NVPW_CounterData_GetNumRanges.
‣ For each metric:

‣ Call NVPW_MetricsEvaluator_ConvertMetricNameToMetricEvalRequest
for creating NVPW_MetricEvalRequest

‣ For each range:

‣ Call NVPW_Profiler_CounterData_GetRangeDescriptions to retrieve
the range's description, originally set by cuptiProfilerPushRange.

‣ Call NVPW_MetricsEvaluator_SetDeviceAttributes to set the current
range for evaluation on the NVPW_MetricEvalRequest.

‣ Call NVPW_MetricsEvaluator_EvaluateToGpuValues to query an
array of numeric values corresponding to each input metric.

1.8.1. Derived metrics

Metrics Overview

The PerfWorks API comes with an advanced metrics calculation system, designed
to help you determine what happened (counters and metrics), and how close the
program reached to peak GPU performance (throughputs as a percentage). Every
counter has associated peak rates in the database, to allow computing its throughput as
a percentage.

Throughput metrics return the maximum percentage value of
their constituent counters. Constituents can be programmatically
queried via NVPW_MetricsEvaluator_GetMetricNames with
NVPW_METRIC_TYPE_THROUGHPUT as metric types. These constituents have

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 65

been carefully selected to represent the sections of the GPU pipeline that govern peak
performance. While all counters can be converted to a %-of-peak, not all counters
are suitable for peak-performance analysis; examples of unsuitable counters include
qualified subsets of activity, and workload residency counters. Using throughput metrics
ensures meaningful and actionable analysis.

Two types of peak rates are available for every counter: burst and sustained. Burst rate
is the maximum rate reportable in a single clock cycle. Sustained rate is the maximum
rate achievable over an infinitely long measurement period, for "typical" operations.
For many counters, burst == sustained. Since the burst rate cannot be exceeded,
percentages of burst rate will always be less than 100%. Percentages of sustained rate
can occasionally exceed 100% in edge cases. Burst metrics are only supported with
MetricsContext APIs and these will be deprecated in a future CUDA release. These
metrics are not supported with NVPW_MetricsEvaluator APIs.

Metrics Entities

The Metrics layer has 3 major types of entities:

‣ Metrics : these are calculated quantities, with the following static properties:

‣ Description string.
‣ Dimensional Units : a list of ('name', exponent) in the style of dimensional

analysis. Example string representation: pixels / gpc_clk.
‣ Raw Metric dependencies : the list of raw metrics that must be collected, in

order to evaluate the metric.
‣ Every metric has the following sub-metrics built in.

.peak_burst the peak burst rate*

.peak_sustained the peak sustained rate

.per_cycle_active the number of operations per
unit active cycle

.per_cycle_elapsed the number of operations per
unit elapsed cycle

.per_cycle_region the number of operations per
user-specified "range" cycle

.per_cycle_frame the number of operations per
user-specified "frame" cycle

.per_second the number of operations per
second

.pct_of_peak_burst_active % of peak burst rate achieved
during unit active cycles*

https://en.wikipedia.org/wiki/Dimensional_analysis
https://en.wikipedia.org/wiki/Dimensional_analysis

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 66

.pct_of_peak_burst_elapsed % of peak burst rate achieved
during unit elapsed cycles*

.pct_of_peak_burst_region % of peak burst rate achieved
over a user-specified "range"
time*

.pct_of_peak_burst_frame % of peak burst rate achieved
over a user-specified "frame"
time*

.pct_of_peak_sustained_active % of peak sustained rate
achieved during unit active
cycles

.pct_of_peak_sustained_elapsed% of peak sustained rate
achieved during unit elapsed
cycles

.pct_of_peak_sustained_region % of peak sustained rate
achieved over a user-specified
"range" time

.pct_of_peak_sustained_frame % of peak sustained rate
achieved over a user-specified
"frame" time

‣ Counters : may be either a raw counter from the GPU, or a calculated counter value.
Every counter has 4 sub-metrics under it:

.sum The sum of counter values across all
unit instances.

.avg The average counter value across all
unit instances.

.min The minimum counter value across
all unit instances.

.max The maximum counter value across
all unit instances.

‣ Ratios : . Every counter has 2 sub-metrics under it:

.pct The value expressed as a percentage.

.ratio The value expressed as a ratio.

‣ Throughputs : a family of percentage metrics that indicate how close a portion of the
GPU reached to peak rate. Every throughput has the following sub-metrics:

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 67

.pct_of_peak_burst_active % of peak burst rate achieved
during unit active cycles*

.pct_of_peak_burst_elapsed % of peak burst rate achieved
during unit elapsed cycles*

.pct_of_peak_burst_region % of peak burst rate achieved over a
user-specified "range" time*

.pct_of_peak_burst_frame % of peak burst rate achieved over a
user-specified "frame" time*

.pct_of_peak_sustained_active % of peak sustained rate achieved
during unit active cycles

.pct_of_peak_sustained_elapsed % of peak sustained rate achieved
during unit elapsed cycles

.pct_of_peak_sustained_region % of peak sustained rate achieved
over a user-specified "range" time

.pct_of_peak_sustained_frame % of peak sustained rate achieved
over a user-specified "frame" time

At the configuration step, you must specify metric names. Counters, ratios, and
throughputs are not directly schedulable. The sum,avg,min,max sub-metrics for
counters are also called "rollups".
*Burst metrics are supported with MetricsContext APIs only.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 68

Metrics Examples

non-metric names -- *not* directly evaluable
sm__inst_executed # counter
smsp__average_warp_latency # ratio
sm__throughput # throughput

a counter's four sub-metrics -- all evaluable
sm__inst_executed.sum # metric
sm__inst_executed.avg # metric
sm__inst_executed.min # metric
sm__inst_executed.max # metric

all names below are metrics -- all evaluable
l1tex__data_bank_conflicts_pipe_lsu.sum
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_burst
l1tex__data_bank_conflicts_pipe_lsu.sum.peak_sustained
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_active
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_region
l1tex__data_bank_conflicts_pipe_lsu.sum.per_cycle_frame
l1tex__data_bank_conflicts_pipe_lsu.sum.per_second
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_active
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_region
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_burst_frame
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_active
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_elapsed
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_region
l1tex__data_bank_conflicts_pipe_lsu.sum.pct_of_peak_sustained_frame

Metrics Naming Conventions

Counters and metrics _generally_ obey the naming scheme:

‣ Unit-Level Counter :
unit__(subunit?)_(pipestage?)_quantity_(qualifiers?)

‣ Interface Counter :
unit__(subunit?)_(pipestage?)_(interface)_quantity_(qualifiers?)

‣ Unit Metric : (counter_name).(rollup_metric)
‣ Sub-Metric : (counter_name).(rollup_metric).(submetric)

where

‣ unit: A logical of physical unit of the GPU
‣ subunit: The subunit within the unit where the counter was measured. Sometimes

this is a pipeline mode instead.
‣ pipestage: The pipeline stage within the subunit where the counter was measured.
‣ quantity: What is being measured. Generally matches the "dimensional units".
‣ qualifiers: Any additional predicates or filters applied to the counter. Often, an

unqualified counter can be broken down into several qualified sub-components.
‣ interface: Of the form sender2receiver, where sender is the source-unit and

receiver is the destination-unit.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 69

‣ rollup_metric: One of sum,avg,min,max.
‣ submetric: refer to section Metric Entities

Components are not always present. Most top-level counters have no qualifiers. Subunit
and pipestage may be absent where irrelevant, or there may be many subunit specifiers
for detailed counters.

Cycle Metrics

Counters using the term cycles in the name report the number of cycles in the unit's
clock domain. Unit-level cycle metrics include:

‣ unit__cycles_elapsed : The number of cycles within a range. The cycles'
DimUnits are specific to the unit's clock domain.

‣ unit__cycles_active : The number of cycles where the unit was processing
data.

‣ unit__cycles_stalled : The number of cycles where the unit was unable to
process new data because its output interface was blocked.

‣ unit__cycles_idle : The number of cycles where the unit was idle.

Interface-level cycle counters are often (not always) available in the following variations:

‣ unit__(interface)_active : Cycles where data was transferred from source-
unit to destination-unit.

‣ unit__(interface)_stalled : Cycles where the source-unit had data, but the
destination-unit was unable to accept data.

1.8.2. Raw Metrics
The raw metrics layer contains a list of low-level GPU counters, and the "scheduling"
logic needed to program the hardware. The binary output files (ConfigImage and
CounterDataPrefix) can be generated offline, stored on disk, and used on any
compatible GPU. They do not need to be generated on a machine where a GPU is
available.

Refer to Metrics Configuration to see where Raw Metrics fit into the overall data flow of
the profiler.

1.8.3. Metrics Mapping Table
The table below lists the CUPTI metrics for devices with compute capability 7.0. For
each CUPTI metric the closest equivalent Perfworks metric or formula is given. If no
equivalent Perfworks metric is available the column is left blank. Note that there can
be some difference in the metric values between the CUPTI metric and the Perfworks
metrics.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 70

Table 5 Metrics Mapping Table from CUPTI to Perfworks for Compute
Capability 7.0

CUPTI Metric Perfworks Metric or Formula

achieved_occupancy sm__warps_active.avg.pct_of_peak_sustained_active

atomic_transactions l1tex__t_set_accesses_pipe_lsu_mem_global_op_atom.sum +
l1tex__t_set_accesses_pipe_lsu_mem_global_op_red.sum

atomic_transactions_per_request (l1tex__t_sectors_pipe_lsu_mem_global_op_atom.sum +
l1tex__t_sectors_pipe_lsu_mem_global_op_red.sum) /
(l1tex__t_requests_pipe_lsu_mem_global_op_atom.sum +
l1tex__t_requests_pipe_lsu_mem_global_op_red.sum)

branch_efficiency smsp__sass_average_branch_targets_threads_uniform.pct

cf_executed smsp__inst_executed_pipe_cbu.sum +
smsp__inst_executed_pipe_adu.sum

cf_fu_utilization

cf_issued

double_precision_fu_utilization smsp__inst_executed_pipe_fp64.avg.pct_of_peak_sustained_active

dram_read_bytes dram__bytes_read.sum

dram_read_throughput dram__bytes_read.sum.per_second

dram_read_transactions dram__sectors_read.sum

dram_utilization dram__throughput.avg.pct_of_peak_sustained_elapsed

dram_write_bytes dram__bytes_write.sum

dram_write_throughput dram__bytes_write.sum.per_second

dram_write_transactions dram__sectors_write.sum

eligible_warps_per_cycle smsp__warps_eligible.sum.per_cycle_active

flop_count_dp smsp__sass_thread_inst_executed_op_dadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_dmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_dfma_pred_on.sum * 2

flop_count_dp_add smsp__sass_thread_inst_executed_op_dadd_pred_on.sum

flop_count_dp_fma smsp__sass_thread_inst_executed_op_dfma_pred_on.sum

flop_count_dp_mul smsp__sass_thread_inst_executed_op_dmul_pred_on.sum

flop_count_hp smsp__sass_thread_inst_executed_op_hadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_hmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_hfma_pred_on.sum * 2

flop_count_hp_add smsp__sass_thread_inst_executed_op_hadd_pred_on.sum

flop_count_hp_fma smsp__sass_thread_inst_executed_op_hfma_pred_on.sum

flop_count_hp_mul smsp__sass_thread_inst_executed_op_hmul_pred_on.sum

flop_count_sp smsp__sass_thread_inst_executed_op_fadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_fmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_ffma_pred_on.sum * 2

flop_count_sp_add smsp__sass_thread_inst_executed_op_fadd_pred_on.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 71

CUPTI Metric Perfworks Metric or Formula

flop_count_sp_fma smsp__sass_thread_inst_executed_op_ffma_pred_on.sum

flop_count_sp_mul smsp__sass_thread_inst_executed_op_fmul_pred_on.sum

flop_count_sp_special

flop_dp_efficiency smsp__sass_thread_inst_executed_ops_dadd_dmul_dfma_pred_on.avg.pct_of_peak_sustained_elapsed

flop_hp_efficiency smsp__sass_thread_inst_executed_ops_hadd_hmul_hfma_pred_on.avg.pct_of_peak_sustained_elapsed

flop_sp_efficiency smsp__sass_thread_inst_executed_ops_fadd_fmul_ffma_pred_on.avg.pct_of_peak_sustained_elapsed

gld_efficiency smsp__sass_average_data_bytes_per_sector_mem_global_op_ld.pct

gld_requested_throughput

gld_throughput l1tex__t_bytes_pipe_lsu_mem_global_op_ld.sum.per_second

gld_transactions l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum

gld_transactions_per_request l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_ld.ratio

global_atomic_requests l1tex__t_requests_pipe_lsu_mem_global_op_atom.sum

global_hit_rate l1tex__t_sectors_pipe_lsu_mem_global_op_{op}_lookup_hit.sum /
l1tex__t_sectors_pipe_lsu_mem_global_op_{op}.sum

global_load_requests l1tex__t_requests_pipe_lsu_mem_global_op_ld.sum

global_reduction_requests l1tex__t_requests_pipe_lsu_mem_global_op_red.sum

global_store_requests l1tex__t_requests_pipe_lsu_mem_global_op_st.sum

gst_efficiency smsp__sass_average_data_bytes_per_sector_mem_global_op_st.pct

gst_requested_throughput

gst_throughput l1tex__t_bytes_pipe_lsu_mem_global_op_st.sum.per_second

gst_transactions l1tex__t_bytes_pipe_lsu_mem_global_op_st.sum

gst_transactions_per_request l1tex__average_t_sectors_per_request_pipe_lsu_mem_global_op_st.ratio

half_precision_fu_utilization smsp__inst_executed_pipe_fp16.avg.pct_of_peak_sustained_active

inst_bit_convert smsp__sass_thread_inst_executed_op_conversion_pred_on.sum

inst_compute_ld_st smsp__sass_thread_inst_executed_op_memory_pred_on.sum

inst_control smsp__sass_thread_inst_executed_op_control_pred_on.sum

inst_executed smsp__inst_executed.sum

inst_executed_global_atomics smsp__sass_inst_executed_op_global_atom.sum

inst_executed_global_loads smsp__inst_executed_op_global_ld.sum

inst_executed_global_reductions smsp__inst_executed_op_global_red.sum

inst_executed_global_stores smsp__inst_executed_op_global_st.sum

inst_executed_local_loads smsp__inst_executed_op_local_ld.sum

inst_executed_local_stores smsp__inst_executed_op_local_st.sum

inst_executed_shared_atomics smsp__inst_executed_op_shared_atom.sum +
smsp__inst_executed_op_shared_atom_dot_alu.sum +
smsp__inst_executed_op_shared_atom_dot_cas.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 72

