
The Libgcrypt Reference Manual
Version 1.9.4

22 August 2021

Werner Koch (wk@gnupg.org)
Moritz Schulte (mo@g10code.com)

mailto:wk@gnupg.org
mailto:mo@g10code.com

This manual is for Libgcrypt version 1.9.4 and was last updated 22 August 2021. Libgcrypt
is GNU’s library of cryptographic building blocks.

Copyright c© 2000, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2011, 2012 Free Software
Foundation, Inc.
Copyright c© 2012, 2013, 2016, 2017 g10 Code GmbH

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
The text of the license can be found in the section entitled “GNU General Public
License”.

i

Short Contents

1 Introduction . 1
2 Preparation . 3

3 Generalities . 9
4 Handler Functions . 21
5 Symmetric cryptography . 25
6 Public Key cryptography . 35

7 Hashing . 51

8 Message Authentication Codes . 59
9 Key Derivation . 67

10 Random Numbers . 69
11 S-expressions . 71

12 MPI library . 77
13 Prime numbers . 87

14 Utilities . 89

15 Tools . 91
16 Configuration files and environment variables 93
17 Architecture . 95
A Description of the Self-Tests . 103

B Description of the FIPS Mode . 109

GNU Lesser General Public License . 115

GNU General Public License . 125

List of Figures and Tables . 131

Concept Index . 133

Function and Data Index . 135

iii

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 Overview . 1

2 Preparation . 3
2.1 Header . 3
2.2 Building sources . 3
2.3 Building sources using Automake . 4
2.4 Initializing the library . 4
2.5 Multi-Threading . 6
2.6 How to enable the FIPS mode . 7
2.7 How to disable hardware features . 7

3 Generalities . 9
3.1 Controlling the library . 9
3.2 Error Handling . 15

3.2.1 Error Values . 15
3.2.2 Error Sources . 17
3.2.3 Error Codes . 18
3.2.4 Error Strings . 20

4 Handler Functions . 21
4.1 Progress handler . 21
4.2 Allocation handler . 22
4.3 Error handler . 22
4.4 Logging handler . 23

5 Symmetric cryptography . 25
5.1 Available ciphers . 25
5.2 Available cipher modes . 27
5.3 Working with cipher handles . 28
5.4 General cipher functions . 32

6 Public Key cryptography . 35
6.1 Available algorithms . 35
6.2 Used S-expressions . 35

6.2.1 RSA key parameters . 35
6.2.2 DSA key parameters . 36
6.2.3 ECC key parameters . 36

6.3 Cryptographic Functions . 39

iv

6.4 Dedicated functions for elliptic curves. 43
6.5 General public-key related Functions . 44

7 Hashing . 51
7.1 Available hash algorithms . 51
7.2 Working with hash algorithms . 54

8 Message Authentication Codes 59
8.1 Available MAC algorithms . 59
8.2 Working with MAC algorithms . 63

9 Key Derivation . 67

10 Random Numbers . 69
10.1 Quality of random numbers . 69
10.2 Retrieving random numbers . 69

11 S-expressions . 71
11.1 Data types for S-expressions . 71
11.2 Working with S-expressions . 71

12 MPI library . 77
12.1 Data types . 77
12.2 Basic functions . 77
12.3 MPI formats . 78
12.4 Calculations . 79
12.5 Comparisons . 80
12.6 Bit manipulations . 81
12.7 EC functions . 81
12.8 Miscellaneous . 84

13 Prime numbers . 87
13.1 Generation . 87
13.2 Checking . 87

14 Utilities . 89
14.1 Memory allocation . 89
14.2 Context management . 89
14.3 Buffer description . 89
14.4 How to return Libgcrypt’s configuration. 90

15 Tools . 91
15.1 A HMAC-SHA-256 tool . 91

v

16 Configuration files and environment variables . . 93

17 Architecture . 95
17.1 Public-Key Architecture . 96
17.2 Symmetric Encryption Subsystem Architecture 97
17.3 Hashing and MACing Subsystem Architecture 97
17.4 Multi-Precision-Integer Subsystem Architecture 98
17.5 Prime-Number-Generator Subsystem Architecture 98
17.6 Random-Number Subsystem Architecture . 99

17.6.1 Description of the CSPRNG . 100
17.6.2 Description of the FIPS X9.31 PRNG 100

Appendix A Description of the Self-Tests 103
A.1 Power-Up Tests . 103

A.1.1 Symmetric Cipher Algorithm Power-Up Tests 103
A.1.2 Hash Algorithm Power-Up Tests . 103
A.1.3 MAC Algorithm Power-Up Tests . 104
A.1.4 Random Number Power-Up Test . 104
A.1.5 Public Key Algorithm Power-Up Tests 104
A.1.6 Integrity Power-Up Tests . 105
A.1.7 Critical Functions Power-Up Tests . 105

A.2 Conditional Tests . 105
A.2.1 Key-Pair Generation Tests . 105
A.2.2 Software Load Tests . 106
A.2.3 Manual Key Entry Tests . 106
A.2.4 Continuous RNG Tests . 106

A.3 Application Requested Tests . 106
A.3.1 Symmetric Cipher Algorithm Tests . 106
A.3.2 Hash Algorithm Tests . 106
A.3.3 MAC Algorithm Tests . 107

Appendix B Description of the FIPS Mode . . . 109
B.1 Restrictions in FIPS Mode . 109
B.2 FIPS Finite State Machine . 110
B.3 FIPS Miscellaneous Information . 114

GNU Lesser General Public License 115

GNU General Public License . 125

List of Figures and Tables . 131

Concept Index . 133

Function and Data Index . 135

1

1 Introduction

Libgcrypt is a library providing cryptographic building blocks.

1.1 Getting Started

This manual documents the Libgcrypt library application programming interface (API). All
functions and data types provided by the library are explained.

The reader is assumed to possess basic knowledge about applied cryptography.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features

Libgcrypt might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
Lesser General Public License (see [Library Copying], page 115). Note, that
some parts (which are in general not needed by applications) are subject to the
terms of the GNU General Public License (see [Copying], page 125); please see
the README file of the distribution for of list of these parts.

It encapsulates the low level cryptography
Libgcrypt provides a high level interface to cryptographic building blocks using
an extensible and flexible API.

1.3 Overview

The Libgcrypt library is fully thread-safe, where it makes sense to be thread-safe. Not
thread-safe are some cryptographic functions that modify a certain context stored in han-
dles. If the user really intents to use such functions from different threads on the same
handle, he has to take care of the serialization of such functions himself. If not described
otherwise, every function is thread-safe.

Libgcrypt depends on the library ‘libgpg-error’, which contains some common code used
by other GnuPG components.

3

2 Preparation

To use Libgcrypt, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file
gcrypt.h. You must include this in all source files using the library, either directly or
through some other header file, like this:

#include <gcrypt.h>

The name space of Libgcrypt is gcry_* for function and type names and GCRY* for other
symbols. In addition the same name prefixes with one prepended underscore are reserved
for internal use and should never be used by an application. Note that Libgcrypt uses
libgpg-error, which uses gpg_* as name space for function and type names and GPG_* for
other symbols, including all the error codes.

Certain parts of gcrypt.h may be excluded by defining these macros:

GCRYPT_NO_MPI_MACROS

Do not define the shorthand macros mpi_* for gcry_mpi_*.

GCRYPT_NO_DEPRECATED

Do not include definitions for deprecated features. This is useful to make sure
that no deprecated features are used.

2.2 Building sources

If you want to compile a source file including the ‘gcrypt.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the -I option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, Libgcrypt ships with a small helper program libgcrypt-config that
knows the path to the include file and other configuration options. The options that need
to be added to the compiler invocation at compile time are output by the --cflags option
to libgcrypt-config. The following example shows how it can be used at the command
line:

gcc -c foo.c ‘libgcrypt-config --cflags‘

Adding the output of ‘libgcrypt-config --cflags’ to the compiler’s command line
will ensure that the compiler can find the Libgcrypt header file.

A similar problem occurs when linking the program with the library. Again, the com-
piler has to find the library files. For this to work, the path to the library files has to
be added to the library search path (via the -L option). For this, the option --libs to
libgcrypt-config can be used. For convenience, this option also outputs all other op-
tions that are required to link the program with the Libgcrypt libraries (in particular, the

4 The Libgcrypt Reference Manual

‘-lgcrypt’ option). The example shows how to link foo.o with the Libgcrypt library to a
program foo.

gcc -o foo foo.o ‘libgcrypt-config --libs‘

Of course you can also combine both examples to a single command by specifying both
options to libgcrypt-config:

gcc -o foo foo.c ‘libgcrypt-config --cflags --libs‘

2.3 Building sources using Automake

It is much easier if you use GNU Automake instead of writing your own Makefiles. If you
do that, you do not have to worry about finding and invoking the libgcrypt-config script
at all. Libgcrypt provides an extension to Automake that does all the work for you.

[Macro]AM_PATH_LIBGCRYPT ([minimum-version], [action-if-found],
[action-if-not-found])

Check whether Libgcrypt (at least version minimum-version, if given) exists on the
host system. If it is found, execute action-if-found, otherwise do action-if-not-found,
if given.

Additionally, the function defines LIBGCRYPT_CFLAGS to the flags needed for compi-
lation of the program to find the gcrypt.h header file, and LIBGCRYPT_LIBS to the
linker flags needed to link the program to the Libgcrypt library. If the used helper
script does not match the target type you are building for a warning is printed and
the string libgcrypt is appended to the variable gpg_config_script_warn.

This macro searches for libgcrypt-config along the PATH. If you are
cross-compiling, it is useful to set the environment variable SYSROOT to the top
directory of your target. The macro will then first look for the helper program in the
bin directory below that top directory. An absolute directory name must be used for
SYSROOT. Finally, if the configure command line option --with-libgcrypt-prefix

is used, only its value is used for the top directory below which the helper script is
expected.

You can use the defined Autoconf variables like this in your Makefile.am:

AM_CPPFLAGS = $(LIBGCRYPT_CFLAGS)

LDADD = $(LIBGCRYPT_LIBS)

2.4 Initializing the library

Before the library can be used, it must initialize itself. This is achieved by invoking the
function gcry_check_version described below.

Also, it is often desirable to check that the version of Libgcrypt used is indeed one
which fits all requirements. Even with binary compatibility, new features may have been
introduced, but due to problem with the dynamic linker an old version may actually be
used. So you may want to check that the version is okay right after program startup.

[Function]const char * gcry_check_version (const char *req_version)
The function gcry_check_version initializes some subsystems used by Libgcrypt
and must be invoked before any other function in the library. See Section 2.5 [Multi-
Threading], page 6.

Chapter 2: Preparation 5

Furthermore, this function returns the version number of the library. It can also verify
that the version number is higher than a certain required version number req version,
if this value is not a null pointer.

Libgcrypt uses a concept known as secure memory, which is a region of memory set aside
for storing sensitive data. Because such memory is a scarce resource, it needs to be setup
in advanced to a fixed size. Further, most operating systems have special requirements on
how that secure memory can be used. For example, it might be required to install an ap-
plication as “setuid(root)” to allow allocating such memory. Libgcrypt requires a sequence
of initialization steps to make sure that this works correctly. The following examples show
the necessary steps.

If you don’t have a need for secure memory, for example if your application does not
use secret keys or other confidential data or it runs in a controlled environment where key
material floating around in memory is not a problem, you should initialize Libgcrypt this
way:

/* Version check should be the very first call because it

makes sure that important subsystems are initialized.

#define NEED_LIBGCRYPT_VERSION to the minimum required version. */

if (!gcry_check_version (NEED_LIBGCRYPT_VERSION))

{

fprintf (stderr, "libgcrypt is too old (need %s, have %s)\n",

NEED_LIBGCRYPT_VERSION, gcry_check_version (NULL));

exit (2);

}

/* Disable secure memory. */

gcry_control (GCRYCTL_DISABLE_SECMEM, 0);

/* ... If required, other initialization goes here. */

/* Tell Libgcrypt that initialization has completed. */

gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

If you have to protect your keys or other information in memory against being swapped
out to disk and to enable an automatic overwrite of used and freed memory, you need to
initialize Libgcrypt this way:

/* Version check should be the very first call because it

makes sure that important subsystems are initialized.

#define NEED_LIBGCRYPT_VERSION to the minimum required version. */

if (!gcry_check_version (NEED_LIBGCRYPT_VERSION))

{

fprintf (stderr, "libgcrypt is too old (need %s, have %s)\n",

NEED_LIBGCRYPT_VERSION, gcry_check_version (NULL));

exit (2);

}

6 The Libgcrypt Reference Manual

/* We don’t want to see any warnings, e.g. because we have not yet

parsed program options which might be used to suppress such

warnings. */

gcry_control (GCRYCTL_SUSPEND_SECMEM_WARN);

/* ... If required, other initialization goes here. Note that the

process might still be running with increased privileges and that

the secure memory has not been initialized. */

/* Allocate a pool of 16k secure memory. This makes the secure memory

available and also drops privileges where needed. Note that by

using functions like gcry_xmalloc_secure and gcry_mpi_snew Libgcrypt

may expand the secure memory pool with memory which lacks the

property of not being swapped out to disk. */

gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);

/* It is now okay to let Libgcrypt complain when there was/is

a problem with the secure memory. */

gcry_control (GCRYCTL_RESUME_SECMEM_WARN);

/* ... If required, other initialization goes here. */

/* Tell Libgcrypt that initialization has completed. */

gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

It is important that these initialization steps are not done by a library but by the actual
application. A library using Libgcrypt might want to check for finished initialization using:

if (!gcry_control (GCRYCTL_INITIALIZATION_FINISHED_P))

{

fputs ("libgcrypt has not been initialized\n", stderr);

abort ();

}

Instead of terminating the process, the library may instead print a warning and try to
initialize Libgcrypt itself. See also the section on multi-threading below for more pitfalls.

2.5 Multi-Threading

As mentioned earlier, the Libgcrypt library is thread-safe if you adhere to the following
requirements:

• If you use pthread and your applications forks and does not directly call exec (even
calling stdio functions), all kind of problems may occur. Future versions of Libgcrypt
will try to cleanup using pthread atfork but even that may lead to problems. This is
a common problem with almost all applications using pthread and fork.

• The function gcry_check_version must be called before any other function in the
library. To achieve this in multi-threaded programs, you must synchronize the memory

Chapter 2: Preparation 7

with respect to other threads that also want to use Libgcrypt. For this, it is sufficient
to call gcry_check_version before creating the other threads using Libgcrypt1.

• Just like the function gpg_strerror, the function gcry_strerror is not thread safe.
You have to use gpg_strerror_r instead.

2.6 How to enable the FIPS mode

Libgcrypt may be used in a FIPS 140-2 mode. Note, that this does not necessary mean
that Libcgrypt is an appoved FIPS 140-2 module. Check the NIST database at http://
csrc.nist.gov/groups/STM/cmvp/ to see what versions of Libgcrypt are approved.

Because FIPS 140 has certain restrictions on the use of cryptography which are not
always wanted, Libgcrypt needs to be put into FIPS mode explicitly. Three alternative
mechanisms are provided to switch Libgcrypt into this mode:

• If the file /proc/sys/crypto/fips_enabled exists and contains a numeric value other
than 0, Libgcrypt is put into FIPS mode at initialization time. Obviously this works
only on systems with a proc file system (i.e. GNU/Linux).

• If the file /etc/gcrypt/fips_enabled exists, Libgcrypt is put into FIPS mode at
initialization time. Note that this filename is hardwired and does not depend on any
configuration options.

• If the application requests FIPS mode using the control command GCRYCTL_FORCE_

FIPS_MODE. This must be done prior to any initialization (i.e. before gcry_check_

version).

In addition to the standard FIPS mode, Libgcrypt may also be put into an Enforced FIPS
mode by writing a non-zero value into the file /etc/gcrypt/fips_enabled or by using the
control command GCRYCTL_SET_ENFORCED_FIPS_FLAG before any other calls to libgcrypt.
The Enforced FIPS mode helps to detect applications which don’t fulfill all requirements
for using Libgcrypt in FIPS mode (see Appendix B [FIPS Mode], page 109).

Once Libgcrypt has been put into FIPS mode, it is not possible to switch back to standard
mode without terminating the process first. If the logging verbosity level of Libgcrypt has
been set to at least 2, the state transitions and the self-tests are logged.

2.7 How to disable hardware features

Libgcrypt makes use of certain hardware features. If the use of a feature is not desired it
may be either be disabled by a program or globally using a configuration file. The currently
supported features are

1 At least this is true for POSIX threads, as pthread_create is a function that synchronizes memory with
respects to other threads. There are many functions which have this property, a complete list can be
found in POSIX, IEEE Std 1003.1-2003, Base Definitions, Issue 6, in the definition of the term “Memory
Synchronization”. For other thread packages, more relaxed or more strict rules may apply.

http://csrc.nist.gov/groups/STM/cmvp/
http://csrc.nist.gov/groups/STM/cmvp/

8 The Libgcrypt Reference Manual

padlock-rng

padlock-aes

padlock-sha

padlock-mmul

intel-cpu

intel-fast-shld

intel-bmi2

intel-ssse3

intel-sse4.1

intel-pclmul

intel-aesni

intel-rdrand

intel-avx

intel-avx2

intel-fast-vpgather

intel-rdtsc

intel-shaext

intel-vaes-vpclmul

arm-neon

arm-aes

arm-sha1

arm-sha2

arm-pmull

ppc-vcrypto

ppc-arch_3_00

ppc-arch_2_07

s390x-msa

s390x-msa-4

s390x-msa-8

s390x-vx

To disable a feature for all processes using Libgcrypt 1.6 or newer, create the file
/etc/gcrypt/hwf.deny and put each feature not to be used on a single line. Empty lines,
white space, and lines prefixed with a hash mark are ignored. The file should be world
readable.

To disable a feature specifically for a program that program must tell it Libgcrypt before
before calling gcry_check_version. Example:2

gcry_control (GCRYCTL_DISABLE_HWF, "intel-rdrand", NULL);

To print the list of active features you may use this command:

mpicalc --print-config | grep ^hwflist: | tr : ’\n’ | tail -n +2

2 NB. Libgcrypt uses the RDRAND feature only as one source of entropy. A CPU with a broken RDRAND
will thus not compromise of the random number generator

9

3 Generalities

3.1 Controlling the library

[Function]gcry_error_t gcry_control (enum gcry ctl cmds cmd, ...)
This function can be used to influence the general behavior of Libgcrypt in several
ways. Depending on cmd, more arguments can or have to be provided.

GCRYCTL_ENABLE_M_GUARD; Arguments: none

This command enables the built-in memory guard. It must not be used
to activate the memory guard after the memory management has already
been used; therefore it can ONLY be used before gcry_check_version.
Note that the memory guard is NOT used when the user of the library
has set his own memory management callbacks.

GCRYCTL_ENABLE_QUICK_RANDOM; Arguments: none

This command inhibits the use the very secure random quality level
(GCRY_VERY_STRONG_RANDOM) and degrades all request down to GCRY_

STRONG_RANDOM. In general this is not recommended. However, for some
applications the extra quality random Libgcrypt tries to create is not jus-
tified and this option may help to get better performance. Please check
with a crypto expert whether this option can be used for your application.

This option can only be used at initialization time.

GCRYCTL_DUMP_RANDOM_STATS; Arguments: none

This command dumps random number generator related statistics to the
library’s logging stream.

GCRYCTL_DUMP_MEMORY_STATS; Arguments: none

This command dumps memory management related statistics to the li-
brary’s logging stream.

GCRYCTL_DUMP_SECMEM_STATS; Arguments: none

This command dumps secure memory management related statistics to
the library’s logging stream.

GCRYCTL_DROP_PRIVS; Arguments: none

This command disables the use of secure memory and drops the privileges
of the current process. This command has not much use; the suggested
way to disable secure memory is to use GCRYCTL_DISABLE_SECMEM right
after initialization.

GCRYCTL_DISABLE_SECMEM; Arguments: none

This command disables the use of secure memory. If this command is
used in FIPS mode, FIPS mode will be disabled and the function gcry_

fips_mode_active returns false. However, in Enforced FIPS mode this
command has no effect at all.

Many applications do not require secure memory, so they should disable
it right away. This command should be executed right after gcry_check_
version.

10 The Libgcrypt Reference Manual

GCRYCTL_DISABLE_LOCKED_SECMEM; Arguments: none

This command disables the use of the mlock call for secure memory.
Disabling the use of mlock may for example be done if an encrypted swap
space is in use. This command should be executed right after gcry_

check_version. Note that by using functions like gcry xmalloc secure
and gcry mpi snew Libgcrypt may expand the secure memory pool with
memory which lacks the property of not being swapped out to disk (but
will still be zeroed out on free).

GCRYCTL_DISABLE_PRIV_DROP; Arguments: none

This command sets a global flag to tell the secure memory subsystem
that it shall not drop privileges after secure memory has been allocated.
This command is commonly used right after gcry_check_version but
may also be used right away at program startup. It won’t have an effect
after the secure memory pool has been initialized. WARNING: A process
running setuid(root) is a severe security risk. Processes making use of
Libgcrypt or other complex code should drop these extra privileges as
soon as possible. If this command has been used the caller is responsible
for dropping the privileges.

GCRYCTL_INIT_SECMEM; Arguments: unsigned int nbytes

This command is used to allocate a pool of secure memory and thus
enabling the use of secure memory. It also drops all extra privileges the
process has (i.e. if it is run as setuid (root)). If the argument nbytes
is 0, secure memory will be disabled. The minimum amount of secure
memory allocated is currently 16384 bytes; you may thus use a value of
1 to request that default size.

GCRYCTL_AUTO_EXPAND_SECMEM; Arguments: unsigned int chunksize

This command enables on-the-fly expanding of the secure memory area.
Note that by using functions like gcry_xmalloc_secure and gcry_mpi_

snew will do this auto expanding anyway. The argument to this option is
the suggested size for new secure memory areas. A larger size improves
performance of all memory allocation and releasing functions. The given
chunksize is rounded up to the next 32KiB. The drawback of auto ex-
panding is that memory might be swapped out to disk; this can be fixed
by configuring the system to use an encrypted swap space.

GCRYCTL_TERM_SECMEM; Arguments: none

This command zeroises the secure memory and destroys the handler.
The secure memory pool may not be used anymore after running this
command. If the secure memory pool as already been destroyed, this
command has no effect. Applications might want to run this command
from their exit handler to make sure that the secure memory gets properly
destroyed. This command is not necessarily thread-safe but that should
not be needed in cleanup code. It may be called from a signal handler.

GCRYCTL_DISABLE_SECMEM_WARN; Arguments: none

Disable warning messages about problems with the secure memory sub-
system. This command should be run right after gcry_check_version.

Chapter 3: Generalities 11

GCRYCTL_SUSPEND_SECMEM_WARN; Arguments: none

Postpone warning messages from the secure memory subsystem. See [the
initialization example], page 5, on how to use it.

GCRYCTL_RESUME_SECMEM_WARN; Arguments: none

Resume warning messages from the secure memory subsystem. See [the
initialization example], page 6, on how to use it.

GCRYCTL_USE_SECURE_RNDPOOL; Arguments: none

This command tells the PRNG to store random numbers in secure mem-
ory. This command should be run right after gcry_check_version and
not later than the command GCRYCTL INIT SECMEM. Note that in
FIPS mode the secure memory is always used.

GCRYCTL_SET_RANDOM_SEED_FILE; Arguments: const char *filename

This command specifies the file, which is to be used as seed file for the
PRNG. If the seed file is registered prior to initialization of the PRNG,
the seed file’s content (if it exists and seems to be valid) is fed into the
PRNG pool. After the seed file has been registered, the PRNG can be
signalled to write out the PRNG pool’s content into the seed file with the
following command.

GCRYCTL_UPDATE_RANDOM_SEED_FILE; Arguments: none

Write out the PRNG pool’s content into the registered seed file.

Multiple instances of the applications sharing the same random seed file
can be started in parallel, in which case they will read out the same
pool and then race for updating it (the last update overwrites earlier
updates). They will differentiate only by the weak entropy that is added
in read seed file based on the PID and clock, and up to 16 bytes of
weak random non-blockingly. The consequence is that the output of
these different instances is correlated to some extent. In a perfect attack
scenario, the attacker can control (or at least guess) the PID and clock
of the application, and drain the system’s entropy pool to reduce the
"up to 16 bytes" above to 0. Then the dependencies of the initial states
of the pools are completely known. Note that this is not an issue if
random of GCRY_VERY_STRONG_RANDOM quality is requested as in this case
enough extra entropy gets mixed. It is also not an issue when using Linux
(rndlinux driver), because this one guarantees to read full 16 bytes from
/dev/urandom and thus there is no way for an attacker without kernel
access to control these 16 bytes.

GCRYCTL_CLOSE_RANDOM_DEVICE; Arguments: none

Try to close the random device. If on Unix system you call fork(), the
child process does no call exec(), and you do not intend to use Libgcrypt in
the child, it might be useful to use this control code to close the inherited
file descriptors of the random device. If Libgcrypt is later used again by
the child, the device will be re-opened. On non-Unix systems this control
code is ignored.

12 The Libgcrypt Reference Manual

GCRYCTL_SET_VERBOSITY; Arguments: int level

This command sets the verbosity of the logging. A level of 0 disables
all extra logging whereas positive numbers enable more verbose logging.
The level may be changed at any time but be aware that no memory
synchronization is done so the effect of this command might not immedi-
ately show up in other threads. This command may even be used prior
to gcry_check_version.

GCRYCTL_SET_DEBUG_FLAGS; Arguments: unsigned int flags

Set the debug flag bits as given by the argument. Be aware that no
memory synchronization is done so the effect of this command might
not immediately show up in other threads. The debug flags are not
considered part of the API and thus may change without notice. As
of now bit 0 enables debugging of cipher functions and bit 1 debugging
of multi-precision-integers. This command may even be used prior to
gcry_check_version.

GCRYCTL_CLEAR_DEBUG_FLAGS; Arguments: unsigned int flags

Set the debug flag bits as given by the argument. Be aware that that no
memory synchronization is done so the effect of this command might not
immediately show up in other threads. This command may even be used
prior to gcry_check_version.

GCRYCTL_DISABLE_INTERNAL_LOCKING; Arguments: none

This command does nothing. It exists only for backward compatibility.

GCRYCTL_ANY_INITIALIZATION_P; Arguments: none

This command returns true if the library has been basically initialized.
Such a basic initialization happens implicitly with many commands to get
certain internal subsystems running. The common and suggested way to
do this basic initialization is by calling gcry check version.

GCRYCTL_INITIALIZATION_FINISHED; Arguments: none

This command tells the library that the application has finished the ini-
tialization.

GCRYCTL_INITIALIZATION_FINISHED_P; Arguments: none

This command returns true if the command
GCRYCTL INITIALIZATION FINISHED has already been run.

GCRYCTL_SET_THREAD_CBS; Arguments: struct ath_ops *ath_ops

This command is obsolete since version 1.6.

GCRYCTL_FAST_POLL; Arguments: none

Run a fast random poll.

GCRYCTL_SET_RNDEGD_SOCKET; Arguments: const char *filename

This command may be used to override the default name of the EGD
socket to connect to. It may be used only during initialization as it is
not thread safe. Changing the socket name again is not supported. The
function may return an error if the given filename is too long for a local
socket name.

Chapter 3: Generalities 13

EGD is an alternative random gatherer, used only on systems lacking a
proper random device.

GCRYCTL_PRINT_CONFIG; Arguments: FILE *stream

This command dumps information pertaining to the configuration of the
library to the given stream. If NULL is given for stream, the log system
is used. This command may be used before the initialization has been
finished but not before a gcry_check_version. Note that the macro
estream_t can be used instead of gpgrt_stream_t.

GCRYCTL_OPERATIONAL_P; Arguments: none

This command returns true if the library is in an operational state. This
information makes only sense in FIPS mode. In contrast to other func-
tions, this is a pure test function and won’t put the library into FIPS
mode or change the internal state. This command may be used before
the initialization has been finished but not before a gcry_check_version.

GCRYCTL_FIPS_MODE_P; Arguments: none

This command returns true if the library is in FIPS mode. Note, that
this is no indication about the current state of the library. This command
may be used before the initialization has been finished but not before
a gcry_check_version. An application may use this command or the
convenience macro below to check whether FIPS mode is actually active.

[Function]int gcry_fips_mode_active (void)
Returns true if the FIPS mode is active. Note that this is imple-
mented as a macro.

GCRYCTL_FORCE_FIPS_MODE; Arguments: none

Running this command puts the library into FIPS mode. If the library is
already in FIPS mode, a self-test is triggered and thus the library will be
put into operational state. This command may be used before a call to
gcry_check_version and that is actually the recommended way to let an
application switch the library into FIPS mode. Note that Libgcrypt will
reject an attempt to switch to fips mode during or after the initialization.

GCRYCTL_SET_ENFORCED_FIPS_FLAG; Arguments: none

Running this command sets the internal flag that puts the library into
the enforced FIPS mode during the FIPS mode initialization. This com-
mand does not affect the library if the library is not put into the FIPS
mode and it must be used before any other libgcrypt library calls that
initialize the library such as gcry_check_version. Note that Libgcrypt
will reject an attempt to switch to the enforced fips mode during or after
the initialization.

GCRYCTL_SET_PREFERRED_RNG_TYPE; Arguments: int

These are advisory commands to select a certain random number gen-
erator. They are only advisory because libraries may not know what
an application actually wants or vice versa. Thus Libgcrypt employs a
priority check to select the actually used RNG. If an applications se-
lects a lower priority RNG but a library requests a higher priority RNG

14 The Libgcrypt Reference Manual

Libgcrypt will switch to the higher priority RNG. Applications and li-
braries should use these control codes before gcry_check_version. The
available generators are:

GCRY_RNG_TYPE_STANDARD

A conservative standard generator based on the “Continu-
ously Seeded Pseudo Random Number Generator” designed
by Peter Gutmann.

GCRY_RNG_TYPE_FIPS

A deterministic random number generator conforming to he
document “NIST-Recommended Random Number Genera-
tor Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key
Triple DES and AES Algorithms” (2005-01-31). This imple-
mentation uses the AES variant.

GCRY_RNG_TYPE_SYSTEM

A wrapper around the system’s native RNG. On Unix sys-
tem these are usually the /dev/random and /dev/urandom
devices.

The default is GCRY_RNG_TYPE_STANDARD unless FIPS mode as been en-
abled; in which case GCRY_RNG_TYPE_FIPS is used and locked against
further changes.

GCRYCTL_GET_CURRENT_RNG_TYPE; Arguments: int *

This command stores the type of the currently used RNG as an integer
value at the provided address.

GCRYCTL_SELFTEST; Arguments: none

This may be used at anytime to have the library run all implemented
self-tests. It works in standard and in FIPS mode. Returns 0 on success
or an error code on failure.

GCRYCTL_DISABLE_HWF; Arguments: const char *name

Libgcrypt detects certain features of the CPU at startup time. For per-
formance tests it is sometimes required not to use such a feature. This
option may be used to disable a certain feature; i.e. Libgcrypt behaves
as if this feature has not been detected. This call can be used several
times to disable a set of features, or features may be given as a colon or
comma delimited string. The special feature "all" can be used to disable
all available features.

Note that the detection code might be run if the feature has been disabled.
This command must be used at initialization time; i.e. before calling
gcry_check_version.

GCRYCTL_REINIT_SYSCALL_CLAMP; Arguments: none

Libgcrypt wraps blocking system calls with two functions calls (“system
call clamp”) to give user land threading libraries a hook for re-scheduling.
This works by reading the system call clamp from Libgpg-error at initial-
ization time. However sometimes Libgcrypt needs to be initialized before

Chapter 3: Generalities 15

the user land threading systems and at that point the system call clamp
has not been registered with Libgpg-error and in turn Libgcrypt would
not use them. The control code can be used to tell Libgcrypt that a
system call clamp has now been registered with Libgpg-error and advise
Libgcrypt to read the clamp again. Obviously this control code may only
be used before a second thread is started in a process.

3.2 Error Handling

Many functions in Libgcrypt can return an error if they fail. For this reason, the application
should always catch the error condition and take appropriate measures, for example by
releasing the resources and passing the error up to the caller, or by displaying a descriptive
message to the user and cancelling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly. For example, if you try to decrypt a tempered
message, the decryption will fail. Another error value actually means that the end of a data
buffer or list has been reached. The following descriptions explain for many error codes
what they mean usually. Some error values have specific meanings if returned by a certain
functions. Such cases are described in the documentation of those functions.

Libgcrypt uses the libgpg-error library. This allows to share the error codes with
other components of the GnuPG system, and to pass error values transparently from the
crypto engine, or some helper application of the crypto engine, to the user. This way no
information is lost. As a consequence, Libgcrypt does not use its own identifiers for error
codes, but uses those provided by libgpg-error. They usually start with GPG_ERR_.

However, Libgcrypt does provide aliases for the functions defined in libgpg-error, which
might be preferred for name space consistency.

Most functions in Libgcrypt return an error code in the case of failure. For this reason,
the application should always catch the error condition and take appropriate measures, for
example by releasing the resources and passing the error up to the caller, or by displaying
a descriptive message to the user and canceling the operation.

Some error values do not indicate a system error or an error in the operation, but the
result of an operation that failed properly.

GnuPG components, including Libgcrypt, use an extra library named libgpg-error to
provide a common error handling scheme. For more information on libgpg-error, see the
according manual.

3.2.1 Error Values

[Data type]gcry_err_code_t
The gcry_err_code_t type is an alias for the libgpg-error type gpg_err_code_t.
The error code indicates the type of an error, or the reason why an operation failed.

A list of important error codes can be found in the next section.

[Data type]gcry_err_source_t
The gcry_err_source_t type is an alias for the libgpg-error type gpg_err_

source_t. The error source has not a precisely defined meaning. Sometimes it is

16 The Libgcrypt Reference Manual

the place where the error happened, sometimes it is the place where an error was
encoded into an error value. Usually the error source will give an indication to where
to look for the problem. This is not always true, but it is attempted to achieve this
goal.

A list of important error sources can be found in the next section.

[Data type]gcry_error_t
The gcry_error_t type is an alias for the libgpg-error type gpg_error_t. An
error value like this has always two components, an error code and an error source.
Both together form the error value.

Thus, the error value can not be directly compared against an error code, but the
accessor functions described below must be used. However, it is guaranteed that only
0 is used to indicate success (GPG_ERR_NO_ERROR), and that in this case all other parts
of the error value are set to 0, too.

Note that in Libgcrypt, the error source is used purely for diagnostic purposes. Only
the error code should be checked to test for a certain outcome of a function. The
manual only documents the error code part of an error value. The error source is left
unspecified and might be anything.

[Function]gcry_err_code_t gcry_err_code (gcry error t err)
The static inline function gcry_err_code returns the gcry_err_code_t component
of the error value err. This function must be used to extract the error code from an
error value in order to compare it with the GPG_ERR_* error code macros.

[Function]gcry_err_source_t gcry_err_source (gcry error t err)
The static inline function gcry_err_source returns the gcry_err_source_t compo-
nent of the error value err. This function must be used to extract the error source
from an error value in order to compare it with the GPG_ERR_SOURCE_* error source
macros.

[Function]gcry_error_t gcry_err_make (gcry err source t source,
gcry err code t code)

The static inline function gcry_err_make returns the error value consisting of the
error source source and the error code code.

This function can be used in callback functions to construct an error value to return
it to the library.

[Function]gcry_error_t gcry_error (gcry err code t code)
The static inline function gcry_error returns the error value consisting of the default
error source and the error code code.

For GCRY applications, the default error source is GPG_ERR_SOURCE_USER_1. You can
define GCRY_ERR_SOURCE_DEFAULT before including gcrypt.h to change this default.

This function can be used in callback functions to construct an error value to return
it to the library.

The libgpg-error library provides error codes for all system error numbers it knows
about. If err is an unknown error number, the error code GPG_ERR_UNKNOWN_ERRNO is used.
The following functions can be used to construct error values from system errno numbers.

Chapter 3: Generalities 17

[Function]gcry_error_t gcry_err_make_from_errno
(gcry err source t source, int err)

The function gcry_err_make_from_errno is like gcry_err_make, but it takes a sys-
tem error like errno instead of a gcry_err_code_t error code.

[Function]gcry_error_t gcry_error_from_errno (int err)
The function gcry_error_from_errno is like gcry_error, but it takes a system error
like errno instead of a gcry_err_code_t error code.

Sometimes you might want to map system error numbers to error codes directly, or map
an error code representing a system error back to the system error number. The following
functions can be used to do that.

[Function]gcry_err_code_t gcry_err_code_from_errno (int err)
The function gcry_err_code_from_errno returns the error code for the system error
err. If err is not a known system error, the function returns GPG_ERR_UNKNOWN_ERRNO.

[Function]int gcry_err_code_to_errno (gcry err code t err)
The function gcry_err_code_to_errno returns the system error for the error code
err. If err is not an error code representing a system error, or if this system error is
not defined on this system, the function returns 0.

3.2.2 Error Sources

The library libgpg-error defines an error source for every component of the GnuPG
system. The error source part of an error value is not well defined. As such it is mainly
useful to improve the diagnostic error message for the user.

If the error code part of an error value is 0, the whole error value will be 0. In this case
the error source part is of course GPG_ERR_SOURCE_UNKNOWN.

The list of error sources that might occur in applications using Libgcrypt is:

GPG_ERR_SOURCE_UNKNOWN

The error source is not known. The value of this error source is 0.

GPG_ERR_SOURCE_GPGME

The error source is GPGME itself.

GPG_ERR_SOURCE_GPG

The error source is GnuPG, which is the crypto engine used for the OpenPGP
protocol.

GPG_ERR_SOURCE_GPGSM

The error source is GPGSM, which is the crypto engine used for the OpenPGP
protocol.