CUPTI Metric Perfworks Metric or Formula

inst_executed_shared_loads smsp__inst_executed_op_shared_ld.sum

inst_executed_shared_stores smsp__inst_executed_op_shared_st.sum

inst_executed_surface_atomics smsp__inst_executed_op_surface_atom.sum

inst_executed_surface_loads smsp__inst_executed_op_surface_ld.sum +
smsp__inst_executed_op_shared_atom_dot_alu.sum +
smsp__inst_executed_op_shared_atom_dot_cas.sum

inst_executed_surface_reductions smsp__inst_executed_op_surface_red.sum

inst_executed_surface_stores smsp__inst_executed_op_surface_st.sum

inst_executed_tex_ops smsp__inst_executed_op_texture.sum

inst_fp_16 smsp__sass_thread_inst_executed_op_fp16_pred_on.sum

inst_fp_32 smsp__sass_thread_inst_executed_op_fp32_pred_on.sum

inst_fp_64 smsp__sass_thread_inst_executed_op_fp64_pred_on.sum

inst_integer smsp__sass_thread_inst_executed_op_integer_pred_on.sum

inst_inter_thread_communication smsp__sass_thread_inst_executed_op_inter_thread_communication_pred_on.sum

inst_issued smsp__inst_issued.sum

inst_misc smsp__sass_thread_inst_executed_op_misc_pred_on.sum

inst_per_warp smsp__average_inst_executed_per_warp.ratio

inst_replay_overhead

ipc smsp__inst_executed.avg.per_cycle_active

issue_slot_utilization smsp__issue_active.avg.pct_of_peak_sustained_active

issue_slots smsp__inst_issued.sum

issued_ipc smsp__inst_issued.avg.per_cycle_active

l1_sm_lg_utilization l1tex__lsu_writeback_active.avg.pct_of_peak_sustained_active

l2_atomic_throughput lts__t_sectors_srcunit_l1_op_atom.sum.per_second

l2_atomic_transactions lts__t_sectors_srcunit_l1_op_atom.sum

l2_global_atomic_store_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_global_op_atom.sum

l2_global_load_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_global_op_ld.sum

l2_local_global_store_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_local_op_st.sum +
lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_global_op_st.sum

l2_local_load_bytes lts__t_bytes_equiv_l1sectormiss_pipe_lsu_mem_local_op_ld.sum

l2_read_throughput lts__t_sectors_op_read.sum.per_second

l2_read_transactions lts__t_sectors_op_read.sum

l2_surface_load_bytes lts__t_bytes_equiv_l1sectormiss_pipe_tex_mem_surface_op_ld.sum

l2_surface_store_bytes lts__t_bytes_equiv_l1sectormiss_pipe_tex_mem_surface_op_st.sum

l2_tex_hit_rate lts__t_sector_hit_rate.pct

l2_tex_read_hit_rate lts__t_sector_op_read_hit_rate.pct

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 73

CUPTI Metric Perfworks Metric or Formula

l2_tex_read_throughput lts__t_sectors_srcunit_tex_op_read.sum.per_second

l2_tex_read_transactions lts__t_sectors_srcunit_tex_op_read.sum

l2_tex_write_hit_rate lts__t_sector_op_write_hit_rate.pct

l2_tex_write_throughput lts__t_sectors_srcunit_tex_op_read.sum.per_second

l2_tex_write_transactions lts__t_sectors_srcunit_tex_op_read.sum

l2_utilization lts__t_sectors.avg.pct_of_peak_sustained_elapsed

l2_write_throughput lts__t_sectors_op_write.sum.per_second

l2_write_transactions lts__t_sectors_op_write.sum

ldst_executed

ldst_fu_utilization smsp__inst_executed_pipe_lsu.avg.pct_of_peak_sustained_active

ldst_issued

local_hit_rate

local_load_requests l1tex__t_requests_pipe_lsu_mem_local_op_ld.sum

local_load_throughput l1tex__t_bytes_pipe_lsu_mem_local_op_ld.sum.per_second

local_load_transactions l1tex__t_sectors_pipe_lsu_mem_local_op_ld.sum

local_load_transactions_per_requestl1tex__average_t_sectors_per_request_pipe_lsu_mem_local_op_ld.ratio

local_memory_overhead

local_store_requests l1tex__t_requests_pipe_lsu_mem_local_op_st.sum

local_store_throughput l1tex__t_sectors_pipe_lsu_mem_local_op_st.sum.per_second

local_store_transactions l1tex__t_sectors_pipe_lsu_mem_local_op_st.sum

local_store_transactions_per_requestl1tex__average_t_sectors_per_request_pipe_lsu_mem_local_op_st.ratio

nvlink_data_receive_efficiency

nvlink_data_transmission_efficiency

nvlink_overhead_data_received

nvlink_overhead_data_transmitted

nvlink_receive_throughput

nvlink_total_data_received

nvlink_total_data_transmitted

nvlink_total_nratom_data_transmitted

nvlink_total_ratom_data_transmitted

nvlink_total_response_data_received

nvlink_total_write_data_transmitted

nvlink_transmit_throughput

nvlink_user_data_received

nvlink_user_data_transmitted

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 74

CUPTI Metric Perfworks Metric or Formula

nvlink_user_nratom_data_transmitted

nvlink_user_ratom_data_transmitted

nvlink_user_response_data_received

nvlink_user_write_data_transmitted

pcie_total_data_received pcie__read_bytes.sum

pcie_total_data_transmitted pcie__write_bytes.sum

shared_efficiency smsp__sass_average_data_bytes_per_wavefront_mem_shared.pct

shared_load_throughput l1tex__data_pipe_lsu_wavefronts_mem_shared_op_ld.sum.per_second

shared_load_transactions l1tex__data_pipe_lsu_wavefronts_mem_shared_op_ld.sum

shared_load_transactions_per_request

shared_store_throughput l1tex__data_pipe_lsu_wavefronts_mem_shared_op_st.sum.per_second

shared_store_transactions l1tex__data_pipe_lsu_wavefronts_mem_shared_op_st.sum

shared_store_transactions_per_request

shared_utilization l1tex__data_pipe_lsu_wavefronts_mem_shared.avg.pct_of_peak_sustained_elapsed

single_precision_fu_utilization smsp__pipe_fma_cycles_active.avg.pct_of_peak_sustained_active

sm_efficiency smsp__cycles_active.avg.pct_of_peak_sustained_elapsed

sm_tex_utilization l1tex__texin_sm2tex_req_cycles_active.avg.pct_of_peak_sustained_elapsed

special_fu_utilization smsp__inst_executed_pipe_xu.avg.pct_of_peak_sustained_active

stall_constant_memory_dependencysmsp__warp_issue_stalled_imc_miss_per_warp_active.pct

stall_exec_dependency smsp__warp_issue_stalled_short_scoreboard_per_warp_active.pct +
smsp__warp_issue_stalled_wait_per_warp_active.pct

stall_inst_fetch smsp__warp_issue_stalled_no_instruction_per_warp_active.pct

stall_memory_dependency smsp__warp_issue_stalled_long_scoreboard_per_warp_active.pct

stall_memory_throttle smsp__warp_issue_stalled_drain_per_warp_active.pct +
smsp__warp_issue_stalled_lg_throttle_per_warp_active.pct

stall_not_selected smsp__warp_issue_stalled_not_selected_per_warp_active.pct

stall_other smsp__warp_issue_stalled_misc_per_warp_active.pct +
smsp__warp_issue_stalled_dispatch_stall_per_warp_active.pct

stall_pipe_busy smsp__warp_issue_stalled_mio_throttle_per_warp_active.pct +
smsp__warp_issue_stalled_math_pipe_throttle_per_warp_active.pct

stall_sleeping smsp__warp_issue_stalled_sleeping_per_warp_active.pct

stall_sync smsp__warp_issue_stalled_membar_per_warp_active.pct +
smsp__warp_issue_stalled_barrier_per_warp_active.pct

stall_texture smsp__warp_issue_stalled_tex_throttle_per_warp_active.pct

surface_atomic_requests l1tex__t_requests_pipe_tex_mem_surface_op_atom.sum

surface_load_requests l1tex__t_requests_pipe_tex_mem_surface_op_ld.sum

surface_reduction_requests l1tex__t_requests_pipe_tex_mem_surface_op_red.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 75

CUPTI Metric Perfworks Metric or Formula

surface_store_requests l1tex__t_requests_pipe_tex_mem_surface_op_st.sum

sysmem_read_bytes lts__t_sectors_aperture_sysmem_op_read* 32

sysmem_read_throughput lts__t_sectors_aperture_sysmem_op_read.sum.per_second

sysmem_read_transactions lts__t_sectors_aperture_sysmem_op_read.sum

sysmem_read_utilization

sysmem_utilization

sysmem_write_bytes lts__t_sectors_aperture_sysmem_op_write * 32

sysmem_write_throughput lts__t_sectors_aperture_sysmem_op_write.sum.per_second

sysmem_write_transactions lts__t_sectors_aperture_sysmem_op_write.sum

sysmem_write_utilization

tensor_precision_fu_utilization sm__pipe_tensor_cycles_active.avg.pct_of_peak_sustained_active

tex_cache_hit_rate l1tex__t_sector_hit_rate.pct

tex_cache_throughput

tex_cache_transactions l1tex__lsu_writeback_active.avg.pct_of_peak_sustained_active +
l1tex__tex_writeback_active.avg.pct_of_peak_sustained_active

tex_fu_utilization smsp__inst_executed_pipe_tex.avg.pct_of_peak_sustained_active

tex_sm_tex_utilization l1tex__f_tex2sm_cycles_active.avg.pct_of_peak_sustained_elapsed

tex_sm_utilization sm__mio2rf_writeback_active.avg.pct_of_peak_sustained_elapsed

tex_utilization

texture_load_requests l1tex__t_requests_pipe_tex_mem_texture.sum

warp_execution_efficiency smsp__thread_inst_executed_per_inst_executed.ratio

warp_nonpred_execution_efficiencysmsp__thread_inst_executed_per_inst_executed.pct

1.8.4. Events Mapping Table
The table below lists the CUPTI events for devices with compute capability 7.0. For
each CUPTI event the closest equivalent Perfworks metric or formula is given. If no
equivalent Perfworks metric is available the column is left blank. Note that there can be
some difference in the values between the CUPTI event and the Perfworks metrics.

Table 6 Events Mapping Table from CUPTI events to Perfworks metrics
for Compute Capability 7.0

CUPTI Event Perfworks Metric or Formula

active_cycles sm__cycles_active.sum

active_cycles_pm sm__cycles_active.sum

active_cycles_sys sys__cycles_active.sum

active_warps sm__warps_active.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 76

CUPTI Event Perfworks Metric or Formula

active_warps_pm sm__warps_active.sum

atom_count smsp__inst_executed_op_generic_atom_dot_alu.sum

elapsed_cycles_pm sm__cycles_elapsed.sum

elapsed_cycles_sm sm__cycles_elapsed.sum

elapsed_cycles_sys sys__cycles_elapsed.sum

fb_subp0_read_sectors dram__sectors_read.sum

fb_subp1_read_sectors dram__sectors_read.sum

fb_subp0_write_sectors dram__sectors_write.sum

fb_subp1_write_sectors dram__sectors_write.sum

global_atom_cas smsp__inst_executed_op_generic_atom_dot_cas.sum

gred_count smsp__inst_executed_op_global_red.sum

inst_executed sm__inst_executed.sum

inst_executed_fma_pipe_s0 smsp__inst_executed_pipe_fma.sum

inst_executed_fma_pipe_s1 smsp__inst_executed_pipe_fma.sum

inst_executed_fma_pipe_s2 smsp__inst_executed_pipe_fma.sum

inst_executed_fma_pipe_s3 smsp__inst_executed_pipe_fma.sum

inst_executed_fp16_pipe_s0 smsp__inst_executed_pipe_fp16.sum

inst_executed_fp16_pipe_s1 smsp__inst_executed_pipe_fp16.sum

inst_executed_fp16_pipe_s2 smsp__inst_executed_pipe_fp16.sum

inst_executed_fp16_pipe_s3 smsp__inst_executed_pipe_fp16.sum

inst_executed_fp64_pipe_s0 smsp__inst_executed_pipe_fp64.sum

inst_executed_fp64_pipe_s1 smsp__inst_executed_pipe_fp64.sum

inst_executed_fp64_pipe_s2 smsp__inst_executed_pipe_fp64.sum

inst_executed_fp64_pipe_s3 smsp__inst_executed_pipe_fp64.sum

inst_issued1 sm__inst_issued.sum

l2_subp0_read_sector_misses lts__t_sectors_op_read_lookup_miss.sum

l2_subp1_read_sector_misses lts__t_sectors_op_read_lookup_miss.sum

l2_subp0_read_sysmem_sector_queries lts__t_sectors_aperture_sysmem_op_read.sum

l2_subp1_read_sysmem_sector_queries lts__t_sectors_aperture_sysmem_op_read.sum

l2_subp0_read_tex_hit_sectors lts__t_sectors_srcunit_tex_op_read_lookup_hit.sum

l2_subp1_read_tex_hit_sectors lts__t_sectors_srcunit_tex_op_read_lookup_hit.sum

l2_subp0_read_tex_sector_queries lts__t_sectors_srcunit_tex_op_read.sum

l2_subp1_read_tex_sector_queries lts__t_sectors_srcunit_tex_op_read.sum

l2_subp0_total_read_sector_queries lts__t_sectors_op_read.sum + lts__t_sectors_op_atom.sum +
lts__t_sectors_op_red.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 77