GPG_ERR_SOURCE_GCRYPT

The error source is libgcrypt, which is used by crypto engines to perform
cryptographic operations.

GPG_ERR_SOURCE_GPGAGENT

The error source is gpg-agent, which is used by crypto engines to perform
operations with the secret key.

18 The Libgcrypt Reference Manual

GPG_ERR_SOURCE_PINENTRY

The error source is pinentry, which is used by gpg-agent to query the
passphrase to unlock a secret key.

GPG_ERR_SOURCE_SCD

The error source is the SmartCard Daemon, which is used by gpg-agent to
delegate operations with the secret key to a SmartCard.

GPG_ERR_SOURCE_KEYBOX

The error source is libkbx, a library used by the crypto engines to manage
local keyrings.

GPG_ERR_SOURCE_USER_1

GPG_ERR_SOURCE_USER_2

GPG_ERR_SOURCE_USER_3

GPG_ERR_SOURCE_USER_4

These error sources are not used by any GnuPG component and can be used by
other software. For example, applications using Libgcrypt can use them to mark
error values coming from callback handlers. Thus GPG_ERR_SOURCE_USER_1 is
the default for errors created with gcry_error and gcry_error_from_errno,
unless you define GCRY_ERR_SOURCE_DEFAULT before including gcrypt.h.

3.2.3 Error Codes

The library libgpg-error defines many error values. The following list includes the most
important error codes.

GPG_ERR_EOF

This value indicates the end of a list, buffer or file.

GPG_ERR_NO_ERROR

This value indicates success. The value of this error code is 0. Also, it is
guaranteed that an error value made from the error code 0 will be 0 itself (as a
whole). This means that the error source information is lost for this error code,
however, as this error code indicates that no error occurred, this is generally
not a problem.

GPG_ERR_GENERAL

This value means that something went wrong, but either there is not enough
information about the problem to return a more useful error value, or there is
no separate error value for this type of problem.

GPG_ERR_ENOMEM

This value means that an out-of-memory condition occurred.

GPG_ERR_E...

System errors are mapped to GPG ERR EFOO where FOO is the symbol for
the system error.

GPG_ERR_INV_VALUE

This value means that some user provided data was out of range.

GPG_ERR_UNUSABLE_PUBKEY

This value means that some recipients for a message were invalid.

Chapter 3: Generalities 19

GPG_ERR_UNUSABLE_SECKEY

This value means that some signers were invalid.

GPG_ERR_NO_DATA

This value means that data was expected where no data was found.

GPG_ERR_CONFLICT

This value means that a conflict of some sort occurred.

GPG_ERR_NOT_IMPLEMENTED

This value indicates that the specific function (or operation) is not implemented.
This error should never happen. It can only occur if you use certain values or
configuration options which do not work, but for which we think that they
should work at some later time.

GPG_ERR_DECRYPT_FAILED

This value indicates that a decryption operation was unsuccessful.

GPG_ERR_WRONG_KEY_USAGE

This value indicates that a key is not used appropriately.

GPG_ERR_NO_SECKEY

This value indicates that no secret key for the user ID is available.

GPG_ERR_UNSUPPORTED_ALGORITHM

This value means a verification failed because the cryptographic algorithm is
not supported by the crypto backend.

GPG_ERR_BAD_SIGNATURE

This value means a verification failed because the signature is bad.

GPG_ERR_NO_PUBKEY

This value means a verification failed because the public key is not available.

GPG_ERR_NOT_OPERATIONAL

This value means that the library is not yet in state which allows to use this
function. This error code is in particular returned if Libgcrypt is operated in
FIPS mode and the internal state of the library does not yet or not anymore
allow the use of a service.

This error code is only available with newer libgpg-error versions, thus you
might see “invalid error code” when passing this to gpg_strerror. The numeric
value of this error code is 176.

GPG_ERR_USER_1

GPG_ERR_USER_2

...

GPG_ERR_USER_16

These error codes are not used by any GnuPG component and can be freely
used by other software. Applications using Libgcrypt might use them to mark
specific errors returned by callback handlers if no suitable error codes (including
the system errors) for these errors exist already.

20 The Libgcrypt Reference Manual

3.2.4 Error Strings

[Function]const char * gcry_strerror (gcry error t err)
The function gcry_strerror returns a pointer to a statically allocated string con-
taining a description of the error code contained in the error value err. This string
can be used to output a diagnostic message to the user.

[Function]const char * gcry_strsource (gcry error t err)
The function gcry_strsource returns a pointer to a statically allocated string con-
taining a description of the error source contained in the error value err. This string
can be used to output a diagnostic message to the user.

The following example illustrates the use of the functions described above:

{

gcry_cipher_hd_t handle;

gcry_error_t err = 0;

err = gcry_cipher_open (&handle, GCRY_CIPHER_AES,

GCRY_CIPHER_MODE_CBC, 0);

if (err)

{

fprintf (stderr, "Failure: %s/%s\n",

gcry_strsource (err),

gcry_strerror (err));

}

}

21

4 Handler Functions

Libgcrypt makes it possible to install so called ‘handler functions’, which get called by
Libgcrypt in case of certain events.

4.1 Progress handler

It is often useful to retrieve some feedback while long running operations are performed.

[Data type]gcry_handler_progress_t
Progress handler functions have to be of the type gcry_handler_progress_t, which
is defined as:

void (*gcry_handler_progress_t) (void *, const char *, int, int, int)

The following function may be used to register a handler function for this purpose.

[Function]void gcry_set_progress_handler (gcry handler progress t cb,
void *cb_data)

This function installs cb as the ‘Progress handler’ function. It may be used only
during initialization. cb must be defined as follows:

void

my_progress_handler (void *cb_data, const char *what,

int printchar, int current, int total)

{

/* Do something. */

}

A description of the arguments of the progress handler function follows.

cb data The argument provided in the call to gcry_set_progress_handler.

what A string identifying the type of the progress output. The following values
for what are defined:

need_entropy

Not enough entropy is available. total holds the number of
required bytes.

wait_dev_random

Waiting to re-open a random device. total gives the number
of seconds until the next try.

primegen Values for printchar:

\n Prime generated.

! Need to refresh the pool of prime numbers.

<, > Number of bits adjusted.

^ Searching for a generator.

. Fermat test on 10 candidates failed.

: Restart with a new random value.

+ Rabin Miller test passed.

22 The Libgcrypt Reference Manual

4.2 Allocation handler

It is possible to make Libgcrypt use special memory allocation functions instead of the
built-in ones.

Memory allocation functions are of the following types:

[Data type]gcry_handler_alloc_t
This type is defined as: void *(*gcry_handler_alloc_t) (size_t n).

[Data type]gcry_handler_secure_check_t
This type is defined as: int *(*gcry_handler_secure_check_t) (const void *).

[Data type]gcry_handler_realloc_t
This type is defined as: void *(*gcry_handler_realloc_t) (void *p, size_t n).

[Data type]gcry_handler_free_t
This type is defined as: void *(*gcry_handler_free_t) (void *).

Special memory allocation functions can be installed with the following function:

[Function]void gcry_set_allocation_handler (gcry handler alloc t
func_alloc, gcry handler alloc t func_alloc_secure,
gcry handler secure check t func_secure_check, gcry handler realloc t
func_realloc, gcry handler free t func_free)

Install the provided functions and use them instead of the built-in functions for doing
memory allocation. Using this function is in general not recommended because the
standard Libgcrypt allocation functions are guaranteed to zeroize memory if needed.

This function may be used only during initialization and may not be used in fips
mode.

4.3 Error handler

The following functions may be used to register handler functions that are called by
Libgcrypt in case certain error conditions occur. They may and should be registered prior
to calling gcry_check_version.

[Data type]gcry_handler_no_mem_t
This type is defined as: int (*gcry_handler_no_mem_t) (void *, size_t,

unsigned int)

[Function]void gcry_set_outofcore_handler (gcry handler no mem t
func_no_mem, void *cb_data)

This function registers func no mem as ‘out-of-core handler’, which means that it will
be called in the case of not having enough memory available. The handler is called
with 3 arguments: The first one is the pointer cb data as set with this function, the
second is the requested memory size and the last being a flag. If bit 0 of the flag is set,
secure memory has been requested. The handler should either return true to indicate
that Libgcrypt should try again allocating memory or return false to let Libgcrypt
use its default fatal error handler.

Chapter 4: Handler Functions 23

[Data type]gcry_handler_error_t
This type is defined as: void (*gcry_handler_error_t) (void *, int, const char

*)

[Function]void gcry_set_fatalerror_handler (gcry handler error t
func_error, void *cb_data)

This function registers func error as ‘error handler’, which means that it will be called
in error conditions.

4.4 Logging handler

[Data type]gcry_handler_log_t
This type is defined as: void (*gcry_handler_log_t) (void *, int, const char

*, va_list)

[Function]void gcry_set_log_handler (gcry handler log t func_log, void
*cb_data)

This function registers func log as ‘logging handler’, which means that it will be
called in case Libgcrypt wants to log a message. This function may and should be
used prior to calling gcry_check_version.

25

5 Symmetric cryptography

The cipher functions are used for symmetrical cryptography, i.e. cryptography using a
shared key. The programming model follows an open/process/close paradigm and is in that
similar to other building blocks provided by Libgcrypt.

5.1 Available ciphers

GCRY_CIPHER_NONE

This is not a real algorithm but used by some functions as error return. The
value always evaluates to false.

GCRY_CIPHER_IDEA

This is the IDEA algorithm.

GCRY_CIPHER_3DES

Triple-DES with 3 Keys as EDE. The key size of this algorithm is 168 bits but
you have to pass 192 bits because the most significant bits of each byte are
ignored.

GCRY_CIPHER_CAST5

CAST128-5 block cipher algorithm. The key size is 128 bits.

GCRY_CIPHER_BLOWFISH

The blowfish algorithm. The supported key sizes are 8 to 576 bits in 8 bit
increments.

GCRY_CIPHER_SAFER_SK128

Reserved and not currently implemented.

GCRY_CIPHER_DES_SK

Reserved and not currently implemented.

GCRY_CIPHER_AES

GCRY_CIPHER_AES128

GCRY_CIPHER_RIJNDAEL

GCRY_CIPHER_RIJNDAEL128

AES (Rijndael) with a 128 bit key.

GCRY_CIPHER_AES192

GCRY_CIPHER_RIJNDAEL192

AES (Rijndael) with a 192 bit key.

GCRY_CIPHER_AES256

GCRY_CIPHER_RIJNDAEL256

AES (Rijndael) with a 256 bit key.

GCRY_CIPHER_TWOFISH

The Twofish algorithm with a 256 bit key.

GCRY_CIPHER_TWOFISH128

The Twofish algorithm with a 128 bit key.

26 The Libgcrypt Reference Manual

GCRY_CIPHER_ARCFOUR

An algorithm which is 100% compatible with RSA Inc.’s RC4 algorithm. Note
that this is a stream cipher and must be used very carefully to avoid a couple
of weaknesses.

GCRY_CIPHER_DES

Standard DES with a 56 bit key. You need to pass 64 bit but the high bits of
each byte are ignored. Note, that this is a weak algorithm which can be broken
in reasonable time using a brute force approach.

GCRY_CIPHER_SERPENT128

GCRY_CIPHER_SERPENT192

GCRY_CIPHER_SERPENT256

The Serpent cipher from the AES contest.

GCRY_CIPHER_RFC2268_40

GCRY_CIPHER_RFC2268_128

Ron’s Cipher 2 in the 40 and 128 bit variants.

GCRY_CIPHER_SEED

A 128 bit cipher as described by RFC4269.

GCRY_CIPHER_CAMELLIA128

GCRY_CIPHER_CAMELLIA192

GCRY_CIPHER_CAMELLIA256

The Camellia cipher by NTT. See http://info.isl.ntt.co.jp/crypt/eng/

camellia/specifications.html.

GCRY_CIPHER_SALSA20

This is the Salsa20 stream cipher.

GCRY_CIPHER_SALSA20R12

This is the Salsa20/12 - reduced round version of Salsa20 stream cipher.

GCRY_CIPHER_GOST28147

The GOST 28147-89 cipher, defined in the respective GOST standard. Trans-
lation of this GOST into English is provided in the RFC-5830.

GCRY_CIPHER_GOST28147_MESH

The GOST 28147-89 cipher, defined in the respective GOST standard. Trans-
lation of this GOST into English is provided in the RFC-5830. This cipher will
use CryptoPro keymeshing as defined in RFC 4357 if it has to be used for the
selected parameter set.

GCRY_CIPHER_CHACHA20

This is the ChaCha20 stream cipher.

GCRY_CIPHER_SM4

A 128 bit cipher by the State Cryptography Administration of China (SCA).
See https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10.

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10

Chapter 5: Symmetric cryptography 27

5.2 Available cipher modes

GCRY_CIPHER_MODE_NONE

No mode specified. This should not be used. The only exception is that if
Libgcrypt is not used in FIPS mode and if any debug flag has been set, this
mode may be used to bypass the actual encryption.

GCRY_CIPHER_MODE_ECB

Electronic Codebook mode.

GCRY_CIPHER_MODE_CFB

GCRY_CIPHER_MODE_CFB8

Cipher Feedback mode. For GCRY CIPHER MODE CFB the shift size
equals the block size of the cipher (e.g. for AES it is CFB-128). For
GCRY CIPHER MODE CFB8 the shift size is 8 bit but that variant is not
yet available.

GCRY_CIPHER_MODE_CBC

Cipher Block Chaining mode.

GCRY_CIPHER_MODE_STREAM

Stream mode, only to be used with stream cipher algorithms.

GCRY_CIPHER_MODE_OFB

Output Feedback mode.

GCRY_CIPHER_MODE_CTR

Counter mode.

GCRY_CIPHER_MODE_AESWRAP

This mode is used to implement the AES-Wrap algorithm according to RFC-
3394. It may be used with any 128 bit block length algorithm, however the
specs require one of the 3 AES algorithms. These special conditions apply: If
gcry_cipher_setiv has not been used the standard IV is used; if it has been
used the lower 64 bit of the IV are used as the Alternative Initial Value. On
encryption the provided output buffer must be 64 bit (8 byte) larger than the
input buffer; in-place encryption is still allowed. On decryption the output
buffer may be specified 64 bit (8 byte) shorter than then input buffer. As per
specs the input length must be at least 128 bits and the length must be a
multiple of 64 bits.

GCRY_CIPHER_MODE_CCM

Counter with CBC-MAC mode is an Authenticated Encryption with Associated
Data (AEAD) block cipher mode, which is specified in ’NIST Special Publica-
tion 800-38C’ and RFC 3610.

GCRY_CIPHER_MODE_GCM

Galois/Counter Mode (GCM) is an Authenticated Encryption with Associated
Data (AEAD) block cipher mode, which is specified in ’NIST Special Publica-
tion 800-38D’.

28 The Libgcrypt Reference Manual

GCRY_CIPHER_MODE_POLY1305

This mode implements the Poly1305 Authenticated Encryption with Associated
Data (AEAD) mode according to RFC-8439. This mode can be used with
ChaCha20 stream cipher.

GCRY_CIPHER_MODE_OCB

OCB is an Authenticated Encryption with Associated Data (AEAD) block
cipher mode, which is specified in RFC-7253. Supported tag lengths are 128,
96, and 64 bit with the default being 128 bit. To switch to a different tag length
gcry_cipher_ctl using the command GCRYCTL_SET_TAGLEN and the address
of an int variable set to 12 (for 96 bit) or 8 (for 64 bit) provided for the buffer
argument and sizeof(int) for buflen.

Note that the use of gcry_cipher_final is required.

GCRY_CIPHER_MODE_XTS

XEX-based tweaked-codebook mode with ciphertext stealing (XTS) mode is
used to implement the AES-XTS as specified in IEEE 1619 Standard Architec-
ture for Encrypted Shared Storage Media and NIST SP800-38E.

The XTS mode requires doubling key-length, for example, using 512-bit key
with AES-256 (GCRY_CIPHER_AES256). The 128-bit tweak value is feed to XTS
mode as little-endian byte array using gcry_cipher_setiv function. When
encrypting or decrypting, full-sized data unit buffers needs to be passed to
gcry_cipher_encrypt or gcry_cipher_decrypt. The tweak value is automat-
ically incremented after each call of gcry_cipher_encrypt and gcry_cipher_

decrypt. Auto-increment allows avoiding need of setting IV between processing
of sequential data units.

GCRY_CIPHER_MODE_EAX

EAX is an Authenticated Encryption with Associated Data (AEAD) block ci-
pher mode by Bellare, Rogaway, and Wagner (see http://web.cs.ucdavis.

edu/~rogaway/papers/eax.html).

5.3 Working with cipher handles

To use a cipher algorithm, you must first allocate an according handle. This is to be done
using the open function:

[Function]gcry_error_t gcry_cipher_open (gcry cipher hd t *hd, int algo,
int mode, unsigned int flags)

This function creates the context handle required for most of the other cipher functions
and returns a handle to it in ‘hd’. In case of an error, an according error code is
returned.

The ID of algorithm to use must be specified via algo. See Section 5.1 [Available
ciphers], page 25, for a list of supported ciphers and the according constants.

Besides using the constants directly, the function gcry_cipher_map_name may be
used to convert the textual name of an algorithm into the according numeric ID.

The cipher mode to use must be specified via mode. See Section 5.2 [Available cipher
modes], page 27, for a list of supported cipher modes and the according constants.

http://web.cs.ucdavis.edu/~rogaway/papers/eax.html
http://web.cs.ucdavis.edu/~rogaway/papers/eax.html

Chapter 5: Symmetric cryptography 29

Note that some modes are incompatible with some algorithms - in particular, stream
mode (GCRY_CIPHER_MODE_STREAM) only works with stream ciphers. Poly1305
AEAD mode (GCRY_CIPHER_MODE_POLY1305) only works with ChaCha20 stream
cipher. The block cipher modes (GCRY_CIPHER_MODE_ECB, GCRY_CIPHER_MODE_CBC,
GCRY_CIPHER_MODE_CFB, GCRY_CIPHER_MODE_OFB, GCRY_CIPHER_MODE_CTR and
GCRY_CIPHER_MODE_EAX) will work with any block cipher algorithm. GCM mode
(GCRY_CIPHER_MODE_GCM), CCM mode (GCRY_CIPHER_MODE_CCM), OCB mode
(GCRY_CIPHER_MODE_OCB), and XTS mode (GCRY_CIPHER_MODE_XTS) will only work
with block cipher algorithms which have the block size of 16 bytes.

The third argument flags can either be passed as 0 or as the bit-wise OR of the
following constants.

GCRY_CIPHER_SECURE

Make sure that all operations are allocated in secure memory. This is
useful when the key material is highly confidential.

GCRY_CIPHER_ENABLE_SYNC

This flag enables the CFB sync mode, which is a special feature of
Libgcrypt’s CFB mode implementation to allow for OpenPGP’s CFB
variant. See gcry_cipher_sync.

GCRY_CIPHER_CBC_CTS

Enable cipher text stealing (CTS) for the CBC mode. Cannot be used
simultaneous as GCRY CIPHER CBC MAC. CTS mode makes it pos-
sible to transform data of almost arbitrary size (only limitation is that it
must be greater than the algorithm’s block size).

GCRY_CIPHER_CBC_MAC

Compute CBC-MAC keyed checksums. This is the same as CBC
mode, but only output the last block. Cannot be used simultaneous as
GCRY CIPHER CBC CTS.

Use the following function to release an existing handle:

[Function]void gcry_cipher_close (gcry cipher hd t h)
This function releases the context created by gcry_cipher_open. It also zeroises all
sensitive information associated with this cipher handle.

In order to use a handle for performing cryptographic operations, a ‘key’ has to be set
first:

[Function]gcry_error_t gcry_cipher_setkey (gcry cipher hd t h, const void
*k, size t l)

Set the key k used for encryption or decryption in the context denoted by the handle
h. The length l (in bytes) of the key k must match the required length of the algorithm
set for this context or be in the allowed range for algorithms with variable key size.
The function checks this and returns an error if there is a problem. A caller should
always check for an error.

Most crypto modes requires an initialization vector (IV), which usually is a non-secret
random string acting as a kind of salt value. The CTR mode requires a counter, which is
also similar to a salt value. To set the IV or CTR, use these functions:

30 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_cipher_setiv (gcry cipher hd t h, const void
*k, size t l)

Set the initialization vector used for encryption or decryption. The vector is passed
as the buffer K of length l bytes and copied to internal data structures. The function
checks that the IV matches the requirement of the selected algorithm and mode.

This function is also used by AEAD modes and with Salsa20 and ChaCha20 stream
ciphers to set or update the required nonce. In these cases it needs to be called after
setting the key.

[Function]gcry_error_t gcry_cipher_setctr (gcry cipher hd t h, const void
*c, size t l)

Set the counter vector used for encryption or decryption. The counter is passed as the
buffer c of length l bytes and copied to internal data structures. The function checks
that the counter matches the requirement of the selected algorithm (i.e., it must be
the same size as the block size).

[Function]gcry_error_t gcry_cipher_reset (gcry cipher hd t h)
Set the given handle’s context back to the state it had after the last call to
gcry cipher setkey and clear the initialization vector.

Note that gcry cipher reset is implemented as a macro.

Authenticated Encryption with Associated Data (AEAD) block cipher modes require
the handling of the authentication tag and the additional authenticated data, which can be
done by using the following functions:

[Function]gcry_error_t gcry_cipher_authenticate (gcry cipher hd t h,
const void *abuf, size t abuflen)

Process the buffer abuf of length abuflen as the additional authenticated data (AAD)
for AEAD cipher modes.

[Function]gcry_error_t gcry_cipher_gettag (gcry cipher hd t h, void *tag,
size t taglen)

This function is used to read the authentication tag after encryption. The function
finalizes and outputs the authentication tag to the buffer tag of length taglen bytes.

Depending on the used mode certain restrictions for taglen are enforced: For GCM
taglen must be at least 16 or one of the allowed truncated lengths (4, 8, 12, 13, 14,
or 15).

[Function]gcry_error_t gcry_cipher_checktag (gcry cipher hd t h,
const void *tag, size t taglen)

Check the authentication tag after decryption. The authentication tag is passed
as the buffer tag of length taglen bytes and compared to internal authentication
tag computed during decryption. Error code GPG_ERR_CHECKSUM is returned if the
authentication tag in the buffer tag does not match the authentication tag calculated
during decryption.

Depending on the used mode certain restrictions for taglen are enforced: For GCM
taglen must either be 16 or one of the allowed truncated lengths (4, 8, 12, 13, 14, or
15).

Chapter 5: Symmetric cryptography 31

The actual encryption and decryption is done by using one of the following functions.
They may be used as often as required to process all the data.

[Function]gcry_error_t gcry_cipher_encrypt (gcry cipher hd t h, unsigned
char *out, size t outsize, const unsigned char *in, size t inlen)

gcry_cipher_encrypt is used to encrypt the data. This function can either work in
place or with two buffers. It uses the cipher context already setup and described by
the handle h. There are 2 ways to use the function: If in is passed as NULL and inlen is
0, in-place encryption of the data in out of length outsize takes place. With in being
not NULL, inlen bytes are encrypted to the buffer out which must have at least a size
of inlen. outsize must be set to the allocated size of out, so that the function can
check that there is sufficient space. Note that overlapping buffers are not allowed.

Depending on the selected algorithms and encryption mode, the length of the buffers
must be a multiple of the block size.

Some encryption modes require that gcry_cipher_final is used before the final data
chunk is passed to this function.

The function returns 0 on success or an error code.

[Function]gcry_error_t gcry_cipher_decrypt (gcry cipher hd t h, unsigned
char *out, size t outsize, const unsigned char *in, size t inlen)

gcry_cipher_decrypt is used to decrypt the data. This function can either work in
place or with two buffers. It uses the cipher context already setup and described by
the handle h. There are 2 ways to use the function: If in is passed as NULL and inlen
is 0, in-place decryption of the data in out or length outsize takes place. With in
being not NULL, inlen bytes are decrypted to the buffer out which must have at least
a size of inlen. outsize must be set to the allocated size of out, so that the function
can check that there is sufficient space. Note that overlapping buffers are not allowed.

Depending on the selected algorithms and encryption mode, the length of the buffers
must be a multiple of the block size.

Some encryption modes require that gcry_cipher_final is used before the final data
chunk is passed to this function.

The function returns 0 on success or an error code.

The OCB mode features integrated padding and must thus be told about the end of the
input data. This is done with:

[Function]gcry_error_t gcry_cipher_final (gcry cipher hd t h)
Set a flag in the context to tell the encrypt and decrypt functions that their next call
will provide the last chunk of data. Only the first call to this function has an effect
and only for modes which support it. Checking the error is in general not necessary.
This is implemented as a macro.

OpenPGP (as defined in RFC-4880) requires a special sync operation in some places.
The following function is used for this:

[Function]gcry_error_t gcry_cipher_sync (gcry cipher hd t h)
Perform the OpenPGP sync operation on context h. Note that this is a no-op unless
the context was created with the flag GCRY_CIPHER_ENABLE_SYNC

32 The Libgcrypt Reference Manual

Some of the described functions are implemented as macros utilizing a catch-all control
function. This control function is rarely used directly but there is nothing which would
inhibit it:

[Function]gcry_error_t gcry_cipher_ctl (gcry cipher hd t h, int cmd, void
*buffer, size t buflen)

gcry_cipher_ctl controls various aspects of the cipher module and specific cipher
contexts. Usually some more specialized functions or macros are used for this pur-
pose. The semantics of the function and its parameters depends on the the command
cmd and the passed context handle h. Please see the comments in the source code
(src/global.c) for details.

[Function]gcry_error_t gcry_cipher_info (gcry cipher hd t h, int what,
void *buffer, size t *nbytes)

gcry_cipher_info is used to retrieve various information about a cipher context or
the cipher module in general.

GCRYCTL_GET_TAGLEN:

Return the length of the tag for an AE algorithm mode. An error is
returned for modes which do not support a tag. buffer must be given as
NULL. On success the result is stored nbytes. The taglen is returned in
bytes.

5.4 General cipher functions

To work with the algorithms, several functions are available to map algorithm names to
the internal identifiers, as well as ways to retrieve information about an algorithm or the
current cipher context.

[Function]gcry_error_t gcry_cipher_algo_info (int algo, int what, void
*buffer, size t *nbytes)

This function is used to retrieve information on a specific algorithm. You pass the
cipher algorithm ID as algo and the type of information requested as what. The
result is either returned as the return code of the function or copied to the provided
buffer whose allocated length must be available in an integer variable with the address
passed in nbytes. This variable will also receive the actual used length of the buffer.

Here is a list of supported codes for what:

GCRYCTL_GET_KEYLEN:

Return the length of the key. If the algorithm supports multiple key
lengths, the maximum supported value is returned. The length is re-
turned as number of octets (bytes) and not as number of bits in nbytes;
buffer must be zero. Note that it is usually better to use the convenience
function gcry_cipher_get_algo_keylen.

GCRYCTL_GET_BLKLEN:

Return the block length of the algorithm. The length is returned as a
number of octets in nbytes; buffer must be zero. Note that it is usually
better to use the convenience function gcry_cipher_get_algo_blklen.

Chapter 5: Symmetric cryptography 33

GCRYCTL_TEST_ALGO:

Returns 0 when the specified algorithm is available for use. buffer and
nbytes must be zero.

[Function]size_t gcry_cipher_get_algo_keylen (algo)
This function returns length of the key for algorithm algo. If the algorithm supports
multiple key lengths, the maximum supported key length is returned. On error 0 is
returned. The key length is returned as number of octets.

This is a convenience functions which should be preferred over gcry_cipher_algo_
info because it allows for proper type checking.

[Function]size_t gcry_cipher_get_algo_blklen (int algo)
This functions returns the block-length of the algorithm algo counted in octets. On
error 0 is returned.

This is a convenience functions which should be preferred over gcry_cipher_algo_
info because it allows for proper type checking.

[Function]const char * gcry_cipher_algo_name (int algo)
gcry_cipher_algo_name returns a string with the name of the cipher algorithm algo.
If the algorithm is not known or another error occurred, the string "?" is returned.
This function should not be used to test for the availability of an algorithm.

[Function]int gcry_cipher_map_name (const char *name)
gcry_cipher_map_name returns the algorithm identifier for the cipher algorithm de-
scribed by the string name. If this algorithm is not available 0 is returned.

[Function]int gcry_cipher_mode_from_oid (const char *string)
Return the cipher mode associated with an ASN.1 object identifier. The object identi-
fier is expected to be in the IETF-style dotted decimal notation. The function returns
0 for an unknown object identifier or when no mode is associated with it.

35

6 Public Key cryptography

Public key cryptography, also known as asymmetric cryptography, is an easy way for key
management and to provide digital signatures. Libgcrypt provides two completely different
interfaces to public key cryptography, this chapter explains the one based on S-expressions.

6.1 Available algorithms

Libgcrypt supports the RSA (Rivest-Shamir-Adleman) algorithms as well as DSA (Digital
Signature Algorithm), Elgamal, ECDSA, ECDH, and EdDSA.

6.2 Used S-expressions

Libgcrypt’s API for asymmetric cryptography is based on data structures called
S-expressions (see http://people.csail.mit.edu/rivest/sexp.html) and does not
work with contexts/handles as most of the other building blocks of Libgcrypt do.

The following information are stored in S-expressions:

• keys

• plain text data

• encrypted data

• signatures

To describe how Libgcrypt expect keys, we use examples. Note that words in italics indicate
parameters whereas lowercase words are literals.

Note that all MPI (multi-precision-integers) values are expected to be in GCRYMPI_FMT_

USG format. An easy way to create S-expressions is by using gcry_sexp_build which allows
to pass a string with printf-like escapes to insert MPI values.

6.2.1 RSA key parameters

An RSA private key is described by this S-expression:

(private-key

(rsa

(n n-mpi)

(e e-mpi)

(d d-mpi)

(p p-mpi)

(q q-mpi)

(u u-mpi)))

An RSA public key is described by this S-expression:

(public-key

(rsa

(n n-mpi)

(e e-mpi)))

n-mpi RSA public modulus n.

e-mpi RSA public exponent e.

http://people.csail.mit.edu/rivest/sexp.html

36 The Libgcrypt Reference Manual

d-mpi RSA secret exponent d = e−1 mod (p− 1)(q − 1).

p-mpi RSA secret prime p.

q-mpi RSA secret prime q with p < q.

u-mpi Multiplicative inverse u = p−1 mod q.

For signing and decryption the parameters (p, q, u) are optional but greatly improve the
performance. Either all of these optional parameters must be given or none of them. They
are mandatory for gcry pk testkey.

Note that OpenSSL uses slighly different parameters: q < p and u = q−1 mod p. To use
these parameters you will need to swap the values and recompute u. Here is example code
to do this:

if (gcry_mpi_cmp (p, q) > 0)

{

gcry_mpi_swap (p, q);

gcry_mpi_invm (u, p, q);

}

6.2.2 DSA key parameters

A DSA private key is described by this S-expression:

(private-key

(dsa

(p p-mpi)

(q q-mpi)

(g g-mpi)

(y y-mpi)

(x x-mpi)))

p-mpi DSA prime p.

q-mpi DSA group order q (which is a prime divisor of p− 1).

g-mpi DSA group generator g.

y-mpi DSA public key value y = gx mod p.

x-mpi DSA secret exponent x.

The public key is similar with "private-key" replaced by "public-key" and no x-mpi.

6.2.3 ECC key parameters

An ECC private key is described by this S-expression:

(private-key

(ecc

(p p-mpi)

(a a-mpi)

(b b-mpi)

(g g-point)

(n n-mpi)

Chapter 6: Public Key cryptography 37

(q q-point)

(d d-mpi)))

p-mpi Prime specifying the field GF (p).

a-mpi
b-mpi The two coefficients of the Weierstrass equation y2 = x3 + ax+ b

g-point Base point g.

n-mpi Order of g

q-point The point representing the public key Q = dG.

d-mpi The private key d

All point values are encoded in standard format; Libgcrypt does in general only support
uncompressed points, thus the first byte needs to be 0x04. However “EdDSA” describes its
own compression scheme which is used by default; the non-standard first byte 0x40 may
optionally be used to explicit flag the use of the algorithm’s native compression method.

The public key is similar with "private-key" replaced by "public-key" and no d-mpi.

If the domain parameters are well-known, the name of this curve may be used. For
example

(private-key

(ecc

(curve "NIST P-192")

(q q-point)

(d d-mpi)))

Note that q-point is optional for a private key. The curve parameter may be given in
any case and is used to replace missing parameters.

Currently implemented curves are:

Curve25519

X25519

1.3.6.1.4.1.3029.1.5.1

1.3.101.110

The RFC-8410 255 bit curve, its RFC name, OpenPGP and RFC OIDs.

X448

1.3.101.111

The RFC-8410 448 bit curve and its RFC OID.

Ed25519

1.3.6.1.4.1.11591.15.1

1.3.101.112

The signing variant of the RFC-8410 255 bit curve, its OpenPGP and RFC
OIDs.

Ed448

1.3.101.113

The signing variant of the RFC-8410 448 bit curve and its RFC OID.

38 The Libgcrypt Reference Manual

NIST P-192

1.2.840.10045.3.1.1

nistp192

prime192v1

secp192r1

The NIST 192 bit curve, its OID and aliases.

NIST P-224

1.3.132.0.33

nistp224

secp224r1

The NIST 224 bit curve, its OID and aliases.

NIST P-256

1.2.840.10045.3.1.7

nistp256

prime256v1

secp256r1

The NIST 256 bit curve, its OID and aliases.

NIST P-384

1.3.132.0.34

nistp384

secp384r1

The NIST 384 bit curve, its OID and aliases.

NIST P-521

1.3.132.0.35

nistp521

secp521r1

The NIST 521 bit curve, its OID and aliases.

brainpoolP160r1

1.3.36.3.3.2.8.1.1.1

The Brainpool 160 bit curve and its OID.

brainpoolP192r1

1.3.36.3.3.2.8.1.1.3

The Brainpool 192 bit curve and its OID.

brainpoolP224r1

1.3.36.3.3.2.8.1.1.5

The Brainpool 224 bit curve and its OID.

brainpoolP256r1

1.3.36.3.3.2.8.1.1.7

The Brainpool 256 bit curve and its OID.

brainpoolP320r1

1.3.36.3.3.2.8.1.1.9

The Brainpool 320 bit curve and its OID.

Chapter 6: Public Key cryptography 39

brainpoolP384r1

1.3.36.3.3.2.8.1.1.11

The Brainpool 384 bit curve and its OID.

brainpoolP512r1

1.3.36.3.3.2.8.1.1.13

The Brainpool 512 bit curve and its OID.

As usual the OIDs may optionally be prefixed with the string OID. or oid..

6.3 Cryptographic Functions

Some functions operating on S-expressions support ‘flags’ to influence the operation. These
flags have to be listed in a sub-S-expression named ‘flags’. Flag names are case-sensitive.
The following flags are known:

comp

nocomp If supported by the algorithm and curve the comp flag requests that points are
returned in compact (compressed) representation. The nocomp flag requests
that points are returned with full coordinates. The default depends on the the
algorithm and curve. The compact representation requires a small overhead
before a point can be used but halves the size of a to be conveyed public key. If
comp is used with the “EdDSA” algorithm the key generation prefix the public
key with a 0x40 byte.

pkcs1 Use PKCS#1 block type 2 padding for encryption, block type 1 padding for
signing.

oaep Use RSA-OAEP padding for encryption.

pss Use RSA-PSS padding for signing.

eddsa Use the EdDSA scheme signing instead of the default ECDSA algorithm. Note
that the EdDSA uses a special form of the public key.

rfc6979 For DSA and ECDSA use a deterministic scheme for the k parameter.

no-blinding

Do not use a technique called ‘blinding’, which is used by default in order to
prevent leaking of secret information. Blinding is only implemented by RSA,
but it might be implemented by other algorithms in the future as well, when
necessary.

param For ECC key generation also return the domain parameters. For ECC signing
and verification override default parameters by provided domain parameters of
the public or private key.

transient-key

This flag is only meaningful for RSA, DSA, and ECC key generation. If given
the key is created using a faster and a somewhat less secure random number
generator. This flag may be used for keys which are only used for a short time
or per-message and do not require full cryptographic strength.

40 The Libgcrypt Reference Manual

no-keytest

This flag skips internal failsafe tests to assert that a generated key is properly
working. It currently has an effect only for standard ECC key generation. It is
mostly useful along with transient-key to achieve fastest ECC key generation.

use-x931 Force the use of the ANSI X9.31 key generation algorithm instead of the default
algorithm. This flag is only meaningful for RSA key generation and usually not
required. Note that this algorithm is implicitly used if either derive-parms is
given or Libgcrypt is in FIPS mode.

use-fips186

Force the use of the FIPS 186 key generation algorithm instead of the default
algorithm. This flag is only meaningful for DSA and usually not required.
Note that this algorithm is implicitly used if either derive-parms is given or
Libgcrypt is in FIPS mode. As of now FIPS 186-2 is implemented; after the
approval of FIPS 186-3 the code will be changed to implement 186-3.

use-fips186-2

Force the use of the FIPS 186-2 key generation algorithm instead of the default
algorithm. This algorithm is slightly different from FIPS 186-3 and allows only
1024 bit keys. This flag is only meaningful for DSA and only required for FIPS
testing backward compatibility.

Now that we know the key basics, we can carry on and explain how to encrypt and decrypt
data. In almost all cases the data is a random session key which is in turn used for the
actual encryption of the real data. There are 2 functions to do this:

[Function]gcry_error_t gcry_pk_encrypt (gcry sexp t *r_ciph,
gcry sexp t data, gcry sexp t pkey)

Obviously a public key must be provided for encryption. It is expected as an ap-
propriate S-expression (see above) in pkey. The data to be encrypted can either be
in the simple old format, which is a very simple S-expression consisting only of one
MPI, or it may be a more complex S-expression which also allows to specify flags for
operation, like e.g. padding rules.