CUPTI Event Perfworks Metric or Formula

l2_subp1_total_read_sector_queries lts__t_sectors_op_read.sum + lts__t_sectors_op_atom.sum +
lts__t_sectors_op_red.sum

l2_subp0_total_write_sector_queries lts__t_sectors_op_write.sum + lts__t_sectors_op_atom.sum +
lts__t_sectors_op_red.sum

l2_subp1_total_write_sector_queries lts__t_sectors_op_write.sum + lts__t_sectors_op_atom.sum +
lts__t_sectors_op_red.sum

l2_subp0_write_sector_misses lts__t_sectors_op_write_lookup_miss.sum

l2_subp1_write_sector_misses lts__t_sectors_op_write_lookup_miss.sum

l2_subp0_write_sysmem_sector_queries lts__t_sectors_aperture_sysmem_op_write.sum

l2_subp1_write_sysmem_sector_queries lts__t_sectors_aperture_sysmem_op_write.sum

l2_subp0_write_tex_hit_sectors lts__t_sectors_srcunit_tex_op_write_lookup_hit.sum

l2_subp1_write_tex_hit_sectors lts__t_sectors_srcunit_tex_op_write_lookup_hit.sum

l2_subp0_write_tex_sector_queries lts__t_sectors_srcunit_tex_op_write.sum

l2_subp1_write_tex_sector_queries lts__t_sectors_srcunit_tex_op_write.sum

not_predicated_off_thread_inst_executedsmsp__thread_inst_executed_pred_on.sum

pcie_rx_active_pulse

pcie_tx_active_pulse

prof_trigger_00

prof_trigger_01

prof_trigger_02

prof_trigger_03

prof_trigger_04

prof_trigger_05

prof_trigger_06

prof_trigger_07

inst_issued0 smsp__issue_inst0.sum

sm_cta_launched sm__ctas_launched.sum

shared_load smsp__inst_executed_op_shared_ld.sum

shared_store smsp__inst_executed_op_shared_st.sum

generic_load smsp__inst_executed_op_generic_ld.sum

generic_store smsp__inst_executed_op_generic_st.sum

global_load smsp__inst_executed_op_global_ld.sum

global_store smsp__inst_executed_op_global_st.sum

local_load smsp__inst_executed_op_local_ld.sum

local_store smsp__inst_executed_op_local_st.sum

shared_atom smsp__inst_executed_op_shared_atom.sum

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 78

CUPTI Event Perfworks Metric or Formula

shared_atom_cas smsp__inst_executed_op_shared_atom_dot_cas.sum

shared_ld_bank_conflict l1tex__data_bank_conflicts_pipe_lsu_mem_shared_op_ld.sum

shared_st_bank_conflict l1tex__data_bank_conflicts_pipe_lsu_mem_shared_op_st.sum

shared_ld_transactions l1tex__data_pipe_lsu_wavefronts_mem_shared_op_ld.sum

shared_st_transactions l1tex__data_pipe_lsu_wavefronts_mem_shared_op_st.sum

tensor_pipe_active_cycles_s0 smsp__pipe_tensor_cycles_active.sum

tensor_pipe_active_cycles_s1 smsp__pipe_tensor_cycles_active.sum

tensor_pipe_active_cycles_s2 smsp__pipe_tensor_cycles_active.sum

tensor_pipe_active_cycles_s3 smsp__pipe_tensor_cycles_active.sum

thread_inst_executed smsp__thread_inst_executed.sum

warps_launched smsp__warps_launched.sum

1.9. Migration to the Profiling API
The CUPTI event APIs from the header cupti_events.h and metric APIs from the
header cupti_metrics.h will be deprecated in a future CUDA release. The NVIDIA
Volta platform is the last architecture on which these APIs are supported. These are
being replaced by the Profiling API in the header cupti_profiler_target.h and
Perfworks Metric API in the headers nvperf_host.h and nvperf_target.h. These
provide low and deterministic profiling overhead on the target system. These APIs also
have other significant enhancements such as:

‣ Range Profiling
‣ Improved metrics
‣ Lower overhead for PC Sampling

CUPTI APIs Feature
Description

Supported GPU
architectures

Notes

Event Collect kernel

performance

counters for a

kernel execution

Kepler, Maxwell,

Pascal, Volta

Not supported on Turing and later GPU

architectures, i.e. devices with compute

capability 7.5 and higher

Metric Collect kernel

performance

metrics for a

kernel execution

Kepler, Maxwell,

Pascal, Volta

Not supported on Turing and later GPU

architectures, i.e. devices with compute

capability 7.5 and higher

Profiling Collect

performance

Volta and later

GPU architectures,

Not supported on Kepler, Maxwell and

Pascal GPUs

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 79

CUPTI APIs Feature
Description

Supported GPU
architectures

Notes

metrics for a range

of execution

i.e. devices with

compute capability

7.0 and higher

Note that both the event and metric APIs and the profiling APIs are supported for Volta.
This is to enable transition of code to the profiling APIs. But one cannot mix the usage of
the event and metric APIs and the profiling APIs.

The Profiling APIs are supported on all CUDA supported platforms except Android.

It is important to note that for support of future GPU architectures and feature
improvements (such as performance overhead reduction and additional performance
metrics), users should use the Profiling APIs. There are few features which are not
supported by Profiling APIs, refer to the section for differences from event and metric
APIs.

However note that there are no changes to the CUPTI Activity and Callback APIs and
these will continue to be supported for the current and future GPU architectures.

1.10. CUPTI PC Sampling API
A new set of CUPTI APIs for PC sampling data collection are provided in the header
file cupti_pcsampling.h which support continuous mode data collection without
serializing kernel execution and have a lower runtime overhead. Along with these a
utility library is provided in the header file cupti_pcsampling_util.h which has
APIs for GPU assembly to CUDA-C source correlation and for reading and writing the
PC sampling data from/to files.

The PC Sampling APIs are supported on all CUDA supported platforms except Tegra
platforms (QNX, Linux aarch64, Android). These are supported on Volta and later GPU
architectures, i.e. devices with compute capability 7.0 and higher.

Overview of Features:

‣ Two sampling modes – Continuous (concurrent kernels) or Serialized (one kernel at
a time).

‣ Option to select stall reasons to collect.
‣ Ability to collect GPU PC sampling data for entire application duration or for

specific CPU code ranges (defined by start and stop APIs).
‣ API to flush GPU PC sampling data.
‣ APIs to support Offline and Runtime correlation of GPU PC samples to CUDA C

source lines and GPU assembly instructions.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 80

Samples are provided to demonstrate how to write the injection library to collect the
PC sampling information, and how to parse the generated files using the utility APIs
to print the stall reasons counter values and associate those with the GPU assembly
instructions and CUDA-C source code. Refer to the samples pc_sampling_continuous,
pc_sampling_utility and pc_sampling_start_stop.

PC Sampling APIs from the header cupti_activity.h would be referred as PC
Sampling Activity APIs and APIs from the header cupti_pcsampling.h would be
referred as PC Sampling APIs.

1.10.1. Configuration Attributes
The following table lists the PC sampling configuration attributes which can be set using
the cuptiPCSamplingSetConfigurationAttribute() API.

Table 7 PC Sampling Configuration Attributes

Configuration
Attribute Description

Default
Value

Comparison of
PC Sampling
APIs with
CUPTI PC
Sampling
Activity APIs

Guideline
to Tune
Configuration
Option

Collection
mode

PC Sampling collection mode -
Continuous or Kernel Serialized

Continuous Continuous mode
is new.

Kernel Serialized
mode is
equivalent to
the kernel level
functionality
provided by
the CUPTI PC
sampling Activity
APIs.

Sampling
period

Sampling period for PC Sampling.
Valid values for the sampling periods
are between 5 to 31 both inclusive.
This will set the sampling period to
(2^samplingPeriod) cycles.

e.g. for sampling period = 5 to 31,
cycles = 32, 64, 128,..., 2^31

CUPTI
defined
value is
based on
number
of SMs

Dropped current
support for 5
levels(MIN, LOW,
MID, HIGH, MAX)
for sampling
period.

The new
"sampling
period" is
equivalent to the
"samplingPeriod2"
field in
CUpti_ActivityPCSamplingConfig.

Low sampling
period means a
high sampling
frequency which
can result in
dropping of
samples. Very
high sampling
period can cause
low sampling
frequency and
no sample
generation.

Stall reason Stall reasons to collect All stall
reasons

With the CUPTI
PC sampling

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 81

Configuration
Attribute Description

Default
Value

Comparison of
PC Sampling
APIs with
CUPTI PC
Sampling
Activity APIs

Guideline
to Tune
Configuration
Option

Input is a pointer to an array of the
stall reason indexes to collect.

will be
collected

Activity APIs
there is no option
to select which
stall reasons to
collect. Also the
list of supported
stall reasons has
changed.

Scratch
buffer size

Size of SW buffer for raw PC counter
data downloaded from HW buffer.

Approximately it takes 16 Bytes
(and some fixed size memory) to
accommodate one PC with one stall
reason

e.g. 1 PC with 1 stall reason = 32
Bytes

1 PC with 2 stall reason = 48 Bytes

1 PC with 4 stall reason = 96 Bytes

1 MB

(which
can
accommodate
approximately
5500
PCs with
all stall
reasons)

New Clients can
choose scratch
buffer size as
per memory
budget. Very
small scratch
buffer size can
cause runtime
overhead as more
iterations would
be required to
accommodate
and process more
PC samples

Hardware
buffer size

Size of HW buffer in bytes.

If sampling period is too less, HW
buffer can overflow and drop PC data

512 MB New Device accessible
buffer for
samples. Less
hardware buffer
size with low
sampling periods,
can cause
overflow and
dropping of
PC data. High
hardware buffer
size can impact
application
execution due to
lower amount of
device memory
being available

Enable start/
stop control

Control over PC Sampling data
collection range.

1 - Allows user to start and stop PC
Sampling using APIs

0
(disabled)

New

1.10.2. Stall Reasons Mapping Table
The table below lists the stall reasons mapping from PC Sampling Activity APIs to PC
Sampling APIs. Note: Stall reasons with suffix _not_issued represents latency samples.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 82

These samples indicate that no instruction was issued in that cycle from the warp
scheduler from where the warp was sampled.

Table 8 Stall Reasons Mapping Table from PC Sampling Activity APIs to
PC Sampling APIs

PC Sampling Activity API Stall
Reasons

(common prefix:
CUPTI_ACTIVITY_PC_SAMPLING_STALL_)

PC Sampling API Stall Reasons

(common prefix: smsp__pcsamp_warps_issue_stalled_)

NONE selected

selected_not_issued

INST_FETCH branch_resolving

branch_resolving_not_issued

no_instructions

no_instructions_not_issued

EXEC_DEPENDENCY short_scoreboard

short_scoreboard_not_issued

wait

wait_not_issued

MEMORY_DEPENDENCY long_scoreboard

long_scoreboard_not_issued

TEXTURE tex_throttle

tex_throttle_not_issued

SYNC barrier

barrier_not_issued

membar

membar_not_issued

CONSTANT_MEMORY_DEPENDENCY imc_miss

imc_miss_not_issued

PIPE_BUSY mio_throttle

mio_throttle_not_issued

math_pipe_throttle

math_pipe_throttle_not_issued

MEMORY_THROTTLE drain

drain_not_issued

lg_throttle

lg_throttle_not_issued

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 83

PC Sampling Activity API Stall
Reasons

(common prefix:
CUPTI_ACTIVITY_PC_SAMPLING_STALL_)

PC Sampling API Stall Reasons

(common prefix: smsp__pcsamp_warps_issue_stalled_)

NOT_SELECTED not_selected

not_selected_not_issued

OTHER misc

misc_not_issued

dispatch_stall

dispatch_stall_not_issued

SLEEPING sleeping

sleeping_not_issued

1.10.3. Data Structure Mapping Table
The table below lists the data structure mapping from PC Sampling Activity APIs to PC
Sampling APIs.

Table 9 Data structure Mapping Table from PC Sampling Activity APIs to
PC Sampling APIs

PC Sampling Activity API
structures PC Sampling API structures

CUpti_ActivityPCSamplingConfig CUpti_PCSamplingConfigurationInfo

CUpti_ActivityPCSamplingStallReasonCUpti_PCSamplingStallReason

Refer Stall Reasons Mapping Table

CUpti_ActivityPCSampling3 CUpti_PCSamplingPCData

CUpti_ActivityPCSamplingRecordInfoCUpti_PCSamplingData

1.10.4. Data flushing
CUPTI clients can periodically flush GPU PC sampling data using the API
cuptiPCSamplingGetData(). Besides periodic flushing of GPU PC sampling data,
CUPTI clients need to also flush the GPU PC sampling data at the following points to
maintain the uniqueness of PCs:

‣ For continuous collection mode
CUPTI_PC_SAMPLING_COLLECTION_MODE_CONTINUOUS - after each
module load-unload-load sequence.

‣ For serialized collection mode
CUPTI_PC_SAMPLING_COLLECTION_MODE_KERNEL_SERIALIZED - after
completion of each kernel.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 84

‣ For range profiling using the configuration option
CUPTI_PC_SAMPLING_CONFIGURATION_ATTR_TYPE_ENABLE_START_STOP_CONTROL
- at the end of the range i.e. after cuptiPCSamplingStop() API.

If application is profiled in the continuous collection mode with range profiling
disabled, and there is no module unload, CUPTI clients can collect data in two ways:

‣ By using cuptiPCSamplingGetData() API periodically.
‣ By using cuptiPCSamplingDisable() on application exit and reading GPU PC

sampling data from sampling data buffer passed during configuration.

In case, cuptiPCSamplingGetData() API is not called periodically, the
sampling data buffer passed during configuration should be big enough to hold the
data for all the PCs.

Field remainingNumPcs of the struct CUpti_PCSamplingData helps in
identifying the number of PC records available with CUPTI. User can adjust the
periodic flush interval based on it. Further user need to ensure that all remaining
records can be accommodated in the sampling data buffer passed during configuration
before disabling the PC sampling.

1.10.5. SASS Source Correlation
Building SASS source correlation for a PC can be split into two parts:

‣ Correlation of a PC to a SASS instruction - PC to SASS correlation is done during
PC sampling at run time and the SASS data is available in the PC record. Fields
cubinCrc, pcOffset and functionName in the PC record help in correlatation of
a PC with a SASS instruction. You can extract cubins from the application executable
or library using the cuobjdump utility by executing the command cuobjdump -
xelf all exe/lib. The cuobjump utility version should match with the CUDA
Toolkit version used to build the CUDA application executable or library files. You
can find the cubinCrc for extracted cubins using the cuptiGetCubinCrc() API.
With the help of cubinCrc you can find out the cubin to which a PC belongs. The
cubin can be disassembled using the nvdisasm utility that comes with the CUDA
toolkit.