If you don’t want to let Libgcrypt handle the padding, you must pass an appropriate
MPI using this expression for data:

(data

(flags raw)

(value mpi))

This has the same semantics as the old style MPI only way. MPI is the actual data,
already padded appropriate for your protocol. Most RSA based systems however use
PKCS#1 padding and so you can use this S-expression for data:

(data

(flags pkcs1)

(value block))

Here, the "flags" list has the "pkcs1" flag which let the function know that it should
provide PKCS#1 block type 2 padding. The actual data to be encrypted is passed
as a string of octets in block. The function checks that this data actually can be used
with the given key, does the padding and encrypts it.

Chapter 6: Public Key cryptography 41

If the function could successfully perform the encryption, the return value will be 0
and a new S-expression with the encrypted result is allocated and assigned to the
variable at the address of r ciph. The caller is responsible to release this value using
gcry_sexp_release. In case of an error, an error code is returned and r ciph will be
set to NULL.

The returned S-expression has this format when used with RSA:

(enc-val

(rsa

(a a-mpi)))

Where a-mpi is an MPI with the result of the RSA operation. When using the
Elgamal algorithm, the return value will have this format:

(enc-val

(elg

(a a-mpi)

(b b-mpi)))

Where a-mpi and b-mpi are MPIs with the result of the Elgamal encryption operation.

[Function]gcry_error_t gcry_pk_decrypt (gcry sexp t *r_plain,
gcry sexp t data, gcry sexp t skey)

Obviously a private key must be provided for decryption. It is expected as an appro-
priate S-expression (see above) in skey. The data to be decrypted must match the
format of the result as returned by gcry_pk_encrypt, but should be enlarged with a
flags element:

(enc-val

(flags)

(elg

(a a-mpi)

(b b-mpi)))

This function does not remove padding from the data by default. To let Libgcrypt
remove padding, give a hint in ‘flags’ telling which padding method was used when
encrypting:

(flags padding-method)

Currently padding-method is either pkcs1 for PKCS#1 block type 2 padding, or oaep
for RSA-OAEP padding.

The function returns 0 on success or an error code. The variable at the address of
r plain will be set to NULL on error or receive the decrypted value on success. The
format of r plain is a simple S-expression part (i.e. not a valid one) with just one
MPI if there was no flags element in data; if at least an empty flags is passed in
data, the format is:

(value plaintext)

Another operation commonly performed using public key cryptography is signing data.
In some sense this is even more important than encryption because digital signatures are
an important instrument for key management. Libgcrypt supports digital signatures using
2 functions, similar to the encryption functions:

42 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_pk_sign (gcry sexp t *r_sig,
gcry sexp t data, gcry sexp t skey)

This function creates a digital signature for data using the private key skey and place
it into the variable at the address of r sig. data may either be the simple old style
S-expression with just one MPI or a modern and more versatile S-expression which
allows to let Libgcrypt handle padding:

(data

(flags pkcs1)

(hash hash-algo block))

This example requests to sign the data in block after applying PKCS#1 block type
1 style padding. hash-algo is a string with the hash algorithm to be encoded into
the signature, this may be any hash algorithm name as supported by Libgcrypt.
Most likely, this will be "sha256" or "sha1". It is obvious that the length of block
must match the size of that message digests; the function checks that this and other
constraints are valid.

If PKCS#1 padding is not required (because the caller does already provide a padded
value), either the old format or better the following format should be used:

(data

(flags raw)

(value mpi))

Here, the data to be signed is directly given as an MPI.

For DSA the input data is expected in this format:

(data

(flags raw)

(value mpi))

Here, the data to be signed is directly given as an MPI. It is expect that this MPI is
the the hash value. For the standard DSA using a MPI is not a problem in regard to
leading zeroes because the hash value is directly used as an MPI. For better standard
conformance it would be better to explicit use a memory string (like with pkcs1)
but that is currently not supported. However, for deterministic DSA as specified in
RFC6979 this can’t be used. Instead the following input is expected.

(data

(flags rfc6979)

(hash hash-algo block))

Note that the provided hash-algo is used for the internal HMAC; it should match the
hash-algo used to create block.

The signature is returned as a newly allocated S-expression in r sig using this format
for RSA:

(sig-val

(rsa

(s s-mpi)))

Where s-mpi is the result of the RSA sign operation. For DSA the S-expression
returned is:

(sig-val

Chapter 6: Public Key cryptography 43

(dsa

(r r-mpi)

(s s-mpi)))

Where r-mpi and s-mpi are the result of the DSA sign operation.

For Elgamal signing (which is slow, yields large numbers and probably is not as
secure as the other algorithms), the same format is used with "elg" replacing "dsa";
for ECDSA signing, the same format is used with "ecdsa" replacing "dsa".

For the EdDSA algorithm (cf. Ed25515) the required input parameters are:

(data

(flags eddsa)

(hash-algo sha512)

(value message))

Note that the message may be of any length; hashing is part of the algorithm. Using
a large data block for message is in general not suggested; in that case the used
protocol should better require that a hash of the message is used as input to the
EdDSA algorithm. Note that for X.509 certificates message is the tbsCertificate

part and in CMS message is the signedAttrs part; see RFC-8410 and RFC-8419.

The operation most commonly used is definitely the verification of a signature. Libgcrypt
provides this function:

[Function]gcry_error_t gcry_pk_verify (gcry sexp t sig, gcry sexp t data,
gcry sexp t pkey)

This is used to check whether the signature sig matches the data. The public key
pkey must be provided to perform this verification. This function is similar in its
parameters to gcry_pk_sign with the exceptions that the public key is used instead
of the private key and that no signature is created but a signature, in a format as
created by gcry_pk_sign, is passed to the function in sig.

The result is 0 for success (i.e. the data matches the signature), or an error code where
the most relevant code is GCRY_ERR_BAD_SIGNATURE to indicate that the signature
does not match the provided data.

6.4 Dedicated functions for elliptic curves.

The S-expression based interface is for certain operations on elliptic curves not optimal.
Thus a few special functions are implemented to support common operations on curves
with one of these assigned curve ids:

GCRY_ECC_CURVE25519

GCRY_ECC_CURVE448

[Function]unsigned int gcry_ecc_get_algo_keylen (int curveid);
Returns the length in bytes of a point on the curve with the id curveid. 0 is returned
for curves which have no assigned id.

44 The Libgcrypt Reference Manual

[Function]gpg_error_t gcry_ecc_mul_point (int curveid,
unsigned char *result, const unsigned char *scalar,
const unsigned char *point)

This function computes the scalar multiplication on the Montgomery form of the
curve with id curveid. If point is NULL the base point of the curve is used. The
caller needs to provide a large enough buffer for result and a valid scalar and point.

6.5 General public-key related Functions

A couple of utility functions are available to retrieve the length of the key, map algorithm
identifiers and perform sanity checks:

[Function]const char * gcry_pk_algo_name (int algo)
Map the public key algorithm id algo to a string representation of the algorithm name.
For unknown algorithms this functions returns the string "?". This function should
not be used to test for the availability of an algorithm.

[Function]int gcry_pk_map_name (const char *name)
Map the algorithm name to a public key algorithm Id. Returns 0 if the algorithm
name is not known.

[Function]int gcry_pk_test_algo (int algo)
Return 0 if the public key algorithm algo is available for use. Note that this is
implemented as a macro.

[Function]unsigned int gcry_pk_get_nbits (gcry sexp t key)
Return what is commonly referred as the key length for the given public or private
in key.

[Function]unsigned char * gcry_pk_get_keygrip (gcry sexp t key,
unsigned char *array)

Return the so called "keygrip" which is the SHA-1 hash of the public key parameters
expressed in a way depended on the algorithm. array must either provide space for
20 bytes or be NULL. In the latter case a newly allocated array of that size is returned.
On success a pointer to the newly allocated space or to array is returned. NULL is
returned to indicate an error which is most likely an unknown algorithm or one where
a "keygrip" has not yet been defined. The function accepts public or secret keys in
key.

[Function]gcry_error_t gcry_pk_testkey (gcry sexp t key)
Return zero if the private key key is ‘sane’, an error code otherwise. Note that it is
not possible to check the ‘saneness’ of a public key.

[Function]gcry_error_t gcry_pk_algo_info (int algo, int what,
void *buffer, size t *nbytes)

Depending on the value of what return various information about the public key
algorithm with the id algo. Note that the function returns -1 on error and the actual
error code must be retrieved using the function gcry_errno. The currently defined
values for what are:

Chapter 6: Public Key cryptography 45

GCRYCTL_TEST_ALGO:

Return 0 if the specified algorithm is available for use. buffer must be
NULL, nbytes may be passed as NULL or point to a variable with the
required usage of the algorithm. This may be 0 for "don’t care" or the
bit-wise OR of these flags:

GCRY_PK_USAGE_SIGN

Algorithm is usable for signing.

GCRY_PK_USAGE_ENCR

Algorithm is usable for encryption.

Unless you need to test for the allowed usage, it is in general better to
use the macro gcry pk test algo instead.

GCRYCTL_GET_ALGO_USAGE:

Return the usage flags for the given algorithm. An invalid algorithm
return 0. Disabled algorithms are ignored here because we want to know
whether the algorithm is at all capable of a certain usage.

GCRYCTL_GET_ALGO_NPKEY

Return the number of elements the public key for algorithm algo consist
of. Return 0 for an unknown algorithm.

GCRYCTL_GET_ALGO_NSKEY

Return the number of elements the private key for algorithm algo consist
of. Note that this value is always larger than that of the public key.
Return 0 for an unknown algorithm.

GCRYCTL_GET_ALGO_NSIGN

Return the number of elements a signature created with the algorithm
algo consists of. Return 0 for an unknown algorithm or for an algorithm
not capable of creating signatures.

GCRYCTL_GET_ALGO_NENCR

Return the number of elements a encrypted message created with the
algorithm algo consists of. Return 0 for an unknown algorithm or for an
algorithm not capable of encryption.

Please note that parameters not required should be passed as NULL.

[Function]gcry_error_t gcry_pk_ctl (int cmd, void *buffer, size t buflen)
This is a general purpose function to perform certain control operations. cmd controls
what is to be done. The return value is 0 for success or an error code. Currently
supported values for cmd are:

GCRYCTL_DISABLE_ALGO

Disable the algorithm given as an algorithm id in buffer. buffer must
point to an int variable with the algorithm id and buflen must have the
value sizeof (int). This function is not thread safe and should thus be
used before any other threads are started.

Libgcrypt also provides a function to generate public key pairs:

46 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_pk_genkey (gcry sexp t *r_key,
gcry sexp t parms)

This function create a new public key pair using information given in the S-expression
parms and stores the private and the public key in one new S-expression at the address
given by r key. In case of an error, r key is set to NULL. The return code is 0 for
success or an error code otherwise.

Here is an example for parms to create an 2048 bit RSA key:

(genkey

(rsa

(nbits 4:2048)))

To create an Elgamal key, substitute "elg" for "rsa" and to create a DSA key use
"dsa". Valid ranges for the key length depend on the algorithms; all commonly used
key lengths are supported. Currently supported parameters are:

nbits This is always required to specify the length of the key. The argument is
a string with a number in C-notation. The value should be a multiple of
8. Note that the S-expression syntax requires that a number is prefixed
with its string length; thus the 4: in the above example.

curve name

For ECC a named curve may be used instead of giving the number of
requested bits. This allows to request a specific curve to override a de-
fault selection Libgcrypt would have taken if nbits has been given. The
available names are listed with the description of the ECC public key
parameters.

rsa-use-e value

This is only used with RSA to give a hint for the public exponent. The
value will be used as a base to test for a usable exponent. Some values
are special:

‘0’ Use a secure and fast value. This is currently the number 41.

‘1’ Use a value as required by some crypto policies. This is
currently the number 65537.

‘2’ Reserved

‘> 2’ Use the given value.

If this parameter is not used, Libgcrypt uses for historic reasons 65537.
Note that the value must fit into a 32 bit unsigned variable and that the
usual C prefixes are considered (e.g. 017 gives 15).

qbits n This is only meanigful for DSA keys. If it is given the DSA key is gen-
erated with a Q parameyer of size n bits. If it is not given or zero Q is
deduced from NBITS in this way:

‘512 <= N <= 1024’
Q = 160

‘N = 2048’ Q = 224

Chapter 6: Public Key cryptography 47

‘N = 3072’ Q = 256

‘N = 7680’ Q = 384

‘N = 15360’
Q = 512

Note that in this case only the values for N, as given in the table, are
allowed. When specifying Q all values of N in the range 512 to 15680 are
valid as long as they are multiples of 8.

domain list

This is only meaningful for DLP algorithms. If specified keys are gen-
erated with domain parameters taken from this list. The exact format
of this parameter depends on the actual algorithm. It is currently only
implemented for DSA using this format:

(genkey

(dsa

(domain

(p p-mpi)

(q q-mpi)

(g q-mpi))))

nbits and qbits may not be specified because they are derived from the
domain parameters.

derive-parms list

This is currently only implemented for RSA and DSA keys. It is not
allowed to use this together with a domain specification. If given, it is
used to derive the keys using the given parameters.

If given for an RSA key the X9.31 key generation algorithm is used even
if libgcrypt is not in FIPS mode. If given for a DSA key, the FIPS 186
algorithm is used even if libgcrypt is not in FIPS mode.

(genkey

(rsa

(nbits 4:1024)

(rsa-use-e 1:3)

(derive-parms

(Xp1 #1A1916DDB29B4EB7EB6732E128#)

(Xp2 #192E8AAC41C576C822D93EA433#)

(Xp #D8CD81F035EC57EFE822955149D3BFF70C53520D

769D6D76646C7A792E16EBD89FE6FC5B605A6493

39DFC925A86A4C6D150B71B9EEA02D68885F5009

B98BD984#)

(Xq1 #1A5CF72EE770DE50CB09ACCEA9#)

(Xq2 #134E4CAA16D2350A21D775C404#)

(Xq #CC1092495D867E64065DEE3E7955F2EBC7D47A2D

7C9953388F97DDDC3E1CA19C35CA659EDC2FC325

6D29C2627479C086A699A49C4C9CEE7EF7BD1B34

48 The Libgcrypt Reference Manual

321DE34A#))))

(genkey

(dsa

(nbits 4:1024)

(derive-parms

(seed seed-mpi))))

flags flaglist

This is preferred way to define flags. flaglist may contain any number of
flags. See above for a specification of these flags.

Here is an example on how to create a key using curve Ed25519 with
the ECDSA signature algorithm. Note that the use of ECDSA with that
curve is in general not recommended.

(genkey

(ecc

(flags transient-key)))

transient-key

use-x931

use-fips186

use-fips186-2

These are deprecated ways to set a flag with that name; see above for a
description of each flag.

The key pair is returned in a format depending on the algorithm. Both private
and public keys are returned in one container and may be accompanied by some
miscellaneous information.

Here are two examples; the first for Elgamal and the second for elliptic curve key
generation:

(key-data

(public-key

(elg

(p p-mpi)

(g g-mpi)

(y y-mpi)))

(private-key

(elg

(p p-mpi)

(g g-mpi)

(y y-mpi)

(x x-mpi)))

(misc-key-info

(pm1-factors n1 n2 ... nn))

(key-data

(public-key

(ecc

(curve Ed25519)

Chapter 6: Public Key cryptography 49

(flags eddsa)

(q q-value)))

(private-key

(ecc

(curve Ed25519)

(flags eddsa)

(q q-value)

(d d-value))))

As you can see, some of the information is duplicated, but this provides an easy way
to extract either the public or the private key. Note that the order of the elements is
not defined, e.g. the private key may be stored before the public key. n1 n2 ... nn is
a list of prime numbers used to composite p-mpi; this is in general not a very useful
information and only available if the key generation algorithm provides them.

Future versions of Libgcrypt will have extended versions of the public key interface which
will take an additional context to allow for pre-computations, special operations, and other
optimization. As a first step a new function is introduced to help using the ECC algorithms
in new ways:

[Function]gcry_error_t gcry_pubkey_get_sexp (gcry sexp t *r_sexp,
int mode, gcry ctx t ctx)

Return an S-expression representing the context ctx. Depending on the state of that
context, the S-expression may either be a public key, a private key or any other object
used with public key operations. On success 0 is returned and a new S-expression is
stored at r sexp; on error an error code is returned and NULL is stored at r sexp.
mode must be one of:

0 Decide what to return depending on the context. For example if the
private key parameter is available a private key is returned, if not a public
key is returned.

GCRY_PK_GET_PUBKEY

Return the public key even if the context has the private key parameter.

GCRY_PK_GET_SECKEY

Return the private key or the error GPG_ERR_NO_SECKEY if it is not pos-
sible.

As of now this function supports only certain ECC operations because a context
object is right now only defined for ECC. Over time this function will be extended to
cover more algorithms.

51

7 Hashing

Libgcrypt provides an easy and consistent to use interface for hashing. Hashing is buffered
and several hash algorithms can be updated at once. It is possible to compute a HMAC
using the same routines. The programming model follows an open/process/close paradigm
and is in that similar to other building blocks provided by Libgcrypt.

For convenience reasons, a few cyclic redundancy check value operations are also sup-
ported.

7.1 Available hash algorithms

GCRY_MD_NONE

This is not a real algorithm but used by some functions as an error return value.
This constant is guaranteed to have the value 0.

GCRY_MD_SHA1

This is the SHA-1 algorithm which yields a message digest of 20 bytes. Note
that SHA-1 begins to show some weaknesses and it is suggested to fade out its
use if strong cryptographic properties are required.

GCRY_MD_RMD160

This is the 160 bit version of the RIPE message digest (RIPE-MD-160). Like
SHA-1 it also yields a digest of 20 bytes. This algorithm share a lot of design
properties with SHA-1 and thus it is advisable not to use it for new protocols.

GCRY_MD_MD5

This is the well known MD5 algorithm, which yields a message digest of 16
bytes. Note that the MD5 algorithm has severe weaknesses, for example it is
easy to compute two messages yielding the same hash (collision attack). The
use of this algorithm is only justified for non-cryptographic application.

GCRY_MD_MD4

This is the MD4 algorithm, which yields a message digest of 16 bytes. This
algorithm has severe weaknesses and should not be used.

GCRY_MD_MD2

This is an reserved identifier for MD-2; there is no implementation yet. This
algorithm has severe weaknesses and should not be used.

GCRY_MD_TIGER

This is the TIGER/192 algorithm which yields a message digest of 24 bytes.
Actually this is a variant of TIGER with a different output print order as used
by GnuPG up to version 1.3.2.

GCRY_MD_TIGER1

This is the TIGER variant as used by the NESSIE project. It uses the most
commonly used output print order.

GCRY_MD_TIGER2

This is another variant of TIGER with a different padding scheme.

52 The Libgcrypt Reference Manual

GCRY_MD_HAVAL

This is an reserved value for the HAVAL algorithm with 5 passes and 160 bit.
It yields a message digest of 20 bytes. Note that there is no implementation
yet available.