‣ Correlation of a SASS instruction to a CUDA source line - Correlation of GPU PC
samples to CUDA C source lines can be done offline as well as at runtime with the
help of the cuptiGetSassToSourceCorrelation() API.

JIT compiled cubins - In case of JIT compiled cubins, it is not possible
to extract the cubin from the executable or library. For this case one can
subscribe to one of the CUPTI_CBID_RESOURCE_MODULE_LOADED
or CUPTI_CBID_RESOURCE_MODULE_UNLOAD_STARTING or

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 85

CUPTI_CBID_RESOURCE_MODULE_PROFILED callbacks. It returns a
CUpti_ModuleResourceData structure having the CUDA binary. This binary can be
stored in a file and can be used for offline CUDA C source correlation.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 86

1.10.6. API Usage
Here is a pseudo code which shows how to collect the PC sampling data for specific
CPU code ranges:

void Collection()
{
 // Select collection mode
 CUpti_PCSamplingConfigurationInfoParams pcSamplingConfigurationInfoParams =
 {};

 CUpti_PCSamplingConfigurationInfo collectionMode = {};
 collectionMode.attributeData.collectionModeData.collectionMode =
 CUPTI_PC_SAMPLING_COLLECTION_MODE_CONTINUOUS;

 pcSamplingConfigurationInfoParams.numAttributes = 1;
 pcSamplingConfigurationInfoParams.pPCSamplingConfigurationInfo =
 &collectionMode;

 cuptiPCSamplingSetConfigurationAttribute(&pcSamplingConfigurationInfoParams);

 // Select stall reasons to collect
 {
 // Get number of supported stall reasons
 cuptiPCSamplingGetNumStallReasons();
 // Get number of supported stall reason names and corresponding indexes
 cuptiPCSamplingGetStallReasons();
 // Set selected stall reasons
 cuptiPCSamplingSetConfigurationAttribute();
 }

 // Select code range using start/stop APIs
 // Opt-in for start and stop PC Sampling using APIs cuptiPCSamplingStart and
 cuptiPCSamplingStop
 CUpti_PCSamplingConfigurationInfo enableStartStop = {};
 enableStartStop.attributeType =
 CUPTI_PC_SAMPLING_CONFIGURATION_ATTR_TYPE_ENABLE_START_STOP_CONTROL;

 enableStartStop.attributeData.enableStartStopControlData.enableStartStopControl
 = true;

 pcSamplingConfigurationInfoParams.numAttributes = 1;
 pcSamplingConfigurationInfoParams.pPCSamplingConfigurationInfo =
 &enableStartStop;

 cuptiPCSamplingSetConfigurationAttribute(&pcSamplingConfigurationInfoParams);

 // Enable PC Sampling
 cuptiPCSamplingEnable();

 kernelA <<<blocks, threads, 0, s0>>>(...); // KernelA is
 not sampled

 // Start PC sampling collection
 cuptiPCSamplingStart();
 {
 // KernelB and KernelC might run concurrently since 'continuous'
 sampling collection mode is selected
 kernelB <<<blocks, threads, 0, s0>>>(...); // KernelB is
 sampled
 kernelC <<<blocks, threads, 0, s1>>>(...); // KernelC is
 sampled
 }
 // Stop PC sampling collection
 cuptiPCSamplingStop();
 // Flush PC sampling data
 cuptiPCSamplingGetData();

 kernelD <<<blocks, threads, 0, s0>>>(...); // KernelD is
 not sampled

 // Start PC sampling collection
 cuptiPCSamplingStart();
 {
 kernelE <<<blocks, threads, 0, s0>>>(...); // KernelE is
 sampled
 }
 // Stop PC sampling collection
 cuptiPCSamplingStop();
 // Flush PC sampling data
 cuptiPCSamplingGetData();

 // Disable PC Sampling
 cuptiPCSamplingDisable();
}

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 87

1.10.7. Limitations
Known limitations and issues:

‣ In the serial mode, PC Sampling APIs do not provide information for correlation of
PC sampling data for a kernel to the CUDA kernel launch API. This is supported by
the PC Sampling activity APIs. For continuous mode, this cannot be supported due
to hardware limitations.

‣ PC Sampling APIs don't support simultaneous sampling of multiple CUDA contexts
on a GPU. However, simultaneous sampling of single CUDA context per GPU is
supported. Before enabling and configuring the PC sampling on a different CUDA
context on the same GPU, PC sampling needs to be disabled on the other context.

1.11. CUPTI Checkpoint API
Starting with CUDA 11.5, CUPTI ships with a new library to assist tool developers who
wish to replay kernels under direct control, such as tools using the Profiler API User
Replay mode. This new Checkpoint library provides support for automatically saving
and restoring device state for many common uses.

A device checkpoint is a managed copy of device functional state - including values
in memory, along with some (but not all) other user visible state of the device. When
a checkpoint is saved, this state is saved to internal buffers, preferentially using free
device, then host, and finally filesystem space to save the data. The user tool maintains a
handle to a checkpoint, and is able to restore the checkpoint with a single call, restoring
the state so a kernel may be re-executed and expect to have the same device state as
when the checkpoint was saved.

Once saved, a checkpoint may be restored any time including after multiple kernels
have been launched, though currently there are limitations on which user calls (CUDA
or driver API calls) have been validated to work between a Save and Restore. It
currently is known safe to launch multiple kernels on a context and to do memcpy calls
before restoring a checkpoint. Future versions of CUPTI will extend this to support
additional API calls between a Save and Restore.

Checkpoints may be saved during injected kernel launch callbacks or directly coded into
a target application.

Certain APIs are known to not work with the version of the Checkpoint API shipped
with CUPTI 11.5, including Stream Capture mode.

1.11.1. Usage
There is one header for the library, cupti_checkpoint.h, which needs to be included,
and libcheckpoint needs to be linked in to the application or injection library. Though

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 88

the checkpoint library doesn't depend on cupti, the error codes returned by the API are
shared with cupti, so linking libcupti in is needed in order to translate the return codes
to string representations.

The Checkpoint API follows a similar design to other CUPTI APIs. API behavior
is controlled through a structure, CUpti_Checkpoint, which is initialized by a tool
or application, then passed to cuptiCheckpointSave. If the call is successful, the
structure saves a handle to a checkpoint. At this point, the application may make a series
of calls which modify device state (kernels which update memory, memcopies, etc), and
when the device state should be restored, the tool can use the same structure in calls to
cuptiCheckpointRestore, and finally a call to cuptiCheckpointFree to release the
resources used by the checkpoint object.

Multiple checkpoints may be saved at the same time. If multiple checkpoints exist, they
operate entirely independently - each checkpoint consumes the full resources needed to
restore the device state at the point it was saved. Order of operations between multiple
checkpoints is not enforced by the API - while a common use for multiple checkpoints
may be a nested pattern, it is also possible to interleave checkpoint operations.

Between a cuptiCheckpointSave and cuptiCheckpointRestore, any number of
standard kernel launches (or equivalent API calls such as cuLaunchKernel) or memcpy
calls may be made. Additionally, any host (cpu) side calls may be made that do not affect
device state. It is possible that other CUDA or driver API calls may be made, but have
not been validated with the 11.5 release.

Several options exist in the CUpti_Checkpoint structure. They must be set prior to the
initial cuptiCheckpointSave using that structure. Any further changes to the structure
are ignored until after a call to cuptiCheckpointFree, at which point the structure can
be re-configured and re-used.

Important per-checkpoint options:

‣ structSize - must be set to the value of CUpti_Checkpoint_STRUCT_SIZE
‣ ctx - if NULL, the checkpoint will be of the default CUDA context, otherwise,

specifies which context
‣ reserveDeviceMB - Restrict a checkpoint save from using at least this much device

memory
‣ reserveHostMB - Restrict a checkpoint save from using at least this much host

memory
‣ allowOverwrite - It is normally an error to call Save using an existing checkpoint

handle (one which has not been Freed). When set, this option allows the Save
operation to be called multiple times on a handle. Note that when using this option,
the CUpti_Checkpoint options are not re-read on any subsequent Save. To read
new options, the handle must be passed to cuptiCheckpointFree prior to the
cuptiCheckpointSave call.

‣ optimizations - Bitmask of options for checkpoint behavior

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 89

‣ CUPTI_CHECKPOINT_OPT_TRANSFER - Normally when restoring a checkpoint,
all existing device memory at the time of the save is restored. This optimization
adds a test to see whether a block of memory has changed before restoring it
and caches the results for subsequent calls to Restore. Use of this option requires
that all Restore calls be done at the same point in an application for a given
checkpoint. As the optimization may be computationally expensive, it is most
useful when there is a significant amount of data that can be skipped and there
will be several calls to Restore the checkpoint.

1.11.2. Restrictions
Checkpoints API calls may not be made during a stream capture. They also may not be
inserted into a graph. Beyond kernel launches (cuLaunchKernel, standard kernel<<<>>>
launches, etc) and memcpy calls, the remaining CUDA and driver API calls have not
been validated within a Checkpoint Save and Restore region. Any other CUDA or
driver API calls (example - device malloc or free) may work, or may cause undetermined
behavior. Additional APIs will be validated to work with the Checkpoint API in future
releases.

The Checkpoint API does not have visibility into which API calls have been made
between cuptiCheckpointSave and cuptiCheckpointRestore calls, and may not be
able to correctly detect error cases if unsupported calls have been made. In this case it is
possible that device state may only be partially restored by cuptiCheckpointRestore,
which may casue functionally incorrect behavior in subsequent device calls.

The Checkpoint API only restores functionally visible device state, not performance
critical state. Some performance characteristics, such as state of the caches, will not be
saved by a checkpoint, and saving or restoring a checkpoint may change the occupancy
and alter performance for subsequent device calls.

The Checkpoint API makes no attempt to restore host (non-device) state, beyond freeing
the resources it internally uses during a call to cuptiCheckpointFree.

The Checkpoint API by default uses device memory, host memory, and finally
the filesystem to back up the device state. It is possible that addition of a
cuptiCheckpointSave causes a later device allocation to fail due to the increased
device memory usage. (Similarly, host memory is also used, and may be affected by a
checkpoint). To allow the user to guarantee a certain amount of device or host memory
remains available for later use, reserveDeviceMB and reserveHostMB fields in the
CUpti_Checkpoint struct may be set. Use of these fields will guarantee that the device
or host memory will leave that much memory free during a cuptiCheckpointSave
call, but may cause the Checkpoint API call performance to degrade due to increased
use of slower storage spaces.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 90

1.11.3. Examples
The Checkpoint API does not require any other CUPTI calls. A simple use case could
be to compare the output of three different implementations of a kernel. Pseudocode for
this could look like:

CUpti_Checkpoint cp = { CUpti_Checkpoint_STRUCT_SIZE };

int kernel = 0;
do
{
 if (kernel == 0)
 cuptiCheckpointSave(&cp);
 else
 cuptiCheckpointRestore(&cp);

 if (kernel == 0)
 kernel_1<<<>>>(...);
 else if (kernel == 1)
 kernel_2<<<>>>(...);
 else if (kernel == 2)
 kernel_3<<<>>>(...);
} while (kernel++ < 3);

cuptiCheckpointFree(&cp);

In this example, even if any of the kernels modify their own input data, the subsequent
passes through the loop will still run correctly - the modified input data would be
restored by each call to cuptiCheckpointRestore before the next kernel runs. This is
particularly useful when a programmer does not know the exact state of the device prior
to a kernel call - the Checkpoint API ensures that all needed data is saved and restored,
which would not otherwise be practical or perhaps even possible in some complex cases.

Another possible use case could be for fuzzing - randomly modifying input to a kernel,
and ensuring it performs as expected. Instead of manually restoring device state to a
known good point, the Checkpoint API and initialize a good state, and the fuzzer can
modify only what is needed.

CUpti_Checkpoint cp = { CUpti_Checkpoint_STRUCT_SIZE };

int i = 0;
do
{
 if (i == 0)
 cuptiCheckpointSave(&cp);
 else
 cuptiCheckpointRestore(&cp);

 setup_test<<<>>>(i, ...);

 kernel<<<>>>(...);

 validate_result<<<>>>(i, ...);
} while (i++ < num_tests);

cuptiCheckpointFree(&cp);

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 91

Finally, the Checkpoint API is very useful for the User Replay mode of the CUPTI
Profiler API. The User Replay mode can be very desireable as it allows kernels to
run concurrently, which Kernel Replay mode does not, and only replays parts of the
application which are within a performance region, unlike Applicatin Replay mode.
However, in this mode, a kernel potentially needs to be launched multiple times in
order to gather all requested metrics. This is complicated when the kernel may modify
some of its own input data, and without the Checkpoint API, would require the tool
developer to handle restoring any modified input data manually. It is difficult for a tool
to automatically know whether any data needs to be restored before each iteration, or
even what the existing state of the device is. Using the Checkpoint API, the tool can
guarantee that input data will be restored each pass.

CUpti_Checkpoint cp = { CUpti_Checkpoint_STRUCT_SIZE };

// Pseudocode - assume all Profiler API structures are already initialized
 correctly
cuptiProfilerBeginSession(&beginSessionParams);
cuptiProfilerSetConfig(&setConfigParams);
int numPasses = 0;
bool lastPass = false;
do
{
 if (numPasses == 0)
 cuptiCheckpointSave(&cp);
 else
 cuptiCheckpointRestore(&cp);

 cuptiProfilerBeginPass(&beginPassParams);
 cuptiProfilerEnableProfiling(&enableProfilingParams);
 cuptiProfilerPushRange(&pushRangeParams);

 // Kernel launch on N separate streams - will be profiled while running
 concurrently
 kernel<<<..., stream0>>>(...);
 kernel<<<..., stream1>>>(...);
 ...
 kernel<<<..., streamN>>>(...);

 cudaStreamSynchronize(stream0);
 cudaStreamSynchronize(stream1);
 ...
 cudaStreamSynchronize(streamN);

 cuptiProfilerPopRange(&popRangeParams);
 cuptiProfilerDisableProfiling(&disableProfilingParams);
 lastPass = cuptiProfilerEndPass(&endPassParams);
} while (lastPass == false);
cuptiProfilerFlushCounterData(&flushCounterDataParams);
cuptiProfilerUnsetConfig(&unsetConfigParams);
cuptiProfilerEndSession(&endSessionParams);

In this example, the Profiler range will span all concurrently running kernels, which may
modify their own input data - each pass through the loop will restore the initial values.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 92

1.12. CUPTI overhead
CUPTI incurs overhead when used for tracing or profiling of the CUDA application.
Overhead can vary significantly from one application to another. It largely depends on
the density of the CUDA activities in the application; lesser the CUDA activities, less the
CUPTI overhead. In general overhead of tracing i.e. activity APIs is much lesser than the
profiling i.e. event and metric APIs.

1.12.1. Tracing Overhead
One of the goal of the tracing APIs is to provide a non-invasive collection of the timing
information of the CUDA activities. Tracing is a low-overhead mechanism for collecting
fine-grained runtime information.

1.12.1.1. Execution overhead

Factors affecting the execution overhead under tracing are:

‣ Serial kernel trace enabled using the activity kind
CUPTI_ACTIVITY_KIND_KERNEL can significantly change the overall performance
characteristics of the application because all kernel executions are serialized on the
GPU. For applications which use only a single CUDA stream and therefore cannot
have concurrent kernel execution, this mode can be useful as it usually (not always)
incurs less profiling overhead compared to the concurrent kernel mode.

‣ Concurrent kernel trace enabled using the activity kind
CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL doesn't affect the concurrency
of the kernels in the application. In this mode, CUPTI instruments the kernel code
to collect the timing information. A single instrumentation code is generated at
the time of loading the CUDA module and applied to each kernel during the
kernel execution. Instrumentation code generation overhead is attributed as
CUPTI_ACTIVITY_OVERHEAD_CUPTI_INSTRUMENTATION in the activity record
CUpti_ActivityOverhead.

‣ Due to the code instrumentation, concurrent kernel mode can add significant
runtime overhead if used on kernels that execute a large number of blocks and that
have short execution durations.

‣ Collection of the kernel latency timestamps i.e. queued and submitted
timestamps can add high overhead. These are not collected by default.
One can enable the collection of these timestamps using the API
cuptiActivityEnableLatencyTimestamps().

1.12.1.2. Memory overhead

CUPTI allocates device and pinned system memory for storing the tracing information:

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 93

‣ Static memory allocation: CUPTI allocates 3 buffers of 3 MB each in the pinned
system memory for each CUDA context by default. This is used for storing the
concurrent kernel, serial kernel, memcopy and memset tracing information and
these buffers are sufficient for storing information for about 300K such activities.
Activity attribute CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE can be used to
configure the size of the buffer.

‣ Dynamic memory allocation: Once profiling buffers to store the tracing information
are exhausted, CUPTI allocates another buffer of the same size. Note that
memory footprint will not always scale with the kernel, memcopy, memset count
because CUPTI reuses the buffer after processing all the records in the buffer. For
applications with a high density of these activities CUPTI may allocate more buffers.

All of the CUPTI allocated memory associated with a context is freed when the context is
destroyed.

1.12.2. Profiling Overhead
Events and metrics collection using CUPTI incurs runtime overhead. This overhead
depends on the number and type of events and metrics selected. Since each metric is
computed from one or more events, metric overhead depends on the number and type
of underlying events. The overhead includes time spent in configuration of hardware
events and reading of hardware event values.

Factors affecting the execution overhead under profiling are:

‣ Overhead is less for hardware provided events and metrics.

‣ For event and metric APIs, events which are collected using the
collection method CUPTI_EVENT_COLLECTION_METHOD_PM or
CUPTI_EVENT_COLLECTION_METHOD_SM fall in this category.

‣ For Profiling APIs, metrics which don't have string "sass" in the name fall in this
category.

‣ Software instrumented events and metrics are expensive as CUPTI needs to
instrument the kernel to collect these. Further these events and metrics cannot
be combined with any other event or metric in the same pass as otherwise
instrumented code will also contribute to the event value.

‣ For event and metric APIs, the collection method
CUPTI_EVENT_COLLECTION_METHOD_INSTRUMENTED fall in this cateogry.

‣ For Profiling APIs, metrics which have string "sass" in the name fall in this
category.

‣ In the serial mode, profiling may significantly change the overall performance
characteristics of the application because all kernel executions are serialized on the
GPU. This is done to enable tight event or metric collection around each kernel.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 94

‣ For event and metric APIs, the collection mode
CUPTI_EVENT_COLLECTION_MODE_KERNEL, serializes all kernel executions
on the GPU that occur between the APIs cuptiEventGroupEnable
and cuptiEventGroupDisable. On the other hand, kernel
concurrency can be maintained by using the collection mode
CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS and restricting profiling to
events and metrics that can be collected in a single pass.

‣ For Profiling APIs, auto range mode serializes all kernel executions on the GPU.
On the other hand, kernel concurrency can be maintained by using the user
range mode.

‣ When all the requested events or metrics cannot be collected in the single pass
due to hardware or software limitations, one needs to replay the exact same set of
GPU workloads multiple times. This can be achieved at the kernel granularity by
replaying kernel multiple times or by launching the entire application multiple
times. CUPTI provides support for kernel replay only. Application replay can be
done by the CUPTI client.

‣ When kernel replay is used the overhead to save and restore kernel state for
each replay pass depends on the amount of device memory used by the kernel.
Application replay is expected to perform better than kernel replay for the case
when the size of device memory used by the kernel is high.

1.13. Multi Instance GPU
Multi-Instance GPU (MIG) is a feature that allows a GPU to be partitioned into multiple
CUDA devices. The partitioning is carried out on two levels: First, a GPU can be split
into one or multiple GPU Instances. Each GPU Instance claims ownership of one or
more streaming multiprocessors (SM), a subset of the overall GPU memory, and possibly
other GPU resources, such as the video encoders/decoders. Second, each GPU Instance
can be further partitioned into one or more Compute Instances. Each Compute Instance
has exclusive ownership of its assigned SMs of the GPU Instance. However, all Compute
Instances within a GPU Instance share the GPU Instance's memory and memory
bandwidth. Every Compute Instance acts and operates as a CUDA device with a unique
device ID. See the driver release notes as well as the documentation for the nvidia-smi
CLI tool for more information on how to configure MIG instances.

From the profiling perspective, a Compute Instance can be of one of two types: isolated or
shared.

An isolated Compute Instance owns all of it's assigned resources and does not share
any GPU unit with another Compute Instance. In other words, the Compute Instance is
of the same size as its parent GPU Instance and consequently does not have any other
sibling Compute Instances. Tracing and Profiling works for isolated Compute Instances.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 95

A shared Compute Instance uses GPU resources that can potentially also be accessed
by other Compute Instances in the same GPU Instance. Due to this resource sharing,
collecting profiling data from shared units is not permitted. Attempts to collect metrics
from a shared unit will result in NaN values. Better error reporting will be done in a
future release. Collecting metrics from GPU units that are exclusively owned by a shared
Compute Instance is still possible. Tracing works for shared Compute Instances.

To allow users to determine which metrics are available on a target device, new APIs
have been added which can be used to query counter availability before starting the
profiling session. See APIs NVPW_RawMetricsConfig_SetCounterAvailability
and cuptiProfilerGetCounterAvailability.

All Compute Instances on a GPU share the same clock frequencies. To get consistent
metric values with multi-pass collection, it is recommended to lock the GPU clocks
during the profiling session. CLI tool nvidia-smi can be used to configure a fixed
frequency for the whole GPU by calling nvidia-smi --lock-gpu-clocks=tdp,tdp.
This sets the GPU clocks to the base TDP frequency until you reset the clocks by calling
nvidia-smi --reset-gpu-clocks.

1.14. NVIDIA Virtual GPU (vGPU)
CUPTI supports tracing and profiling features on NVIDIA virtual GPUs (vGPUs).
Activity, Callback and Profiling APIs are supported but Event and Metric APIs are
not supported on NVIDIA vGPUs. If you want to use profiling features that NVIDIA
vGPU supports, you must enable them for each vGPU VM that requires them. These
can be enabled by setting a vGPU plugin parameter enable_profiling. How to set
the parameter for a vGPU VM depends on the hypervisor that you are using. Tracing
is enabled by default, it doesn't require any specific setting. However tracing results
might not be accurate after virtual machine (VM) migration, it is recommended to set the
vGPU plugin parameter enable_profiling for accurate results. Refer to the NVIDIA
Virtual GPU Software documentation for the list of supported GPUs, how to enable
profiling features using the vGPU plugin parameter and for limitations on use of CUPTI
with NVIDIA vGPU.

1.15. Samples
The CUPTI installation includes several samples that demonstrate the use of the CUPTI
APIs. The samples are:
activity_trace_async

This sample shows how to collect a trace of CPU and GPU activity using the new
asynchronous activity buffer APIs.

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#cuda-open-cl-support-vgpu
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#enabling-cuda-toolkit-profilers-vgpu
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#enabling-cuda-toolkit-profilers-vgpu
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#limitations-with-cuda-toolkit-profilers-enabled

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 96

callback_event
This sample shows how to use both the callback and event APIs to record the events
that occur during the execution of a simple kernel. The sample shows the required
ordering for synchronization, and for event group enabling, disabling, and reading.

callback_metric
This sample shows how to use both the callback and metric APIs to record the
metric's events during the execution of a simple kernel, and then use those events to
calculate the metric value.

callback_timestamp
This sample shows how to use the callback API to record a trace of API start and stop
times.

checkpoint_kernels
This sample shows how to use the Checkpoint API to restore device memory,
allowing a kernel to be replayed, even if it modifies its input data.

concurrent_profiling
This sample shows how to use the profiler API to record metrics from concurrent
kernels launched in two different ways - using multiple streams on a single device,
and using multiple threads with multiple devices.

cupti_external_correlation
This sample shows how to do the correlation of CUDA API activity records with
external APIs.

cupti_nvtx
This sample shows how to receive NVTX callbacks and collect NVTX records in
CUPTI.

cupti_finalize
This sample shows how to use API cuptiFinalize() to dynamically detach and
attach CUPTI.

cupti_query
This sample shows how to query CUDA-enabled devices for their event domains,
events, and metrics.

event_sampling
This sample shows how to use the event APIs to sample events using a separate host
thread.

event_multi_gpu
This sample shows how to use the CUPTI event and CUDA APIs to sample events
on a setup with multiple GPUs. The sample shows the required ordering for
synchronization, and for event group enabling, disabling, and reading.

sass_source_map
This sample shows how to generate CUpti_ActivityInstructionExecution records and
how to map SASS assembly instructions to CUDA C source.

unified_memory
This sample shows how to collect information about page transfers for unified
memory.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 97

pc_sampling
This sample shows how to collect PC Sampling profiling information for a kernel
using the PC Sampling Activity APIs.

pc_sampling_continuous
This injection sample shows how to collect PC Sampling profiling information using
the PC Sampling APIs. A perl script libpc_sampling_continuous.pl is provided to
run the CUDA application with different PC sampling options. Use the command './
libpc_sampling_continuous.pl --help' to list all the options. The CUDA application
code does not need to be modified. Refer the README.txt file shipped with the
sample for instructions to build and use the injection library.

pc_sampling_start_stop
This sample shows how to collect PC Sampling profiling information for kernels
within a range using the PC Sampling start/stop APIs.

pc_sampling_utility
This utility takes the pc sampling data file generated by the pc_sampling_continuous
injection library as input. It prints the stall reason counter values at the GPU assembly
instruction level. It also does GPU assembly to CUDA-C source correlation and
shows the CUDA-C source file name and line number. Refer the README.txt file
shipped with the sample for instructions to build and run the utility.

profiling_injection
This sample for Linux systems shows how to build an injection library which can
automatically enable CUPTI's Profiling API using Auto Ranges with Kernel Replay
mode. It can attach to an application which was not instrumented using CUPTI and
profile any kernel launches.

nvlink_bandwidth
This sample shows how to collect NVLink topology and NVLink throughput metrics
in continuous mode.

openacc_trace
This sample shows how to use CUPTI APIs for OpenACC data collection.

extensions
This includes utilities used in some of the samples.

autorange_profiling
This sample shows how to use profiling APIs to collect metrics in autorange mode.

userrange_profiling
This sample shows how to use profiling APIs to collect metrics in user specified range
mode.

cupti_metric_properties
This sample shows how to query various properties of metrics using the Profiling
APIs. The sample shows collection method (hardware or software) and number of
passes required to collect a list of metrics.

nested_range_profiling
This sample shows how to profile nested ranges using the Profiling APIs.

Usage

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 98

callback_profiling
This sample shows how to use callback and profiling APIs to collect the metrics
during the execution of a kernel. It shows how to use different phases of profiling i.e.
enumeration, configuration, collection and evaluation in the appropriate callbacks.

cuda_graphs_trace
This sample shows how to collect the trace of CUDA graphs and correlate the graph
node launch to the node creation API using CUPTI callbacks.

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 99

Chapter 2.
LIBRARY SUPPORT

CUPTI can be used to profile CUDA applications, as well as applications that use CUDA
via NVIDIA or third-party libraries. For most such libraries, the behavior is expected to
be identical to applications using CUDA directly. However, for certain libraries, CUPTI
has certain restrictions, or alternate behavior.

2.1. OptiX
CUPTI supports profiling of OptiX applications, but with certain restrictions.

‣ Internal Kernels

Kernels launched by OptiX that contain no user-defined code are given the generic
name NVIDIA internal. CUPTI provides the tracing information for these kernels but
these cannot be profiled i.e we cannot collect events, metrics and PC sampling data.

‣ User Kernels

Kernels launched by OptiX can contain user-defined code. OptiX identifies these
kernels with a custom name. This name starts with raygen__ (for "ray generation").
These kernels can be traced and profiled by CUPTI.

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 100

Chapter 3.
LIMITATIONS

The following are known issues with the current release.

‣ A security vulnerability issue required profiling tools to disable all the features
for non-root or non-admin users. As a result, CUPTI cannot profile the application
when using a Windows 419.17 or Linux 418.43 or later driver. More details about the
issue and the solutions can be found on this web page.

Starting with CUDA 10.2, CUPTI allows tracing features for non-root and non-
admin users on desktop platforms. But events and metrics profiling is still
restricted for non-root and non-admin users.