GCRY_MD_SHA224

This is the SHA-224 algorithm which yields a message digest of 28 bytes. See
Change Notice 1 for FIPS 180-2 for the specification.

GCRY_MD_SHA256

This is the SHA-256 algorithm which yields a message digest of 32 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_SHA384

This is the SHA-384 algorithm which yields a message digest of 48 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_SHA512

This is the SHA-512 algorithm which yields a message digest of 64 bytes. See
FIPS 180-2 for the specification.

GCRY_MD_SHA512_224

This is the SHA-512/224 algorithm which yields a message digest of 28 bytes.
See FIPS 180-4 for the specification.

GCRY_MD_SHA512_256

This is the SHA-512/256 algorithm which yields a message digest of 32 bytes.
See FIPS 180-4 for the specification.

GCRY_MD_SHA3_224

This is the SHA3-224 algorithm which yields a message digest of 28 bytes. See
FIPS 202 for the specification.

GCRY_MD_SHA3_256

This is the SHA3-256 algorithm which yields a message digest of 32 bytes. See
FIPS 202 for the specification.

GCRY_MD_SHA3_384

This is the SHA3-384 algorithm which yields a message digest of 48 bytes. See
FIPS 202 for the specification.

GCRY_MD_SHA3_512

This is the SHA3-512 algorithm which yields a message digest of 64 bytes. See
FIPS 202 for the specification.

GCRY_MD_SHAKE128

This is the SHAKE128 extendable-output function (XOF) algorithm with 128
bit security strength. See FIPS 202 for the specification.

GCRY_MD_SHAKE256

This is the SHAKE256 extendable-output function (XOF) algorithm with 256
bit security strength. See FIPS 202 for the specification.

Chapter 7: Hashing 53

GCRY_MD_CRC32

This is the ISO 3309 and ITU-T V.42 cyclic redundancy check. It yields an
output of 4 bytes. Note that this is not a hash algorithm in the cryptographic
sense.

GCRY_MD_CRC32_RFC1510

This is the above cyclic redundancy check function, as modified by RFC 1510.
It yields an output of 4 bytes. Note that this is not a hash algorithm in the
cryptographic sense.

GCRY_MD_CRC24_RFC2440

This is the OpenPGP cyclic redundancy check function. It yields an output of
3 bytes. Note that this is not a hash algorithm in the cryptographic sense.

GCRY_MD_WHIRLPOOL

This is the Whirlpool algorithm which yields a message digest of 64 bytes.

GCRY_MD_GOSTR3411_94

This is the hash algorithm described in GOST R 34.11-94 which yields a message
digest of 32 bytes.

GCRY_MD_STRIBOG256

This is the 256-bit version of hash algorithm described in GOST R 34.11-2012
which yields a message digest of 32 bytes.

GCRY_MD_STRIBOG512

This is the 512-bit version of hash algorithm described in GOST R 34.11-2012
which yields a message digest of 64 bytes.

GCRY_MD_BLAKE2B_512

This is the BLAKE2b-512 algorithm which yields a message digest of 64 bytes.
See RFC 7693 for the specification.

GCRY_MD_BLAKE2B_384

This is the BLAKE2b-384 algorithm which yields a message digest of 48 bytes.
See RFC 7693 for the specification.

GCRY_MD_BLAKE2B_256

This is the BLAKE2b-256 algorithm which yields a message digest of 32 bytes.
See RFC 7693 for the specification.

GCRY_MD_BLAKE2B_160

This is the BLAKE2b-160 algorithm which yields a message digest of 20 bytes.
See RFC 7693 for the specification.

GCRY_MD_BLAKE2S_256

This is the BLAKE2s-256 algorithm which yields a message digest of 32 bytes.
See RFC 7693 for the specification.

GCRY_MD_BLAKE2S_224

This is the BLAKE2s-224 algorithm which yields a message digest of 28 bytes.
See RFC 7693 for the specification.

54 The Libgcrypt Reference Manual

GCRY_MD_BLAKE2S_160

This is the BLAKE2s-160 algorithm which yields a message digest of 20 bytes.
See RFC 7693 for the specification.

GCRY_MD_BLAKE2S_128

This is the BLAKE2s-128 algorithm which yields a message digest of 16 bytes.
See RFC 7693 for the specification.

GCRY_MD_SM3

This is the SM3 algorithm which yields a message digest of 32 bytes.

7.2 Working with hash algorithms

To use most of these function it is necessary to create a context; this is done using:

[Function]gcry_error_t gcry_md_open (gcry md hd t *hd, int algo, unsigned
int flags)

Create a message digest object for algorithm algo. flags may be given as an bitwise
OR of constants described below. algo may be given as 0 if the algorithms to use are
later set using gcry_md_enable. hd is guaranteed to either receive a valid handle or
NULL.

For a list of supported algorithms, see Section 7.1 [Available hash algorithms], page 51.

The flags allowed for mode are:

GCRY_MD_FLAG_SECURE

Allocate all buffers and the resulting digest in "secure memory". Use this
is the hashed data is highly confidential.

GCRY_MD_FLAG_HMAC

Turn the algorithm into a HMAC message authentication algorithm. This
only works if just one algorithm is enabled for the handle and that al-
gorithm is not an extendable-output function. Note that the function
gcry_md_setkey must be used to set the MAC key. The size of the
MAC is equal to the message digest of the underlying hash algorithm.
If you want CBC message authentication codes based on a cipher, see
Section 5.3 [Working with cipher handles], page 28.

GCRY_MD_FLAG_BUGEMU1

Versions of Libgcrypt before 1.6.0 had a bug in the Whirlpool code which
led to a wrong result for certain input sizes and write patterns. Using
this flag emulates that bug. This may for example be useful for applica-
tions which use Whirlpool as part of their key generation. It is strongly
suggested to use this flag only if really needed and if possible to the data
should be re-processed using the regular Whirlpool algorithm.

Note that this flag works for the entire hash context. If needed arises it
may be used to enable bug emulation for other hash algorithms. Thus
you should not use this flag for a multi-algorithm hash context.

You may use the function gcry_md_is_enabled to later check whether an algorithm
has been enabled.

Chapter 7: Hashing 55

If you want to calculate several hash algorithms at the same time, you have to use the
following function right after the gcry_md_open:

[Function]gcry_error_t gcry_md_enable (gcry md hd t h, int algo)
Add the message digest algorithm algo to the digest object described by handle h.
Duplicated enabling of algorithms is detected and ignored.

If the flag GCRY_MD_FLAG_HMAC was used, the key for the MAC must be set using the
function:

[Function]gcry_error_t gcry_md_setkey (gcry md hd t h, const void *key,
size t keylen)

For use with the HMAC feature or BLAKE2 keyed hash, set the MAC key to the
value of key of length keylen bytes. For HMAC, there is no restriction on the length
of the key. For keyed BLAKE2b hash, length of the key must be in the range 1 to
64 bytes. For keyed BLAKE2s hash, length of the key must be in the range 1 to 32
bytes.

After you are done with the hash calculation, you should release the resources by using:

[Function]void gcry_md_close (gcry md hd t h)
Release all resources of hash context h. h should not be used after a call to this
function. A NULL passed as h is ignored. The function also zeroises all sensitive
information associated with this handle.

Often you have to do several hash operations using the same algorithm. To avoid the
overhead of creating and releasing context, a reset function is provided:

[Function]void gcry_md_reset (gcry md hd t h)
Reset the current context to its initial state. This is effectively identical to a close
followed by an open and enabling all currently active algorithms.

Often it is necessary to start hashing some data and then continue to hash different data.
To avoid hashing the same data several times (which might not even be possible if the data
is received from a pipe), a snapshot of the current hash context can be taken and turned
into a new context:

[Function]gcry_error_t gcry_md_copy (gcry md hd t *handle_dst,
gcry md hd t handle_src)

Create a new digest object as an exact copy of the object described by handle han-
dle src and store it in handle dst. The context is not reset and you can continue to
hash data using this context and independently using the original context.

Now that we have prepared everything to calculate hashes, it is time to see how it is
actually done. There are two ways for this, one to update the hash with a block of memory
and one macro to update the hash by just one character. Both methods can be used on the
same hash context.

56 The Libgcrypt Reference Manual

[Function]void gcry_md_write (gcry md hd t h, const void *buffer, size t
length)

Pass length bytes of the data in buffer to the digest object with handle h to update the
digest values. This function should be used for large blocks of data. If this function
is used after the context has been finalized, it will keep on pushing the data through
the algorithm specific transform function and change the context; however the results
are not meaningful and this feature is only available to mitigate timing attacks.

[Function]void gcry_md_putc (gcry md hd t h, int c)
Pass the byte in c to the digest object with handle h to update the digest value. This
is an efficient function, implemented as a macro to buffer the data before an actual
update.

The semantics of the hash functions do not provide for reading out intermediate message
digests because the calculation must be finalized first. This finalization may for example
include the number of bytes hashed in the message digest or some padding.

[Function]void gcry_md_final (gcry md hd t h)
Finalize the message digest calculation. This is not really needed because gcry_md_

read and gcry_md_extract do this implicitly. After this has been done no further
updates (by means of gcry_md_write or gcry_md_putc should be done; However, to
mitigate timing attacks it is sometimes useful to keep on updating the context after
having stored away the actual digest. Only the first call to this function has an effect.
It is implemented as a macro.

The way to read out the calculated message digest is by using the function:

[Function]unsigned char * gcry_md_read (gcry md hd t h, int algo)
gcry_md_read returns the message digest after finalizing the calculation. This func-
tion may be used as often as required but it will always return the same value for
one handle. The returned message digest is allocated within the message context
and therefore valid until the handle is released or reset-ed (using gcry_md_close or
gcry_md_reset or it has been updated as a mitigation measure against timing at-
tacks. algo may be given as 0 to return the only enabled message digest or it may
specify one of the enabled algorithms. The function does return NULL if the requested
algorithm has not been enabled.

The way to read output of extendable-output function is by using the function:

[Function]gpg_err_code_t gcry_md_extract (gcry md hd t h, int algo, void
*buffer, size t length)

gcry_mac_read returns output from extendable-output function. This function may
be used as often as required to generate more output byte stream from the algorithm.
Function extracts the new output bytes to buffer of the length length. Buffer will be
fully populated with new output. algo may be given as 0 to return the only enabled
message digest or it may specify one of the enabled algorithms. The function does
return non-zero value if the requested algorithm has not been enabled.

Because it is often necessary to get the message digest of blocks of memory, two fast
convenience function are available for this task:

Chapter 7: Hashing 57

[Function]gpg_err_code_t gcry_md_hash_buffers (int algo,
unsigned int flags, void *digest, const gcry buffer t *iov, int iovcnt)

gcry_md_hash_buffers is a shortcut function to calculate a message digest from
several buffers. This function does not require a context and immediately returns
the message digest of the data described by iov and iovcnt. digest must be allocated
by the caller, large enough to hold the message digest yielded by the the specified
algorithm algo. This required size may be obtained by using the function gcry_md_

get_algo_dlen.

iov is an array of buffer descriptions with iovcnt items. The caller should zero out the
structures in this array and for each array item set the fields .data to the address of
the data to be hashed, .len to number of bytes to be hashed. If .off is also set, the
data is taken starting at .off bytes from the begin of the buffer. The field .size is
not used.

The only supported flag value for flags is GCRY MD FLAG HMAC which turns this
function into a HMAC function; the first item in iov is then used as the key.

On success the function returns 0 and stores the resulting hash or MAC at digest.

[Function]void gcry_md_hash_buffer (int algo, void *digest, const void
*buffer, size t length);

gcry_md_hash_buffer is a shortcut function to calculate a message digest of a buffer.
This function does not require a context and immediately returns the message digest
of the length bytes at buffer. digest must be allocated by the caller, large enough to
hold the message digest yielded by the the specified algorithm algo. This required
size may be obtained by using the function gcry_md_get_algo_dlen.

Note that in contrast to gcry_md_hash_buffers this function will abort the process
if an unavailable algorithm is used.

Hash algorithms are identified by internal algorithm numbers (see gcry_md_open for a
list). However, in most applications they are used by names, so two functions are available
to map between string representations and hash algorithm identifiers.

[Function]const char * gcry_md_algo_name (int algo)
Map the digest algorithm id algo to a string representation of the algorithm name.
For unknown algorithms this function returns the string "?". This function should
not be used to test for the availability of an algorithm.

[Function]int gcry_md_map_name (const char *name)
Map the algorithm with name to a digest algorithm identifier. Returns 0 if the algo-
rithm name is not known. Names representing ASN.1 object identifiers are recognized
if the IETF dotted format is used and the OID is prefixed with either "oid." or
"OID.". For a list of supported OIDs, see the source code at cipher/md.c. This
function should not be used to test for the availability of an algorithm.

[Function]gcry_error_t gcry_md_get_asnoid (int algo, void *buffer, size t
*length)

Return an DER encoded ASN.1 OID for the algorithm algo in the user allocated
buffer. length must point to variable with the available size of buffer and receives

58 The Libgcrypt Reference Manual

after return the actual size of the returned OID. The returned error code may be GPG_
ERR_TOO_SHORT if the provided buffer is to short to receive the OID; it is possible to
call the function with NULL for buffer to have it only return the required size. The
function returns 0 on success.

To test whether an algorithm is actually available for use, the following macro should
be used:

[Function]gcry_error_t gcry_md_test_algo (int algo)
The macro returns 0 if the algorithm algo is available for use.

If the length of a message digest is not known, it can be retrieved using the following
function:

[Function]unsigned int gcry_md_get_algo_dlen (int algo)
Retrieve the length in bytes of the digest yielded by algorithm algo. This is often
used prior to gcry_md_read to allocate sufficient memory for the digest.

In some situations it might be hard to remember the algorithm used for the ongoing
hashing. The following function might be used to get that information:

[Function]int gcry_md_get_algo (gcry md hd t h)
Retrieve the algorithm used with the handle h. Note that this does not work reliable
if more than one algorithm is enabled in h.

The following macro might also be useful:

[Function]int gcry_md_is_secure (gcry md hd t h)
This function returns true when the digest object h is allocated in "secure memory";
i.e. h was created with the GCRY_MD_FLAG_SECURE.

[Function]int gcry_md_is_enabled (gcry md hd t h, int algo)
This function returns true when the algorithm algo has been enabled for the digest
object h.

Tracking bugs related to hashing is often a cumbersome task which requires to add a
lot of printf statements into the code. Libgcrypt provides an easy way to avoid this. The
actual data hashed can be written to files on request.

[Function]void gcry_md_debug (gcry md hd t h, const char *suffix)
Enable debugging for the digest object with handle h. This creates files named
dbgmd-<n>.<string> while doing the actual hashing. suffix is the string part in
the filename. The number is a counter incremented for each new hashing. The data
in the file is the raw data as passed to gcry_md_write or gcry_md_putc. If NULL
is used for suffix, the debugging is stopped and the file closed. This is only rarely
required because gcry_md_close implicitly stops debugging.

59

8 Message Authentication Codes

Libgcrypt provides an easy and consistent to use interface for generating Message Authen-
tication Codes (MAC). MAC generation is buffered and interface similar to the one used
with hash algorithms. The programming model follows an open/process/close paradigm
and is in that similar to other building blocks provided by Libgcrypt.

8.1 Available MAC algorithms

GCRY_MAC_NONE

This is not a real algorithm but used by some functions as an error return value.
This constant is guaranteed to have the value 0.

GCRY_MAC_HMAC_SHA256

This is keyed-hash message authentication code (HMAC) message authentica-
tion algorithm based on the SHA-256 hash algorithm.

GCRY_MAC_HMAC_SHA224

This is HMAC message authentication algorithm based on the SHA-224 hash
algorithm.

GCRY_MAC_HMAC_SHA512

This is HMAC message authentication algorithm based on the SHA-512 hash
algorithm.

GCRY_MAC_HMAC_SHA384

This is HMAC message authentication algorithm based on the SHA-384 hash
algorithm.

GCRY_MAC_HMAC_SHA3_256

This is HMAC message authentication algorithm based on the SHA3-256 hash
algorithm.

GCRY_MAC_HMAC_SHA3_224

This is HMAC message authentication algorithm based on the SHA3-224 hash
algorithm.

GCRY_MAC_HMAC_SHA3_512

This is HMAC message authentication algorithm based on the SHA3-512 hash
algorithm.

GCRY_MAC_HMAC_SHA3_384

This is HMAC message authentication algorithm based on the SHA3-384 hash
algorithm.

GCRY_MAC_HMAC_SHA512_224

This is HMAC message authentication algorithm based on the SHA-512/224
hash algorithm.

GCRY_MAC_HMAC_SHA512_256

This is HMAC message authentication algorithm based on the SHA-512/256
hash algorithm.

60 The Libgcrypt Reference Manual

GCRY_MAC_HMAC_SHA1

This is HMAC message authentication algorithm based on the SHA-1 hash
algorithm.

GCRY_MAC_HMAC_MD5

This is HMAC message authentication algorithm based on the MD5 hash algo-
rithm.

GCRY_MAC_HMAC_MD4

This is HMAC message authentication algorithm based on the MD4 hash algo-
rithm.

GCRY_MAC_HMAC_RMD160

This is HMAC message authentication algorithm based on the RIPE-MD-160
hash algorithm.

GCRY_MAC_HMAC_WHIRLPOOL

This is HMAC message authentication algorithm based on the WHIRLPOOL
hash algorithm.

GCRY_MAC_HMAC_GOSTR3411_94

This is HMAC message authentication algorithm based on the GOST R 34.11-
94 hash algorithm.

GCRY_MAC_HMAC_STRIBOG256

This is HMAC message authentication algorithm based on the 256-bit hash
algorithm described in GOST R 34.11-2012.

GCRY_MAC_HMAC_STRIBOG512

This is HMAC message authentication algorithm based on the 512-bit hash
algorithm described in GOST R 34.11-2012.

GCRY_MAC_HMAC_BLAKE2B_512

This is HMAC message authentication algorithm based on the BLAKE2b-512
hash algorithm.

GCRY_MAC_HMAC_BLAKE2B_384

This is HMAC message authentication algorithm based on the BLAKE2b-384
hash algorithm.

GCRY_MAC_HMAC_BLAKE2B_256

This is HMAC message authentication algorithm based on the BLAKE2b-256
hash algorithm.

GCRY_MAC_HMAC_BLAKE2B_160

This is HMAC message authentication algorithm based on the BLAKE2b-160
hash algorithm.

GCRY_MAC_HMAC_BLAKE2S_256

This is HMAC message authentication algorithm based on the BLAKE2s-256
hash algorithm.

GCRY_MAC_HMAC_BLAKE2S_224

This is HMAC message authentication algorithm based on the BLAKE2s-224
hash algorithm.

Chapter 8: Message Authentication Codes 61

GCRY_MAC_HMAC_BLAKE2S_160

This is HMAC message authentication algorithm based on the BLAKE2s-160
hash algorithm.

GCRY_MAC_HMAC_BLAKE2S_128

This is HMAC message authentication algorithm based on the BLAKE2s-128
hash algorithm.

GCRY_MAC_HMAC_SM3

This is HMAC message authentication algorithm based on the SM3 hash algo-
rithm.

GCRY_MAC_CMAC_AES

This is CMAC (Cipher-based MAC) message authentication algorithm based
on the AES block cipher algorithm.

GCRY_MAC_CMAC_3DES

This is CMAC message authentication algorithm based on the three-key EDE
Triple-DES block cipher algorithm.

GCRY_MAC_CMAC_CAMELLIA

This is CMAC message authentication algorithm based on the Camellia block
cipher algorithm.

GCRY_MAC_CMAC_CAST5

This is CMACmessage authentication algorithm based on the CAST128-5 block
cipher algorithm.

GCRY_MAC_CMAC_BLOWFISH

This is CMAC message authentication algorithm based on the Blowfish block
cipher algorithm.

GCRY_MAC_CMAC_TWOFISH

This is CMAC message authentication algorithm based on the Twofish block
cipher algorithm.

GCRY_MAC_CMAC_SERPENT

This is CMAC message authentication algorithm based on the Serpent block
cipher algorithm.

GCRY_MAC_CMAC_SEED

This is CMAC message authentication algorithm based on the SEED block
cipher algorithm.

GCRY_MAC_CMAC_RFC2268

This is CMAC message authentication algorithm based on the Ron’s Cipher 2
block cipher algorithm.

GCRY_MAC_CMAC_IDEA

This is CMAC message authentication algorithm based on the IDEA block
cipher algorithm.

GCRY_MAC_CMAC_GOST28147

This is CMAC message authentication algorithm based on the GOST 28147-89
block cipher algorithm.

62 The Libgcrypt Reference Manual

GCRY_MAC_CMAC_SM4

This is CMAC message authentication algorithm based on the SM4 block cipher
algorithm.

GCRY_MAC_GMAC_AES

This is GMAC (GCM mode based MAC) message authentication algorithm
based on the AES block cipher algorithm.

GCRY_MAC_GMAC_CAMELLIA

This is GMAC message authentication algorithm based on the Camellia block
cipher algorithm.

GCRY_MAC_GMAC_TWOFISH

This is GMAC message authentication algorithm based on the Twofish block
cipher algorithm.

GCRY_MAC_GMAC_SERPENT

This is GMAC message authentication algorithm based on the Serpent block
cipher algorithm.

GCRY_MAC_GMAC_SEED

This is GMAC message authentication algorithm based on the SEED block
cipher algorithm.

GCRY_MAC_POLY1305

This is plain Poly1305 message authentication algorithm, used with one-time
key.

GCRY_MAC_POLY1305_AES

This is Poly1305-AES message authentication algorithm, used with key and
one-time nonce.

GCRY_MAC_POLY1305_CAMELLIA

This is Poly1305-Camellia message authentication algorithm, used with key and
one-time nonce.

GCRY_MAC_POLY1305_TWOFISH

This is Poly1305-Twofish message authentication algorithm, used with key and
one-time nonce.

GCRY_MAC_POLY1305_SERPENT

This is Poly1305-Serpent message authentication algorithm, used with key and
one-time nonce.

GCRY_MAC_POLY1305_SEED

This is Poly1305-SEED message authentication algorithm, used with key and
one-time nonce.

GCRY_MAC_GOST28147_IMIT

This is MAC construction defined in GOST 28147-89 (see RFC 5830 Section
8).

Chapter 8: Message Authentication Codes 63

8.2 Working with MAC algorithms

To use most of these function it is necessary to create a context; this is done using:

[Function]gcry_error_t gcry_mac_open (gcry mac hd t *hd, int algo,
unsigned int flags, gcry ctx t ctx)

Create a MAC object for algorithm algo. flags may be given as an bitwise OR of
constants described below. hd is guaranteed to either receive a valid handle or NULL.
ctx is context object to associate MAC object with. ctx maybe set to NULL.

For a list of supported algorithms, see Section 8.1 [Available MAC algorithms],
page 59.

The flags allowed for mode are:

GCRY_MAC_FLAG_SECURE

Allocate all buffers and the resulting MAC in "secure memory". Use this
if the MAC data is highly confidential.

In order to use a handle for performing MAC algorithm operations, a ‘key’ has to be set
first:

[Function]gcry_error_t gcry_mac_setkey (gcry mac hd t h, const void *key,
size t keylen)

Set the MAC key to the value of key of length keylen bytes. With HMAC algorithms,
there is no restriction on the length of the key. With CMAC algorithms, the length
of the key is restricted to those supported by the underlying block cipher.

GMAC algorithms and Poly1305-with-cipher algorithms need initialization vector to be
set, which can be performed with function:

[Function]gcry_error_t gcry_mac_setiv (gcry mac hd t h, const void *iv,
size t ivlen)

Set the IV to the value of iv of length ivlen bytes.

After you are done with the MAC calculation, you should release the resources by using:

[Function]void gcry_mac_close (gcry mac hd t h)
Release all resources of MAC context h. h should not be used after a call to this func-
tion. A NULL passed as h is ignored. The function also clears all sensitive information
associated with this handle.

Often you have to do several MAC operations using the same algorithm. To avoid the
overhead of creating and releasing context, a reset function is provided:

[Function]gcry_error_t gcry_mac_reset (gcry mac hd t h)
Reset the current context to its initial state. This is effectively identical to a close
followed by an open and setting same key.

Note that gcry mac reset is implemented as a macro.

Now that we have prepared everything to calculate MAC, it is time to see how it is
actually done.

64 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_mac_write (gcry mac hd t h, const void
*buffer, size t length)

Pass length bytes of the data in buffer to the MAC object with handle h to update the
MAC values. If this function is used after the context has been finalized, it will keep
on pushing the data through the algorithm specific transform function and thereby
change the context; however the results are not meaningful and this feature is only
available to mitigate timing attacks.

The way to read out the calculated MAC is by using the function:

[Function]gcry_error_t gcry_mac_read (gcry mac hd t h, void *buffer,
size t *length)

gcry_mac_read returns the MAC after finalizing the calculation. Function copies the
resulting MAC value to buffer of the length length. If length is larger than length of
resulting MAC value, then length of MAC is returned through length.

To compare existing MAC value with recalculated MAC, one is to use the function:

[Function]gcry_error_t gcry_mac_verify (gcry mac hd t h, void *buffer,
size t length)

gcry_mac_verify finalizes MAC calculation and compares result with length bytes
of data in buffer. Error code GPG_ERR_CHECKSUM is returned if the MAC value in the
buffer buffer does not match the MAC calculated in object h.

In some situations it might be hard to remember the algorithm used for the MAC
calculation. The following function might be used to get that information:

[Function]int gcry_mac_get_algo (gcry mac hd t h)
Retrieve the algorithm used with the handle h.

MAC algorithms are identified by internal algorithm numbers (see gcry_mac_open for a
list). However, in most applications they are used by names, so two functions are available
to map between string representations and MAC algorithm identifiers.

[Function]const char * gcry_mac_algo_name (int algo)
Map the MAC algorithm id algo to a string representation of the algorithm name.
For unknown algorithms this function returns the string "?". This function should
not be used to test for the availability of an algorithm.

[Function]int gcry_mac_map_name (const char *name)
Map the algorithm with name to a MAC algorithm identifier. Returns 0 if the algo-
rithm name is not known. This function should not be used to test for the availability
of an algorithm.

To test whether an algorithm is actually available for use, the following macro should
be used:

[Function]gcry_error_t gcry_mac_test_algo (int algo)
The macro returns 0 if the MAC algorithm algo is available for use.

If the length of a message digest is not known, it can be retrieved using the following
function:

Chapter 8: Message Authentication Codes 65

[Function]unsigned int gcry_mac_get_algo_maclen (int algo)
Retrieve the length in bytes of the MAC yielded by algorithm algo. This is often used
prior to gcry_mac_read to allocate sufficient memory for the MAC value. On error
0 is returned.

[Function]unsigned int gcry_mac_get_algo_keylen (algo)
This function returns length of the key for MAC algorithm algo. If the algorithm
supports multiple key lengths, the default supported key length is returned. On error
0 is returned. The key length is returned as number of octets.

67

9 Key Derivation

Libgcypt provides a general purpose function to derive keys from strings.

[Function]gpg_error_t gcry_kdf_derive (const void *passphrase,
size t passphraselen, int algo, int subalgo, const void *salt,
size t saltlen, unsigned long iterations, size t keysize,
void *keybuffer)

Derive a key from a passphrase. keysize gives the requested size of the keys in octets.
keybuffer is a caller provided buffer filled on success with the derived key. The
input passphrase is taken from passphrase which is an arbitrary memory buffer of
passphraselen octets. algo specifies the KDF algorithm to use; see below. subalgo
specifies an algorithm used internally by the KDF algorithms; this is usually a hash
algorithm but certain KDF algorithms may use it differently. salt is a salt of length
saltlen octets, as needed by most KDF algorithms. iterations is a positive integer
parameter to most KDFs.

On success 0 is returned; on failure an error code.

Currently supported KDFs (parameter algo):

GCRY_KDF_SIMPLE_S2K

The OpenPGP simple S2K algorithm (cf. RFC4880). Its use is strongly
deprecated. salt and iterations are not needed and may be passed as
NULL/0.

GCRY_KDF_SALTED_S2K

The OpenPGP salted S2K algorithm (cf. RFC4880). Usually not used.
iterations is not needed and may be passed as 0. saltlen must be given
as 8.

GCRY_KDF_ITERSALTED_S2K

The OpenPGP iterated+salted S2K algorithm (cf. RFC4880). This is
the default for most OpenPGP applications. saltlen must be given as 8.
Note that OpenPGP defines a special encoding of the iterations; however
this function takes the plain decoded iteration count.

GCRY_KDF_PBKDF2

The PKCS#5 Passphrase Based Key Derivation Function number 2.

GCRY_KDF_SCRYPT

The SCRYPT Key Derivation Function. The subalgorithm is used to
specify the CPU/memory cost parameter N, and the number of iterations
is used for the parallelization parameter p. The block size is fixed at 8 in
the current implementation.

69

10 Random Numbers

10.1 Quality of random numbers

Libgcypt offers random numbers of different quality levels:

[Data type]gcry_random_level_t
The constants for the random quality levels are of this enum type.

GCRY_WEAK_RANDOM

For all functions, except for gcry_mpi_randomize, this level maps to
GCRY STRONG RANDOM. If you do not want this, consider using
gcry_create_nonce.

GCRY_STRONG_RANDOM

Use this level for session keys and similar purposes.

GCRY_VERY_STRONG_RANDOM

Use this level for long term key material.

10.2 Retrieving random numbers

[Function]void gcry_randomize (unsigned char *buffer, size t length, enum
gcry random level level)

Fill buffer with length random bytes using a random quality as defined by level.

[Function]void * gcry_random_bytes (size t nbytes, enum gcry random level
level)

Convenience function to allocate a memory block consisting of nbytes fresh random
bytes using a random quality as defined by level.

[Function]void * gcry_random_bytes_secure (size t nbytes, enum
gcry random level level)

Convenience function to allocate a memory block consisting of nbytes fresh random
bytes using a random quality as defined by level. This function differs from gcry_

random_bytes in that the returned buffer is allocated in a “secure” area of the mem-
ory.

[Function]void gcry_create_nonce (unsigned char *buffer, size t length)
Fill buffer with length unpredictable bytes. This is commonly called a nonce and
may also be used for initialization vectors and padding. This is an extra function
nearly independent of the other random function for 3 reasons: It better protects the
regular random generator’s internal state, provides better performance and does not
drain the precious entropy pool.

71

11 S-expressions

S-expressions are used by the public key functions to pass complex data struc-
tures around. These LISP like objects are used by some cryptographic protocols
(cf. RFC-2692) and Libgcrypt provides functions to parse and construct them.
For detailed information, see Ron Rivest, code and description of S-expressions,
http://theory.lcs.mit.edu/~rivest/sexp.html.

11.1 Data types for S-expressions

[Data type]gcry_sexp_t
The gcry_sexp_t type describes an object with the Libgcrypt internal representation
of an S-expression.

11.2 Working with S-expressions

There are several functions to create an Libgcrypt S-expression object from its external
representation or from a string template. There is also a function to convert the internal
representation back into one of the external formats:

[Function]gcry_error_t gcry_sexp_new (gcry sexp t *r_sexp,
const void *buffer, size t length, int autodetect)

This is the generic function to create an new S-expression object from its external
representation in buffer of length bytes. On success the result is stored at the address
given by r sexp. With autodetect set to 0, the data in buffer is expected to be in
canonized format, with autodetect set to 1 the parses any of the defined external
formats. If buffer does not hold a valid S-expression an error code is returned and
r sexp set to NULL. Note that the caller is responsible for releasing the newly allocated
S-expression using gcry_sexp_release.

[Function]gcry_error_t gcry_sexp_create (gcry sexp t *r_sexp,
void *buffer, size t length, int autodetect, void (*freefnc)(void*))

This function is identical to gcry_sexp_new but has an extra argument freefnc, which,
when not set to NULL, is expected to be a function to release the buffer; most likely the
standard free function is used for this argument. This has the effect of transferring
the ownership of buffer to the created object in r sexp. The advantage of using this
function is that Libgcrypt might decide to directly use the provided buffer and thus
avoid extra copying.

[Function]gcry_error_t gcry_sexp_sscan (gcry sexp t *r_sexp,
size t *erroff, const char *buffer, size t length)

This is another variant of the above functions. It behaves nearly identical but provides
an erroff argument which will receive the offset into the buffer where the parsing
stopped on error.

[Function]gcry_error_t gcry_sexp_build (gcry sexp t *r_sexp,
size t *erroff, const char *format, ...)

This function creates an internal S-expression from the string template format and
stores it at the address of r sexp. If there is a parsing error, the function returns an

http://theory.lcs.mit.edu/~rivest/sexp.html

72 The Libgcrypt Reference Manual

appropriate error code and stores the offset into format where the parsing stopped in
erroff. The function supports a couple of printf-like formatting characters and expects
arguments for some of these escape sequences right after format. The following format
characters are defined:

‘%m’ The next argument is expected to be of type gcry_mpi_t and a copy of
its value is inserted into the resulting S-expression. The MPI is stored as
a signed integer.

‘%M’ The next argument is expected to be of type gcry_mpi_t and a copy of
its value is inserted into the resulting S-expression. The MPI is stored as
an unsigned integer.

‘%s’ The next argument is expected to be of type char * and that string is
inserted into the resulting S-expression.

‘%d’ The next argument is expected to be of type int and its value is inserted
into the resulting S-expression.

‘%u’ The next argument is expected to be of type unsigned int and its value
is inserted into the resulting S-expression.

‘%b’ The next argument is expected to be of type int directly followed by an
argument of type char *. This represents a buffer of given length to be
inserted into the resulting S-expression.

‘%S’ The next argument is expected to be of type gcry_sexp_t and a copy of
that S-expression is embedded in the resulting S-expression. The argu-
ment needs to be a regular S-expression, starting with a parenthesis.

No other format characters are defined and would return an error. Note that the
format character ‘%%’ does not exists, because a percent sign is not a valid character
in an S-expression.

[Function]void gcry_sexp_release (gcry sexp t sexp)
Release the S-expression object sexp. If the S-expression is stored in secure memory
it explicitly zeroises that memory; note that this is done in addition to the zeroisation
always done when freeing secure memory.

The next 2 functions are used to convert the internal representation back into a regular
external S-expression format and to show the structure for debugging.

[Function]size_t gcry_sexp_sprint (gcry sexp t sexp, int mode,
char *buffer, size t maxlength)

Copies the S-expression object sexp into buffer using the format specified in mode.
maxlength must be set to the allocated length of buffer. The function returns the
actual length of valid bytes put into buffer or 0 if the provided buffer is too short.
Passing NULL for buffer returns the required length for buffer. For convenience reasons
an extra byte with value 0 is appended to the buffer.

The following formats are supported:

GCRYSEXP_FMT_DEFAULT

Returns a convenient external S-expression representation.

Chapter 11: S-expressions 73

GCRYSEXP_FMT_CANON

Return the S-expression in canonical format.

GCRYSEXP_FMT_BASE64

Not currently supported.

GCRYSEXP_FMT_ADVANCED

Returns the S-expression in advanced format.

[Function]void gcry_sexp_dump (gcry sexp t sexp)
Dumps sexp in a format suitable for debugging to Libgcrypt’s logging stream.

Often canonical encoding is used in the external representation. The following function can
be used to check for valid encoding and to learn the length of the S-expression.

[Function]size_t gcry_sexp_canon_len (const unsigned char *buffer,
size t length, size t *erroff, int *errcode)

Scan the canonical encoded buffer with implicit length values and return the actual
length this S-expression uses. For a valid S-expression it should never return 0. If
length is not 0, the maximum length to scan is given; this can be used for syntax
checks of data passed from outside. errcode and erroff may both be passed as NULL.

There are functions to parse S-expressions and retrieve elements:

[Function]gcry_sexp_t gcry_sexp_find_token (const gcry sexp t list,
const char *token, size t toklen)

Scan the S-expression for a sublist with a type (the car of the list) matching the string
token. If toklen is not 0, the token is assumed to be raw memory of this length. The
function returns a newly allocated S-expression consisting of the found sublist or NULL
when not found.

[Function]int gcry_sexp_length (const gcry sexp t list)
Return the length of the list. For a valid S-expression this should be at least 1.

[Function]gcry_sexp_t gcry_sexp_nth (const gcry sexp t list, int number)
Create and return a new S-expression from the element with index number in list.
Note that the first element has the index 0. If there is no such element, NULL is
returned.

[Function]gcry_sexp_t gcry_sexp_car (const gcry sexp t list)
Create and return a new S-expression from the first element in list; this is called the
"type" and should always exist per S-expression specification and in general be a
string. NULL is returned in case of a problem.

[Function]gcry_sexp_t gcry_sexp_cdr (const gcry sexp t list)
Create and return a new list form all elements except for the first one. Note that this
function may return an invalid S-expression because it is not guaranteed, that the
type exists and is a string. However, for parsing a complex S-expression it might be
useful for intermediate lists. Returns NULL on error.

74 The Libgcrypt Reference Manual

[Function]const char * gcry_sexp_nth_data (const gcry sexp t list,
int number, size t *datalen)

This function is used to get data from a list. A pointer to the actual data with index
number is returned and the length of this data will be stored to datalen. If there
is no data at the given index or the index represents another list, NULL is returned.
Caution: The returned pointer is valid as long as list is not modified or released.

Here is an example on how to extract and print the surname (Meier) from the S-
expression ‘(Name Otto Meier (address Burgplatz 3))’:

size_t len;

const char *name;

name = gcry_sexp_nth_data (list, 2, &len);

printf ("my name is %.*s\n", (int)len, name);

[Function]void * gcry_sexp_nth_buffer (const gcry sexp t list,
int number, size t *rlength)

This function is used to get data from a list. A malloced buffer with the actual data at
list index number is returned and the length of this buffer will be stored to rlength.
If there is no data at the given index or the index represents another list, NULL is
returned. The caller must release the result using gcry_free.