‣ Profiling results might be inconsistent when auto boost is enabled. Profiler
tries to disable auto boost by default. But it might fail to do so in some
conditions and profiling will continue and results will be inconsistent. API
cuptiGetAutoBoostState() can be used to query the auto boost state of the
device. This API returns error CUPTI_ERROR_NOT_SUPPORTED on devices that
don't support auto boost. Note that auto boost is supported only on certain Tesla
devices with compute capability 3.0 and higher.

‣ CUPTI doesn't populate the activity structures which are deprecated, instead the
newer version of the activity structure is filled with the information.

‣ Because of the low resolution of the timer on Windows, the start and end
timestamps can be same for activities having short execution duration on Windows.

‣ The application which calls CUPTI APIs cannot be used with Nvidia tools like
nvprof, Nvidia Visual Profiler, Nsight Compute, Nsight Systems,
Nvidia Nsight Visual Studio Edition, cuda-gdb and cuda-memcheck.

‣ PCIE and NVLINK records are not captured when CUPTI is initialized lazily after
the CUDA initialization.

‣ CUPTI fails to profile the OpenACC application when the OpenACC library linked
with the application has missing definition of the OpenACC API routine/s. This is
indicated by the error code CUPTI_ERROR_OPENACC_UNDEFINED_ROUTINE.

https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters

Limitations

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 101

‣ OpenACC profiling might fail when OpenACC library is linked statically in the
user application. This happens due to the missing definition of the OpenACC API
routines needed for the OpenACC profiling, as compiler might ignore definitions for
the functions not used in the application. This issue can be mitigated by linking the
OpenACC library dynamically.

‣ Unified memory profiling is not supported on the ARM architecture.
‣ Profiling a C++ application which overloads the new operator at the global scope

and uses any CUDA APIs like cudaMalloc() or cudaMallocManaged() inside the
overloaded new operator will result in a hang.

‣ Devices with compute capability 6.0 and higher introduce a new feature, compute
preemption, to give fair chance for all compute contexts while running long tasks.
With compute preemption feature-

‣ If multiple contexts are running in parallel it is possible that long kernels will
get preempted.

‣ Some kernels may get preempted occasionally due to timeslice expiry for the
context.

If kernel has been preempted, the time the kernel spends preempted is still counted
towards kernel duration.

Compute preemption can affect events and metrics collection. The following are
known issues with the current release:

‣ Events and metrics collection for a MPS client can result in higher counts than
expected on devices with compute capability 7.0 and higher, since MPS client
may get preempted due to termination of another MPS client.

‣ Events warps_launched and sm_cta_launched and metric inst_per_warp might
provide higher counts than expected on devices with compute capability 6.0 and
higher. Metric unique_warps_launched can be used in place of warps_launched
to get correct count of actual warps launched as it is not affected by compute
preemption.

To avoid compute preemption affecting profiler results try to isolate the context
being profiled:

‣ Run the application on secondary GPU where display is not connected.
‣ On Linux if the application is running on the primary GPU where the display

driver is connected then unload the display driver.
‣ Run only one process that uses GPU at one time.

‣ Devices with compute capability 6.0 and higher support demand paging.
When the kernel is scheduled for the first time, all the pages allocated using
cudaMallocManaged and that are required for execution of the kernel are fetched
in the global memory when GPU faults are generated. Profiler requires multiple
passes to collect all the metrics required for kernel analysis. The kernel state needs
to be saved and restored for each kernel replay pass. For devices with compute

Limitations

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 102

capability 6.0 and higher and platforms supporting Unified memory, in the first
kernel iteration the GPU faults will be generated and all pages will be fetched in the
global memory. Second iteration onwards GPU page faults will not occur. This will
significantly affect the memory related events and timing. The time taken from trace
will include the time required to fetch the pages but most of the metrics profiled
in multiple iterations will not include time/cycles required to fetch the pages. This
causes inconsistency in the profiler results.

‣ When profiling an application that uses CUDA Dynamic Parallelism (CDP) there are
several limitations to the profiling tools.

‣ CUDA Dynamic Parallelism (CDP) kernel launch tracing has a limitation for
devices with compute capability 7.0 and higher. CUPTI traces all the host
launched kernels until it encounters a host launched kernel which launches
child kernels. Subsequent kernels are not traced.

‣ CUPTI doesn't report CUDA API calls for device-launched kernels.
‣ CUPTI doesn't report detailed event, metric, and source-level results for device-

launched kernels. Event, metric, and source-level results collected for CPU-
launched kernels will include event, metric, and source-level results for the
entire call-tree of kernels launched from within that kernel.

‣ Compilation of samples autorange_profiling and userrange_profiling requires a host
compiler which supports C++11 features. For some g++ compilers, it is required to
use the flag -std=c++11 to turn on C++11 features.

‣ PC Sampling is not supported on Tegra platforms.
‣ As of CUDA 11.4 and R470 TRD1 driver release, CUPTI is supported in a vGPU

environment which requires a vGPU license. If the license is not obtained after
20 minutes, the reported performance data including metrics from the GPU will
be inaccurate. This is because of a feature in vGPU environment which reduces
performance but retains functionality as specified here.

‣ CUPTI is not supported on NVIDIA Crypto Mining Processors (CMP). This is
reported using the error code CUPTI_ERROR_CMP_DEVICE_NOT_SUPPORTED. For
more information, please visit the web page.

Profiling

The following are common known issues for both the event and metric APIs and the
profiling APIs:

‣ Profiling may significantly change the overall performance characteristics of the
application. Refer to the section CUPTI Overhead for more details.

‣ Profiling a kernel while other contexts are active on the same device (e.g. X server,
or secondary CUDA or graphics application) can result in varying metric values for
L2/FB (Device Memory) related metrics. Specifically, L2/FB traffic from non-profiled
contexts cannot be excluded from the metric results. To completely avoid this issue,
profile the application on a GPU without secondary contexts accessing the same
device (e.g. no X server on Linux).

https://docs.nvidia.com/grid/latest/grid-licensing-user-guide/index.html#software-enforcement-grid-licensing
https://developer.nvidia.com/ERR_NVCMPGPU

Limitations

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 103

‣ Profiling is not supported for multidevice cooperative
kernels, that is, kernels launched by using the API functions
cudaLaunchCooperativeKernelMultiDevice or
cuLaunchCooperativeKernelMultiDevice.

‣ Enabling certain events can cause GPU kernels to run longer than the driver's
watchdog time-out limit. In these cases the driver will terminate the GPU kernel
resulting in an application error and profiling data will not be available. Please
disable the driver watchdog time out before profiling such long running CUDA
kernels

‣ On Linux, setting the X Config option Interactive to false is recommended.
‣ For Windows, detailed information about TDR (Timeout Detection and

Recovery) and how to disable it is available at https://docs.microsoft.com/en-us/
windows-hardware/drivers/display/timeout-detection-and-recovery

‣ Profiling is not supported on the Windows Subsystem for Linux version 2 (WSL2).

Event and Metric API

The following are known issues related to Event and Metric API:

‣ The CUPTI event APIs from the header cupti_events.h and metric APIs from
the header cupti_metrics.h are not supported for the devices with compute
capability 7.5 and higher. These are replaced by Profiling API and Perfworks metric
API. Refer to the section Migration to the Profiling API.

‣ While collecting events in continuous mode, event reporting may be delayed i.e.
event values may be returned by a later call to readEvent(s) API and the event
values for the last readEvent(s) API may get lost.

‣ When profiling events, it is possible that the domain instance that gets
profiled gives event value 0 due to absence of workload on the domain
instance since CUPTI profiles one instance of the domain by default. To
profile all instances of the domain, user can set event group attribute
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES through API
cuptiEventGroupSetAttribute().

‣ Profiling results might be incorrect for CUDA applications compiled with
nvcc version older than 9.0 for devices with compute capability 6.0 and 6.1.
Profiling session will continue and CUPTI will notify it using error code
CUPTI_ERROR_CUDA_COMPILER_NOT_COMPATIBLE. It is advised to recompile the
application code with nvcc version 9.0 or later. Ignore this warning if code is already
compiled with the recommended nvcc version.

‣ For some metrics, the required events can only be collected for a single CUDA
context. For an application that uses multiple CUDA contexts, these metrics will
only be collected for one of the contexts. The metrics that can be collected only for a
single CUDA context are indicated in the metric reference tables.

‣ Some metric values are calculated assuming a kernel is large enough to occupy
all device multiprocessors with approximately the same amount of work. If a

Limitations

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 104

kernel launch does not have this characteristic, then those metric values may not be
accurate.

‣ Some events and metrics are not available on all devices. For list of metrics, you can
refer to the metric reference tables.

‣ CUPTI can give out of memory error for event and metrics profiling, it could be due
to large number of instructions in the kernel.

‣ Profiling is not supported for CUDA kernel nodes launched by a CUDA Graph.
‣ These APIs are not supported on below system configurations:

‣ 64-bit ARM Server CPU architecture (arm64 SBSA).
‣ Virtual GPUs (vGPU).

Profiling and Perfworks Metric API

The following are known issues related to the Profiling and Perfworks Metric API:

‣ Profiling a kernel while any other GPU work is executing on the same MIG compute
instance can result in varying metric values for all units. Care should be taken
to serialize, or otherwise prevent concurrent CUDA launches within the target
application to ensure those kernels do not influence each other. Be aware that GPU
work issued through other APIs in the target process or workloads created by non-
target processes running simultaneously in the same MIG compute instance will
influence the collected metrics. Note that it is acceptable to run CUDA processes in
other MIG compute instances as they will not influence the profiled MIG compute
instance.

‣ For devices with compute capability 8.0, the NVLink topology information is
available but NVLink performance metrics (nvlrx__* and nvltx__*) are not
supported due to a potential application hang during data collection.

‣ Profiling is not supported under MPS (Multi-Process Service).
‣ For profiling the CUDA kernel nodes launched by a CUDA Graph, not all

combinations of range profiling and replay modes are supported. User replay and
application replay modes with auto range are not supported. In the user range
mode, all the kernel nodes launched by the CUDA Graph will be profiled, user can't
do the profiling for a range of kernels.

‣ Profiling kernels executed on a device that is part of an SLI group is not supported.
‣ Profiling is not supported for OptiX applications.
‣ Refer to the section for differences from event and metric APIs.

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 105

Chapter 4.
CHANGELOG

CUPTI changes in CUDA 11.5

CUPTI contains below changes as part of the CUDA Toolkit 11.5 release.

‣ A new API cuptiProfilerDeviceSupported is introduced to expose overall
Profiling API support and specific requirements for a given device. Profiling API
must be initialized by calling cuptiProfilerInitialize before testing device
support.

‣ PC Sampling struct CUpti_PCSamplingData introduces a new field
nonUsrKernelsTotalSamples to provide information about the number of
samples collected for all non-user kernels.

‣ Activity record CUpti_ActivityDevice2 for device information has been
deprecated and replaced by a new activity record CUpti_ActivityDevice3. New
record adds a flag isCudaVisible to indicate whether device is visible to CUDA.

‣ Activity record CUpti_ActivityNvLink3 for NVLINK information has been
deprecated and replaced by a new activity record CUpti_ActivityNvLink4. New
record can accommodate NVLINK port information upto a maximum of 32 ports.

‣ A new CUPTI Checkpoint API is introduced, enabling automatic saving and
restoring of device state, and facilitating development of kernel replay tools. This
is helpful for User Replay mode of the CUPTI Profiler API, but is not limited to use
with CUPTI.

‣ Tracing is supported on the Windows Subsystem for Linux version 2 (WSL2).
‣ CUPTI is not supported on NVIDIA Crypto Mining Processors (CMP). A new error

code CUPTI_ERROR_CMP_DEVICE_NOT_SUPPORTED is introduced to indicate it.

CUPTI changes in CUDA 11.4

CUPTI contains below changes as part of the CUDA Toolkit 11.4 release.

‣ Profiling APIs support profiling of the CUDA kernel nodes launched by a CUDA
Graph. Auto range profiling with kernel replay mode and user range profiling with

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 106

user replay and application replay modes are supported. Other combinations of
range profiling and replay modes are not supported.

‣ Added support for tracing and profiling on NVIDIA virtual GPUs (vGPUs) on an
upcoming GRID/vGPU release.

‣ Added sample profiling_injection to show how to build injection library using the
Profiling API.

‣ Added sample concurrent_profiling to show how to retain the kernel concurrency
across streams and devices using the Profiling API.

CUPTI changes in CUDA 11.3

CUPTI contains below changes as part of the CUDA Toolkit 11.3 release.

‣ A new set of CUPTI APIs for PC sampling data collection are provided in the
header file cupti_pcsampling.h which support continuous mode data
collection without serializing kernel execution and have a lower runtime
overhead. Along with these a utility library is provided in the header file
cupti_pcsampling_util.h which has APIs for GPU assembly to CUDA-C
source correlation and for reading and writing the PC sampling data from/to files.
Refer to the section CUPTI PC Sampling API for more details.

‣ Overhead reduction for tracing of CUDA memcopies.
‣ Enum CUpti_PcieGen is extended to include PCIe Gen 5.
‣ The following functions are deprecated and will be removed in a future release:

‣ Struct NVPA_MetricsContext and related APIs NVPW_MetricsContext_*
from the header nvperf_host.h. It is recommended to use the struct
NVPW_MetricsEvaluator and related APIs NVPW_MetricsEvaluator_*
instead. Profiling API samples have been updated to show how to use these
APIs.

‣ cuptiDeviceGetTimestamp from the header cupti_events.h.

CUPTI changes in CUDA 11.2

CUPTI contains below changes as part of the CUDA Toolkit 11.2 release.

‣ A new activity kind CUPTI_ACTIVITY_KIND_MEMORY_POOL and
activity record CUpti_ActivityMemoryPool are introduced to
represent the creation, destruction and trimming of a memory pool. Enum
CUpti_ActivityMemoryPoolType lists types of memory pool.

‣ A new activity kind CUPTI_ACTIVITY_KIND_MEMORY2 and activity record
CUpti_ActivityMemory2 are introduced to provide separate records for memory
allocation and release operations. This helps in correlation of records of these
operations to the corresponding CUDA APIs, which otherwise is not possible using
the existing activity record CUpti_ActivityMemory which provides a single
record for both the memory operations.

https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 107

‣ Added a new pointer field of type CUaccessPolicyWindow in the kernel activity
record to provide the access policy window which specifies a contiguous region of
global memory and a persistence property in the L2 cache for accesses within that
region. To accomodate this change, activity record CUpti_ActivityKernel5 is
deprecated and replaced by a new activity record CUpti_ActivityKernel6. This
attribute is not collected by default. To control the collection of launch attributes, a
new API cuptiActivityEnableLaunchAttributes is introdcued.

‣ New attributes
CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_PRE_ALLOCATE_VALUE and
CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_PRE_ALLOCATE_VALUE are
added in the activity attribute enum CUpti_ActivityAttribute to set and get
the number of device buffers and profiling semaphore pools which are preallocated
for the context.

‣ CUPTI now allocates profiling buffer for concurrent kernel tracing in the pinned
host memory in place of device memory. This might help in improving the
performance of the tracing run. Memory location can be controlled using the
attribute CUPTI_ACTIVITY_ATTR_MEM_ALLOCATION_TYPE_HOST_PINNED of the
activity attribute enum CUpti_ActivityAttribute.

‣ Execution overheads introduced by CUPTI in the tracing path is reduced.
‣ The compiler generated line information for inlined functions is improved due

to which CUPTI can associate inlined functions with the line information of the
function call site that has been inlined.

‣ Removed support for NVLink performance metrics (nvlrx__* and nvltx__*) from
the Profiling API due to a potential application hang during data collection. The
metrics will be added back in a future CUDA release.

CUPTI changes in CUDA 11.1

CUPTI contains below changes as part of the CUDA Toolkit 11.1 release.

‣ CUPTI adds tracing and profiling support for the NVIDIA Ampere GPUs with
compute capability 8.6.

‣ Added a new field graphId in the activity records for kernel, memcpy,
peer-to-peer memcpy and memset to output the unique ID of the
CUDA graph that launches the activity through CUDA graph APIs. To
accomodate this change, activity records CUpti_ActivityMemcpy3,
CUpti_ActivityMemcpyPtoP2 and CUpti_ActivityMemset2 are
deprecated and replaced by new activity records CUpti_ActivityMemcpy4,
CUpti_ActivityMemcpyPtoP3 and CUpti_ActivityMemset3. And kernel
activity record CUpti_ActivityKernel5 replaces the padding field with
graphId. Added a new API cuptiGetGraphId to query the unique ID of the
CUDA graph.

‣ Added a new API cuptiActivityFlushPeriod to set the flush period for the
worker thread.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 108

‣ Added support for profiling cooperative kernels using Profiling APIs.
‣ Added NVLink performance metrics (nvlrx__* and nvltx__*) using the Profiling

APIs. These metrics are available on devices with compute capability 7.0, 7.5 and 8.0,
and these can be collected at the context level. Refer to the table Metrics Mapping
Table for mapping between earlier CUPTI metrics and the Perfworks NVLink
metrics for devices with compute capability 7.0.

CUPTI changes in CUDA 11.0

CUPTI contains below changes as part of the CUDA Toolkit 11.0 release.

‣ CUPTI adds tracing and profiling support for devices with compute capability 8.0
i.e. NVIDIA A100 GPUs and systems that are based on A100.

‣ Enhancements for CUDA Graph:

‣ Support to correlate the CUDA Graph node with the GPU activities: kernel,
memcpy, memset.

‣ Added a new field graphNodeId for Node Id in the activity
records for kernel, memcpy, memset and P2P transfers. Activity
records CUpti_ActivityKernel4, CUpti_ActivityMemcpy2,
CUpti_ActivityMemset and CUpti_ActivityMemcpyPtoP
are deprecated and replaced by new activity records
CUpti_ActivityKernel5, CUpti_ActivityMemcpy3,
CUpti_ActivityMemset2 and CUpti_ActivityMemcpyPtoP2.

‣ graphNodeId is the unique ID for the graph node.
‣ graphNodeId can be queried using the new CUPTI API

cuptiGetGraphNodeId().
‣ Callback CUPTI_CBID_RESOURCE_GRAPHNODE_CREATED is issued

between a pair of the API enter and exit callbacks.
‣ Introduced new callback CUPTI_CBID_RESOURCE_GRAPHNODE_CLONED to

indicate the cloning of the CUDA Graph node.
‣ Retain CUDA driver performance optimization in case memset node is

sandwiched between kernel nodes. CUPTI no longer disables the conversion of
memset nodes into kernel nodes for CUDA graphs.

‣ Added support for cooperative kernels in CUDA graphs.
‣ Fixed issues in the API cuptiFinalize() including the issue which may cause

the application to crash. This API provides ability for safe and full detach of CUPTI
during the execution of the application. More details in the section Dynamic Detach.

‣ Added support to trace Optix applications. Refer the Optix Profiling section.
‣ PC sampling overhead is reduced by avoiding the reconfiguration of the GPU when

PC sampling period doesn't change between successive kernels. This is applicable
for devices with compute capability 7.0 and higher.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 109

‣ CUPTI overhead is associated with the thread rather than process. Object
kind of the overhead record CUpti_ActivityOverhead is switched to
CUPTI_ACTIVITY_OBJECT_THREAD.

‣ Added error code CUPTI_ERROR_MULTIPLE_SUBSCRIBERS_NOT_SUPPORTED
to indicate the presense of another CUPTI subscriber. API cuptiSubscribe()
returns the new error code than CUPTI_ERROR_MAX_LIMIT_REACHED.

‣ Added a new enum CUpti_FuncShmemLimitConfig to indicate
whether user has opted in for maximun dynamic shared memory size
on devices with compute capability 7.x by using function attributes
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES or
cudaFuncAttributeMaxDynamicSharedMemorySize with CUDA driver
and runtime respectively. Field shmemLimitConfig in the kernel activity
record CUpti_ActivityKernel5 shows the user choice. This helps in
correct occupancy calulation. Value FUNC_SHMEM_LIMIT_OPTIN in the enum
cudaOccFuncShmemConfig is the corresponding option in the CUDA occupancy
calculator.

CUPTI changes in CUDA 10.2

CUPTI contains below changes as part of the CUDA Toolkit 10.2 release.

‣ CUPTI allows tracing features for non-root and non-admin users on desktop
platforms. Note that events and metrics profiling is still restricted for non-root and
non-admin users. More details about the issue and the solutions can be found on
this web page.

‣ CUPTI no longer turns off the performance characteristics of CUDA Graph when
tracing the application.

‣ CUPTI now shows memset nodes in the CUDA graph.
‣ Fixed the incorrect timing issue for the asynchronous cuMemset/cudaMemset

activity.
‣ Several performance improvements are done in the tracing path.

CUPTI changes in CUDA 10.1 Update 2

CUPTI contains below changes as part of the CUDA Toolkit 10.1 Update 2 release.

‣ This release is focused on bug fixes and stability of the CUPTI.
‣ A security vulnerability issue required profiling tools to disable all the features

for non-root or non-admin users. As a result, CUPTI cannot profile the application
when using a Windows 419.17 or Linux 418.43 or later driver. More details about the
issue and the solutions can be found on this web page.

CUPTI changes in CUDA 10.1 Update 1

CUPTI contains below changes as part of the CUDA Toolkit 10.1 Update 1 release.

https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters
https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 110

‣ Support for the IBM POWER platform is added for the

‣ Profiling APIs in the header cupti_profiler_target.h
‣ Perfworks metric APIs in the headers nvperf_host.h and

nvperf_target.h

CUPTI changes in CUDA 10.1

CUPTI contains below changes as part of the CUDA Toolkit 10.1 release.

‣ This release is focused on bug fixes and performance improvements.
‣ The new set of profiling APIs and Perfworks metric APIs which were introduced in

the CUDA Toolkit 10.0 are now integrated into the CUPTI library distributed in the
CUDA Toolkit. Refer to the sections CUPTI Profiling API and Perfworks Metric APIs
for documentation of the new APIs.

‣ Event collection mode CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS is now
supported on all device classes including Geforce and Quadro.

‣ Support for the NVTX string registration API nvtxDomainRegisterStringA().
‣ Added enum CUpti_PcieGen to list PCIE generations.

CUPTI changes in CUDA 10.0

CUPTI contains below changes as part of the CUDA Toolkit 10.0 release.

‣ Added tracing support for devices with compute capability 7.5.
‣ A new set of metric APIs are added for devices with compute capability 7.0 and

higher. These provide low and deterministic profiling overhead on the target
system. These APIs are currently supported only on Linux x86 64-bit and Windows
64-bit platforms. Refer to the CUPTI web page for documentation and details to
download the package with support for these new APIs. Note that both the old
and new metric APIs are supported for compute capability 7.0. This is to enable
transition of code to the new metric APIs. But one cannot mix the usage of the old
and new metric APIs.

‣ CUPTI supports profiling of OpenMP applications. OpenMP profiling information
is provided in the form of new activity records CUpti_ActivityOpenMp. New API
cuptiOpenMpInitialize is used to initialize profiling for supported OpenMP
runtimes.

‣ Activity record for kernel CUpti_ActivityKernel4 provides shared memory size
set by the CUDA driver.

‣ Tracing support for CUDA kernels, memcpy and memset nodes launched by a
CUDA Graph.

‣ Added support for resource callbacks for resources associated with the CUDA
Graph. Refer enum CUpti_CallbackIdResource for new callback IDs.

https://developer.nvidia.com/cupti

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 111

CUPTI changes in CUDA 9.2

CUPTI contains below changes as part of the CUDA Toolkit 9.2 release.

‣ Added support to query PCI devices information which can be used to construct
the PCIE topology. See activity kind CUPTI_ACTIVITY_KIND_PCIE and related
activity record CUpti_ActivityPcie.

‣ To view and analyze bandwidth of memory transfers over PCIe topologies, new
set of metrics to collect total data bytes transmitted and recieved through PCIe are
added. Those give accumulated count for all devices in the system. These metrics are
collected at the device level for the entire application. And those are made available
for devices with compute capability 5.2 and higher.

‣ CUPTI added support for new metrics:

‣ Instruction executed for different types of load and store
‣ Total number of cached global/local load requests from SM to texture cache
‣ Global atomic/non-atomic/reduction bytes written to L2 cache from texture

cache
‣ Surface atomic/non-atomic/reduction bytes written to L2 cache from texture

cache
‣ Hit rate at L2 cache for all requests from texture cache
‣ Device memory (DRAM) read and write bytes
‣ The utilization level of the multiprocessor function units that execute tensor core

instructions for devices with compute capability 7.0
‣ A new attribute CUPTI_EVENT_ATTR_PROFILING_SCOPE is added under enum

CUpti_EventAttribute to query the profiling scope of a event. Profiling scope
indicates if the event can be collected at the context level or device level or both. See
Enum CUpti_EventProfilingScope for avaiable profiling scopes.

‣ A new error code CUPTI_ERROR_VIRTUALIZED_DEVICE_NOT_SUPPORTED is
added to indicate that tracing and profiling on virtualized GPU is not supported.

CUPTI changes in CUDA 9.1

List of changes done as part of the CUDA Toolkit 9.1 release.

‣ Added a field for correlation ID in the activity record CUpti_ActivityStream.

CUPTI changes in CUDA 9.0

List of changes done as part of the CUDA Toolkit 9.0 release.

‣ CUPTI extends tracing and profiling support for devices with compute capability
7.0.

‣ Usage of compute device memory can be tracked through CUPTI.
A new activity record CUpti_ActivityMemory and activity kind
CUPTI_ACTIVITY_KIND_MEMORY are added to track the allocation and freeing

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 112

of memory. This activity record includes fields like virtual base address, size, PC
(program counter), timestamps for memory allocation and free calls.

‣ Unified memory profiling adds new events for thrashing, throttling, remote
map and device-to-device migration on 64 bit Linux platforms. New events are
added under enum CUpti_ActivityUnifiedMemoryCounterKind. Enum
CUpti_ActivityUnifiedMemoryRemoteMapCause lists possible causes for
remote map events.

‣ PC sampling supports wide range of sampling periods ranging from
2^5 cycles to 2^31 cycles per sample. This can be controlled through
new field samplingPeriod2 in the PC sampling configuration struct
CUpti_ActivityPCSamplingConfig.

‣ Added API cuptiDeviceSupported() to check support for a compute device.
‣ Activity record CUpti_ActivityKernel3 for kernel execution has been

deprecated and replaced by new activity record CUpti_ActivityKernel4.
New record gives information about queued and submit timestamps which
can help to determine software and hardware latencies associated with
the kernel launch. These timestamps are not collected by default. Use API
cuptiActivityEnableLatencyTimestamps() to enable collection. New field
launchType of type CUpti_ActivityLaunchType can be used to determine if it
is a cooperative CUDA kernel launch.

‣ Activity record CUpti_ActivityPCSampling2 for PC sampling has been
deprecated and replaced by new activity record CUpti_ActivityPCSampling3.
New record accomodates 64-bit PC Offset supported on devices of compute
capability 7.0 and higher.

‣ Activity record CUpti_ActivityNvLink for NVLink attributes has been
deprecated and replaced by new activity record CUpti_ActivityNvLink2. New
record accomodates increased port numbers between two compute devices.

‣ Activity record CUpti_ActivityGlobalAccess2 for source level
global accesses has been deprecated and replaced by new activity record
CUpti_ActivityGlobalAccess3. New record accomodates 64-bit PC Offset
supported on devices of compute capability 7.0 and higher.

‣ New attributes CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE
and CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_LIMIT are added
in the activity attribute enum CUpti_ActivityAttribute to set and get the
profiling semaphore pool size and the pool limit.

CUPTI changes in CUDA 8.0

List of changes done as part of the CUDA Toolkit 8.0 release.

‣ Sampling of the program counter (PC) is enhanced to point out the true
latency issues, it indicates if the stall reasons for warps are actually causing
stalls in the issue pipeline. Field latencySamples of new activity record
CUpti_ActivityPCSampling2 provides true latency samples. This field is valid

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 113

for devices with compute capability 6.0 and higher. See section PC Sampling for
more details.

‣ Support for NVLink topology information such as the pair of devices connected via
NVLink, peak bandwidth, memory access permissions etc is provided through new
activity record CUpti_ActivityNvLink. NVLink performance metrics for data
transmitted/received, transmit/receive throughput and respective header overhead
for each physical link. See section NVLink for more details.

‣ CUPTI supports profiling of OpenACC applications. OpenACC
profiling information is provided in the form of new activity records
CUpti_ActivityOpenAccData, CUpti_ActivityOpenAccLaunch and
CUpti_ActivityOpenAccOther. This aids in correlating OpenACC constructs on
the CPU with the corresponding activity taking place on the GPU, and mapping it
back to the source code. New API cuptiOpenACCInitialize is used to initialize
profiling for supported OpenACC runtimes. See section OpenACC for more details.

‣ Unified memory profiling provides GPU page fault events on
devices with compute capability 6.0 and 64 bit Linux platforms.
Enum CUpti_ActivityUnifiedMemoryAccessType lists
memory access types for GPU page fault events and enum
CUpti_ActivityUnifiedMemoryMigrationCause lists migration causes for
data transfer events.

‣ Unified Memory profiling support is extended to Mac platform.
‣ Support for 16-bit floating point (FP16) data format profiling. New metrics

inst_fp_16, flop_count_hp_add, flop_count_hp_mul, flop_count_hp_fma,
flop_count_hp, flop_hp_efficiency, half_precision_fu_utilization are
supported. Peak FP16 flops per cycle for device can be queried using
the enum CUPTI_DEVICE_ATTR_FLOP_HP_PER_CYCLE added to
CUpti_DeviceAttribute.

‣ Added new activity kinds CUPTI_ACTIVITY_KIND_SYNCHRONIZATION,
CUPTI_ACTIVITY_KIND_STREAM and CUPTI_ACTIVITY_KIND_CUDA_EVENT,
to support the tracing of CUDA synchronization constructs such as context,
stream and CUDA event synchronization. Synchronization details are provided
in the form of new activity record CUpti_ActivitySynchronization. Enum
CUpti_ActivitySynchronizationType lists different types of CUDA
synchronization constructs.

‣ APIs cuptiSetThreadIdType()/cuptiGetThreadIdType() to set/get
the mechanism used to fetch the thread-id used in CUPTI records. Enum
CUpti_ActivityThreadIdType lists all supported mechanisms.

‣ Added API cuptiComputeCapabilitySupported() to check the support for a
specific compute capability by the CUPTI.

‣ Added support to establish correlation between an external API
(such as OpenACC, OpenMP) and CUPTI API activity records.
APIs cuptiActivityPushExternalCorrelationId() and
cuptiActivityPopExternalCorrelationId() should be used to push

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 114

and pop external correlation ids for the calling thread. Generated records of type
CUpti_ActivityExternalCorrelation contain both external and CUPTI
assigned correlation ids.

‣ Added containers to store the information of events and metrics in the
form of activity records CUpti_ActivityInstantaneousEvent,
CUpti_ActivityInstantaneousEventInstance,
CUpti_ActivityInstantaneousMetric and
CUpti_ActivityInstantaneousMetricInstance. These activity records are
not produced by the CUPTI, these are included for completeness and ease-of-use.
Profilers built on top of CUPTI that sample events may choose to use these records
to store the collected event data.

‣ Support for domains and annotation of synchronization objects
added in NVTX v2. New activity record CUpti_ActivityMarker2
and enums to indicate various stages of synchronization object
i.e. CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE,
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE_SUCCESS,
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE_FAILED and
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_RELEASE are added.

‣ Unused field runtimeCorrelationId of the activity record
CUpti_ActivityMemset is broken into two fields flags and
memoryKind to indicate the asynchronous behaviour and the kind of
the memory used for the memset operation. It is supported by the new
flag CUPTI_ACTIVITY_FLAG_MEMSET_ASYNC added in the enum
CUpti_ActivityFlag.

‣ Added flag CUPTI_ACTIVITY_MEMORY_KIND_MANAGED in the enum
CUpti_ActivityMemoryKind to indicate managed memory.

‣ API cuptiGetStreamId has been deprecated. A new API cuptiGetStreamIdEx
is introduced to provide the stream id based on the legacy or per-thread default
stream flag.

CUPTI changes in CUDA 7.5

List of changes done as part of the CUDA Toolkit 7.5 release.

‣ Device-wide sampling of the program counter (PC) is enabled by default. This was a
preview feature in the CUDA Toolkit 7.0 release and it was not enabled by default.

‣ Ability to collect all events and metrics accurately in presence of multiple contexts
on the GPU is extended for devices with compute capability 5.x.

‣ API cuptiGetLastError is introduced to return the last error that has been
produced by any of the CUPTI API calls or the callbacks in the same host thread.

‣ Unified memory profiling is supported with MPS (Multi-Process Service)
‣ Callback is provided to collect replay information after every kernel run during

kernel replay. See API cuptiKernelReplaySubscribeUpdate and callback type
CUpti_KernelReplayUpdateFunc.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 115

‣ Added new attributes in enum CUpti_DeviceAttribute to query maximum
shared memory size for different cache preferences for a device function.

CUPTI changes in CUDA 7.0

List of changes done as part of the CUDA Toolkit 7.0 release.

‣ CUPTI supports device-wide sampling of the program counter (PC). Program
counters along with the stall reasons from all active warps are sampled at a fixed
frequency in the round robin order. Activity record CUpti_ActivityPCSampling
enabled using activity kind CUPTI_ACTIVITY_KIND_PC_SAMPLING
outputs stall reason along with PC and other related information.
Enum CUpti_ActivityPCSamplingStallReason lists all the stall
reasons. Sampling period is configurable and can be tuned using API
cuptiActivityConfigurePCSampling. This feature is available on devices with
compute capability 5.2.

‣ Added new activity record CUpti_ActivityInstructionCorrelation which
can be used to dump source locator records for all the PCs of the function.

‣ All events and metrics for devices with compute capability 3.x and 5.0 can be
collected accurately in presence of multiple contexts on the GPU. In previous
releases only some events and metrics could be collected accurately when multiple
contexts were executing on the GPU.

‣ Unified memory profiling is enhanced by providing fine grain data transfers
to and from the GPU, coupled with more accurate timestamps with
each transfer. This information is provided through new activity record
CUpti_ActivityUnifiedMemoryCounter2, deprecating old record
CUpti_ActivityUnifiedMemoryCounter.

‣ MPS tracing and profiling support is extended on multi-gpu setups.
‣ Activity record CUpti_ActivityDevice for device information has been

deprecated and replaced by new activity record CUpti_ActivityDevice2. New
record adds device UUID which can be used to uniquely identify the device across
profiler runs.

‣ Activity record CUpti_ActivityKernel2 for kernel execution has been
deprecated and replaced by new activity record CUpti_ActivityKernel3. New
record gives information about Global Partitioned Cache Configuration requested
and executed. Partitioned global caching has an impact on occupancy calculation. If
it is ON, then a CTA can only use a half SM, and thus a half of the registers available
per SM. The new fields apply for devices with compute capability 5.2 and higher.
Note that this change was done in CUDA 6.5 release with support for compute
capabilty 5.2.

CUPTI changes in CUDA 6.5

List of changes done as part of the CUDA Toolkit 6.5 release.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 116

‣ Instruction classification is done for source-correlated Instruction
Execution activity CUpti_ActivityInstructionExecution. See
CUpti_ActivityInstructionClass for instruction classes.

‣ Two new device attributes are added to the activity CUpti_DeviceAttribute:

‣ CUPTI_DEVICE_ATTR_FLOP_SP_PER_CYCLE gives peak single precision flop
per cycle for the GPU.

‣ CUPTI_DEVICE_ATTR_FLOP_DP_PER_CYCLE gives peak double precision flop
per cycle for the GPU.

‣ Two new metric properties are added:

‣ CUPTI_METRIC_PROPERTY_FLOP_SP_PER_CYCLE gives peak single precision
flop per cycle for the GPU.

‣ CUPTI_METRIC_PROPERTY_FLOP_DP_PER_CYCLE gives peak double
precision flop per cycle for the GPU.

‣ Activity record CUpti_ActivityGlobalAccess for source level global
access information has been deprecated and replaced by new activity record
CUpti_ActivityGlobalAccess2. New record additionally gives information
needed to map SASS assembly instructions to CUDA C source code. And it also
provides ideal L2 transactions count based on the access pattern.

‣ Activity record CUpti_ActivityBranch for source level branch information has
been deprecated and replaced by new activity record CUpti_ActivityBranch2.
New record additionally gives information needed to map SASS assembly
instructions to CUDA C source code.

‣ Sample sass_source_map is added to demonstrate the mapping of SASS assembly
instructions to CUDA C source code.

‣ Default event collection mode is changed to Kernel
(CUPTI_EVENT_COLLECTION_MODE_KERNEL) from Continuous
(CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS). Also Continuous mode is
supported only on Tesla devices.

‣ Profiling results might be inconsistent when auto boost is enabled. Profiler tries to
disable auto boost by default, it might fail to do so in some conditions, but profiling
will continue. A new API cuptiGetAutoBoostState is added to query the auto
boost state of the device. This API returns error CUPTI_ERROR_NOT_SUPPORTED
on devices that don't support auto boost. Note that auto boost is supported only on
certain Tesla devices from the Kepler+ family.

‣ Activity record CUpti_ActivityKernel2 for kernel execution has been
deprecated and replaced by new activity record CUpti_ActivityKernel3. New
record additionally gives information about Global Partitioned Cache Configuration
requested and executed. The new fields apply for devices with 5.2 Compute
Capability.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 117

CUPTI changes in CUDA 6.0

List of changes done as part of the CUDA Toolkit 6.0 release.

‣ Two new CUPTI activity kinds have been introduced to enable two new types of
source-correlated data collection. The Instruction Execution kind collects
SASS-level instruction execution counts, divergence data, and predication data. The
Shared Access kind collects source correlated data indication inefficient shared
memory accesses.

‣ CUPTI provides support for CUDA applications using Unified Memory. A new
activity record reports Unified Memory activity such as transfers to and from a GPU
and the number of Unified Memory related page faults.

‣ CUPTI recognized and reports the special MPS context that is used by CUDA
applications running on a system with MPS enabled.

‣ The CUpti_ActivityContext activity record CUpti_ActivityContext
has been updated to introduce a new field into the structure in a backwards
compatible manner. The 32-bit computeApiKind field was replaced with two
16 bit fields, computeApiKind and defaultStreamId. Because all valid
computeApiKind values fit within 16 bits, and because all supported CUDA
platforms are little-endian, persisted context record data read with the new structure
will have the correct value for computeApiKind and have a value of zero for
defaultStreamId. The CUPTI client is responsible for versioning the persisted
context data to recognize when the defaultStreamId field is valid.

‣ To ensure that metric values are calculated as accurately as possible, a new metric
API is introduced. Function cuptiMetricGetRequiredEventGroupSets can be
used to get the groups of events that should be collected at the same time.

‣ Execution overheads introduced by CUPTI have been dramatically decreased.
‣ The new activity buffer API introduced in CUDA Toolkit 5.5 is required. The

legacy cuptiActivityEnqueueBuffer and cuptiActivityDequeueBuffer
functions have been removed.

CUPTI changes in CUDA 5.5

List of changes done as part of CUDA Toolkit 5.5 release.

‣ Applications that use CUDA Dynamic Parallelism can be profiled using CUPTI.
Device-side kernel launches are reported using a new activity kind.

‣ Device attributes such as power usage, clocks, thermals, etc. are reported via a new
activity kind.

‣ A new activity buffer API uses callbacks to request and return buffers
of activity records. The existing cuptiActivityEnqueueBuffer and
cuptiActivityDequeueBuffer functions are still supported but are deprecated
and will be removed in a future release.

‣ The Event API supports kernel replay so that any number of events can be collected
during a single run of the application.

Changelog

www.nvidia.com
CUPTI DA-05679-001 _v11.5 | 118

‣ A new metric API cuptiMetricGetValue2 allows metric values to be calculated
for any device, even if that device is not available on the system.

‣ CUDA peer-to-peer memory copies are reported explicitly via the activity API. In
previous releases these memory copies were only partially reported.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2021 NVIDIA Corporation and affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
www.sync.ro/).

www.nvidia.com

	Table of Contents
	List of Tables
	Overview
	What's New

	Usage
	1.1. CUPTI Compatibility and Requirements
	1.2. CUPTI Initialization
	1.3. CUPTI Activity API
	1.3.1. SASS Source Correlation
	1.3.2. PC Sampling
	1.3.3. NVLink
	1.3.4. OpenACC
	1.3.5. CUDA Graphs
	1.3.6. External Correlation
	1.3.7. Dynamic Attach and Detach

	1.4. CUPTI Callback API
	1.4.1. Driver and Runtime API Callbacks
	1.4.2. Resource Callbacks
	1.4.3. Synchronization Callbacks
	1.4.4. NVIDIA Tools Extension Callbacks

	1.5. CUPTI Event API
	1.5.1. Collecting Kernel Execution Events
	1.5.2. Sampling Events

	1.6. CUPTI Metric API
	1.6.1. Metrics Reference
	1.6.1.1. Metrics for Capability 3.x
	1.6.1.2. Metrics for Capability 5.x
	1.6.1.3. Metrics for Capability 6.x
	1.6.1.4. Metrics for Capability 7.0

	1.7. CUPTI Profiling API
	1.7.1. Multi Pass Collection
	1.7.2. Range Profiling
	1.7.2.1. Auto Range
	1.7.2.2. User Range

	1.7.3. CUPTI Profiler Definitions
	1.7.4. Differences from event and metric APIs

	1.8. Perfworks Metric API
	1.8.1. Derived metrics
	1.8.2. Raw Metrics
	1.8.3. Metrics Mapping Table
	1.8.4. Events Mapping Table

	1.9. Migration to the Profiling API
	1.10. CUPTI PC Sampling API
	1.10.1. Configuration Attributes
	1.10.2. Stall Reasons Mapping Table
	1.10.3. Data Structure Mapping Table
	1.10.4. Data flushing
	1.10.5. SASS Source Correlation
	1.10.6. API Usage
	1.10.7. Limitations

	1.11. CUPTI Checkpoint API
	1.11.1. Usage
	1.11.2. Restrictions
	1.11.3. Examples

	1.12. CUPTI overhead
	1.12.1. Tracing Overhead
	1.12.1.1. Execution overhead
	1.12.1.2. Memory overhead

	1.12.2. Profiling Overhead

	1.13. Multi Instance GPU
	1.14. NVIDIA Virtual GPU (vGPU)
	1.15. Samples

	Library Support
	2.1. OptiX

	Limitations
	Changelog