Here is an example on how to extract and print the CRC value from the S-expression
‘(hash crc32 #23ed00d7)’:

size_t len;

char *value;

value = gcry_sexp_nth_buffer (list, 2, &len);

if (value)

fwrite (value, len, 1, stdout);

gcry_free (value);

[Function]char * gcry_sexp_nth_string (gcry sexp t list, int number)
This function is used to get and convert data from a list. The data is assumed to be a
Nul terminated string. The caller must release this returned value using gcry_free.
If there is no data at the given index, the index represents a list or the value can’t be
converted to a string, NULL is returned.

[Function]gcry_mpi_t gcry_sexp_nth_mpi (gcry sexp t list, int number,
int mpifmt)

This function is used to get and convert data from a list. This data is assumed to
be an MPI stored in the format described by mpifmt and returned as a standard
Libgcrypt MPI. The caller must release this returned value using gcry_mpi_release.
If there is no data at the given index, the index represents a list or the value can’t be
converted to an MPI, NULL is returned. If you use this function to parse results of a
public key function, you most likely want to use GCRYMPI_FMT_USG.

Chapter 11: S-expressions 75

[Function]gpg_error_t gcry_sexp_extract_param (gcry sexp t sexp,
const char *path, const char *list, ...)

Extract parameters from an S-expression using a list of parameter names. The names
of these parameters are specified in LIST. White space between the parameter names
are ignored. Some special characters and character sequences may be given to control
the conversion:

‘+’ Switch to unsigned integer format (GCRYMPI FMT USG). This is the
default mode.

‘-’ Switch to standard signed format (GCRYMPI FMT STD).

‘/’ Switch to opaque MPI format. The resulting MPIs may not be used for
computations; see gcry_mpi_get_opaque for details.

‘&’ Switch to buffer descriptor mode. See below for details.

‘%s’ Switch to string mode. The expected argument is the address of a char *

variable; the caller must release that value. If the parameter was marked
optional and is not found, NULL is stored.

‘%#s’ Switch to multi string mode. The expected argument is the address of a
char * variable; the caller must release that value. If the parameter was
marked optional and is not found, NULL is stored. A multi string takes
all values, assumes they are strings and concatenates them using a space
as delimiter. In case a value is actually another list this is not further
parsed but a () is inserted in place of that sublist.

‘%u’ Switch to unsigned integer mode. The expected argument is address of a
unsigned int variable.

‘%lu’ Switch to unsigned long integer mode. The expected argument is address
of a unsigned long variable.

‘%d’ Switch to signed integer mode. The expected argument is address of a
int variable.

‘%ld’ Switch to signed long integer mode. The expected argument is address
of a long variable.

‘%zu’ Switch to size t mode. The expected argument is address of a size_t

variable.

‘?’ If immediately following a parameter letter (no white space allowed), that
parameter is considered optional.

In general parameter names are single letters. To use a string for a parameter name,
enclose the name in single quotes.

Unless in buffer descriptor mode for each parameter name a pointer to an gcry_mpi_

t variable is expected that must be set to NULL prior to invoking this function, and
finally a NULL is expected. For example

gcry_sexp_extract_param (key, NULL, "n/x+e d-’foo’",

&mpi_n, &mpi_x, &mpi_e, &mpi_d, &mpi_foo, NULL)

76 The Libgcrypt Reference Manual

stores the parameter ’n’ from key as an unsigned MPI into mpi n, the parameter ’x’
as an opaque MPI into mpi x, the parameters ’e’ and ’d’ again as an unsigned MPI
into mpi e and mpi d and finally the parameter ’foo’ as a signed MPI into mpi foo.

path is an optional string used to locate a token. The exclamation mark separated to-
kens are used via gcry_sexp_find_token to find a start point inside the S-expression.

In buffer descriptor mode a pointer to a gcry_buffer_t descriptor is expected instead
of a pointer to an MPI. The caller may use two different operation modes here: If
the data field of the provided descriptor is NULL, the function allocates a new buffer
and stores it at data; the other fields are set accordingly with off set to 0. If data
is not NULL, the function assumes that the data, size, and off fields specify a buffer
where to but the value of the respective parameter; on return the len field receives
the number of bytes copied to that buffer; in case the buffer is too small, the function
immediately returns with an error code (and len is set to 0).

The function returns 0 on success. On error an error code is returned, all passed MPIs
that might have been allocated up to this point are deallocated and set to NULL, and
all passed buffers are either truncated if the caller supplied the buffer, or deallocated
if the function allocated the buffer.

77

12 MPI library

Public key cryptography is based on mathematics with large numbers. To implement the
public key functions, a library for handling these large numbers is required. Because of the
general usefulness of such a library, its interface is exposed by Libgcrypt. In the context
of Libgcrypt and in most other applications, these large numbers are called MPIs (multi-
precision-integers).

12.1 Data types

[Data type]gcry_mpi_t
This type represents an object to hold an MPI.

[Data type]gcry_mpi_point_t
This type represents an object to hold a point for elliptic curve math.

12.2 Basic functions

To work with MPIs, storage must be allocated and released for the numbers. This can be
done with one of these functions:

[Function]gcry_mpi_t gcry_mpi_new (unsigned int nbits)
Allocate a new MPI object, initialize it to 0 and initially allocate enough memory
for a number of at least nbits. This pre-allocation is only a small performance issue
and not actually necessary because Libgcrypt automatically re-allocates the required
memory.

[Function]gcry_mpi_t gcry_mpi_snew (unsigned int nbits)
This is identical to gcry_mpi_new but allocates the MPI in the so called "secure
memory" which in turn will take care that all derived values will also be stored in this
"secure memory". Use this for highly confidential data like private key parameters.

[Function]gcry_mpi_t gcry_mpi_copy (const gcry mpi t a)
Create a new MPI as the exact copy of a but with the constant and immutable flags
cleared.

[Function]void gcry_mpi_release (gcry mpi t a)
Release the MPI a and free all associated resources. Passing NULL is allowed and
ignored. When a MPI stored in the "secure memory" is released, that memory gets
wiped out immediately.

The simplest operations are used to assign a new value to an MPI:

[Function]gcry_mpi_t gcry_mpi_set (gcry mpi t w, const gcry mpi t u)
Assign the value of u to w and return w. If NULL is passed for w, a new MPI is
allocated, set to the value of u and returned.

[Function]gcry_mpi_t gcry_mpi_set_ui (gcry mpi t w, unsigned long u)
Assign the value of u to w and return w. If NULL is passed for w, a new MPI is
allocated, set to the value of u and returned. This function takes an unsigned int

as type for u and thus it is only possible to set w to small values (usually up to the
word size of the CPU).

78 The Libgcrypt Reference Manual

[Function]gcry_error_t gcry_mpi_get_ui (unsigned int *w, gcry mpi t u)
If u is not negative and small enough to be stored in an unsigned int variable, store
its value at w. If the value does not fit or is negative return GPG ERR ERANGE
and do not change the value stored at w. Note that this function returns an unsigned

int so that this value can immediately be used with the bit test functions. This is in
contrast to the other " ui" functions which allow for values up to an unsigned long.

[Function]void gcry_mpi_swap (gcry mpi t a, gcry mpi t b)
Swap the values of a and b.

[Function]void gcry_mpi_snatch (gcry mpi t w, const gcry mpi t u)
Set u into w and release u. If w is NULL only u will be released.

[Function]void gcry_mpi_neg (gcry mpi t w, gcry mpi t u)
Set the sign of w to the negative of u.

[Function]void gcry_mpi_abs (gcry mpi t w)
Clear the sign of w.

12.3 MPI formats

The following functions are used to convert between an external representation of an MPI
and the internal one of Libgcrypt.

[Function]gcry_error_t gcry_mpi_scan (gcry mpi t *r_mpi,
enum gcry mpi format format, const unsigned char *buffer,
size t buflen, size t *nscanned)

Convert the external representation of an integer stored in buffer with a length of
buflen into a newly created MPI returned which will be stored at the address of
r mpi. For certain formats the length argument is not required and should be passed
as 0. A buflen larger than 16 MiByte will be rejected. After a successful operation
the variable nscanned receives the number of bytes actually scanned unless nscanned
was given as NULL. format describes the format of the MPI as stored in buffer:

GCRYMPI_FMT_STD

2-complement stored without a length header. Note that gcry_mpi_

print stores a 0 as a string of zero length.

GCRYMPI_FMT_PGP

As used by OpenPGP (only defined as unsigned). This is basically
GCRYMPI_FMT_STD with a 2 byte big endian length header. A length
header indicating a length of more than 16384 is not allowed.

GCRYMPI_FMT_SSH

As used in the Secure Shell protocol. This is GCRYMPI_FMT_STD with a 4
byte big endian header.

GCRYMPI_FMT_HEX

Stored as a string with each byte of the MPI encoded as 2 hex digits.
Negative numbers are prefix with a minus sign and in addition the high
bit is always zero to make clear that an explicit sign ist used. When using
this format, buflen must be zero.

Chapter 12: MPI library 79

GCRYMPI_FMT_USG

Simple unsigned integer.

Note that all of the above formats store the integer in big-endian format (MSB first).

[Function]gcry_error_t gcry_mpi_print (enum gcry mpi format format,
unsigned char *buffer, size t buflen, size t *nwritten,
const gcry mpi t a)

Convert the MPI a into an external representation described by format (see above)
and store it in the provided buffer which has a usable length of at least the buflen
bytes. If nwritten is not NULL, it will receive the number of bytes actually stored in
buffer after a successful operation.

[Function]gcry_error_t gcry_mpi_aprint (enum gcry mpi format format,
unsigned char **buffer, size t *nbytes, const gcry mpi t a)

Convert the MPI a into an external representation described by format (see above)
and store it in a newly allocated buffer which address will be stored in the variable
buffer points to. The number of bytes stored in this buffer will be stored in the
variable nbytes points to, unless nbytes is NULL.

Even if nbytes is zero, the function allocates at least one byte and store a zero there.
Thus with formats GCRYMPI_FMT_STD and GCRYMPI_FMT_USG the caller may safely set
a returned length of 0 to 1 to represent a zero as a 1 byte string.

[Function]void gcry_mpi_dump (const gcry mpi t a)
Dump the value of a in a format suitable for debugging to Libgcrypt’s logging stream.
Note that one leading space but no trailing space or linefeed will be printed. It is
okay to pass NULL for a.

12.4 Calculations

Basic arithmetic operations:

[Function]void gcry_mpi_add (gcry mpi t w, gcry mpi t u, gcry mpi t v)
w = u+ v .

[Function]void gcry_mpi_add_ui (gcry mpi t w, gcry mpi t u,
unsigned long v)

w = u+ v . Note that v is an unsigned integer.

[Function]void gcry_mpi_addm (gcry mpi t w, gcry mpi t u, gcry mpi t v,
gcry mpi t m)

w = u+ v mod m.

[Function]void gcry_mpi_sub (gcry mpi t w, gcry mpi t u, gcry mpi t v)
w = u− v .

[Function]void gcry_mpi_sub_ui (gcry mpi t w, gcry mpi t u,
unsigned long v)

w = u− v . v is an unsigned integer.

80 The Libgcrypt Reference Manual

[Function]void gcry_mpi_subm (gcry mpi t w, gcry mpi t u, gcry mpi t v,
gcry mpi t m)

w = u− v mod m.

[Function]void gcry_mpi_mul (gcry mpi t w, gcry mpi t u, gcry mpi t v)
w = u ∗ v .

[Function]void gcry_mpi_mul_ui (gcry mpi t w, gcry mpi t u,
unsigned long v)

w = u ∗ v . v is an unsigned integer.

[Function]void gcry_mpi_mulm (gcry mpi t w, gcry mpi t u, gcry mpi t v,
gcry mpi t m)

w = u ∗ v mod m.

[Function]void gcry_mpi_mul_2exp (gcry mpi t w, gcry mpi t u,
unsigned long e)

w = u ∗ 2e.

[Function]void gcry_mpi_div (gcry mpi t q, gcry mpi t r,
gcry mpi t dividend, gcry mpi t divisor, int round)

q = dividend/divisor, r = dividend mod divisor. q and r may be passed as NULL.
round is either negative for floored division (rounds towards the next lower integer)
or zero for truncated division (rounds towards zero).

[Function]void gcry_mpi_mod (gcry mpi t r, gcry mpi t dividend,
gcry mpi t divisor)

r = dividend mod divisor.

[Function]void gcry_mpi_powm (gcry mpi t w, const gcry mpi t b,
const gcry mpi t e, const gcry mpi t m)

w = be mod m.

[Function]int gcry_mpi_gcd (gcry mpi t g, gcry mpi t a, gcry mpi t b)
Set g to the greatest common divisor of a and b. Return true if the g is 1.

[Function]int gcry_mpi_invm (gcry mpi t x, gcry mpi t a, gcry mpi t m)
Set x to the multiplicative inverse of a mod m. Return true if the inverse exists.

12.5 Comparisons

The next 2 functions are used to compare MPIs:

[Function]int gcry_mpi_cmp (const gcry mpi t u, const gcry mpi t v)
Compare the multi-precision-integers number u and v returning 0 for equality, a
positive value for u > v and a negative for u < v. If both numbers are opaque values
(cf, gcry mpi set opaque) the comparison is done by checking the bit sizes using
memcmp. If only one number is an opaque value, the opaque value is less than the
other number.

Chapter 12: MPI library 81

[Function]int gcry_mpi_cmp_ui (const gcry mpi t u, unsigned long v)
Compare the multi-precision-integers number u with the unsigned integer v returning
0 for equality, a positive value for u > v and a negative for u < v.

[Function]int gcry_mpi_is_neg (const gcry mpi t a)
Return 1 if a is less than zero; return 0 if zero or positive.

12.6 Bit manipulations

There are a couple of functions to get information on arbitrary bits in an MPI and to set
or clear them:

[Function]unsigned int gcry_mpi_get_nbits (gcry mpi t a)
Return the number of bits required to represent a.

[Function]int gcry_mpi_test_bit (gcry mpi t a, unsigned int n)
Return true if bit number n (counting from 0) is set in a.

[Function]void gcry_mpi_set_bit (gcry mpi t a, unsigned int n)
Set bit number n in a.

[Function]void gcry_mpi_clear_bit (gcry mpi t a, unsigned int n)
Clear bit number n in a.

[Function]void gcry_mpi_set_highbit (gcry mpi t a, unsigned int n)
Set bit number n in a and clear all bits greater than n.

[Function]void gcry_mpi_clear_highbit (gcry mpi t a, unsigned int n)
Clear bit number n in a and all bits greater than n.

[Function]void gcry_mpi_rshift (gcry mpi t x, gcry mpi t a, unsigned int n)
Shift the value of a by n bits to the right and store the result in x.

[Function]void gcry_mpi_lshift (gcry mpi t x, gcry mpi t a, unsigned int n)
Shift the value of a by n bits to the left and store the result in x.

12.7 EC functions

Libgcrypt provides an API to access low level functions used by its elliptic curve imple-
mentation. These functions allow to implement elliptic curve methods for which no explicit
support is available.

[Function]gcry_mpi_point_t gcry_mpi_point_new (unsigned int nbits)
Allocate a new point object, initialize it to 0, and allocate enough memory for a points
of at least nbits. This pre-allocation yields only a small performance win and is not
really necessary because Libgcrypt automatically re-allocates the required memory.
Using 0 for nbits is usually the right thing to do.

[Function]void gcry_mpi_point_release (gcry mpi point t point)
Release point and free all associated resources. Passing NULL is allowed and ignored.

82 The Libgcrypt Reference Manual

[Function]gcry_mpi_point_t gcry_mpi_point_copy (gcry mpi point t point)
Allocate and return a new point object and initialize it with point. If point is NULL
the function is identical to gcry_mpi_point_new(0).

[Function]void gcry_mpi_point_get (gcry mpi t x, gcry mpi t y,
gcry mpi t z, gcry mpi point t point)

Store the projective coordinates from point into the MPIs x, y, and z. If a coordinate
is not required, NULL may be used for x, y, or z.

[Function]void gcry_mpi_point_snatch_get (gcry mpi t x, gcry mpi t y,
gcry mpi t z, gcry mpi point t point)

Store the projective coordinates from point into the MPIs x, y, and z. If a coordinate
is not required, NULL may be used for x, y, or z. The object point is then released.
Using this function instead of gcry_mpi_point_get and gcry_mpi_point_release

has the advantage of avoiding some extra memory allocations and copies.

[Function]gcry_mpi_point_t gcry_mpi_point_set (gcry mpi point t point,
gcry mpi t x, gcry mpi t y, gcry mpi t z)

Store the projective coordinates from x, y, and z into point. If a coordinate is given
as NULL, the value 0 is used. If NULL is used for point a new point object is allocated
and returned. Returns point or the newly allocated point object.

[Function]gcry_mpi_point_t gcry_mpi_point_snatch_set (
gcry mpi point t point, gcry mpi t x, gcry mpi t y, gcry mpi t z)

Store the projective coordinates from x, y, and z into point. If a coordinate is given as
NULL, the value 0 is used. If NULL is used for point a new point object is allocated and
returned. The MPIs x, y, and z are released. Using this function instead of gcry_mpi_
point_set and 3 calls to gcry_mpi_release has the advantage of avoiding some extra
memory allocations and copies. Returns point or the newly allocated point object.

[Function]gpg_error_t gcry_mpi_ec_new (gcry ctx t *r_ctx,
gcry sexp t keyparam, const char *curvename)

Allocate a new context for elliptic curve operations. If keyparam is given it specifies
the parameters of the curve (see [ecc keyparam], page 36). If curvename is given in
addition to keyparam and the key parameters do not include a named curve reference,
the string curvename is used to fill in missing parameters. If only curvename is given,
the context is initialized for this named curve.

If a parameter specifying a point (e.g. g or q) is not found, the parser looks for a
non-encoded point by appending .x, .y, and .z to the parameter name and looking
them all up to create a point. A parameter with the suffix .z is optional and defaults
to 1.

On success the function returns 0 and stores the new context object at r ctx; this
object eventually needs to be released (see [gcry ctx release], page 89). On error the
function stores NULL at r ctx and returns an error code.

[Function]gcry_mpi_t gcry_mpi_ec_get_mpi (const char *name,
gcry ctx t ctx, int copy)

Return the MPI with name from the context ctx. If not found NULL is returned. If
the returned MPI may later be modified, it is suggested to pass 1 to copy, so that

Chapter 12: MPI library 83

the function guarantees that a modifiable copy of the MPI is returned. If 0 is used
for copy, this function may return a constant flagged MPI. In any case gcry_mpi_

release needs to be called to release the result. For valid names [ecc keyparam],
page 36. If the public key q is requested but only the private key d is available, q
will be recomputed on the fly. If a point parameter is requested it is returned as an
uncompressed encoded point unless these special names are used:

q@eddsa Return an EdDSA style compressed point. This is only supported for
Twisted Edwards curves.

[Function]gcry_mpi_point_t gcry_mpi_ec_get_point (const char *name,
gcry ctx t ctx, int copy)

Return the point with name from the context ctx. If not found NULL is returned. If
the returned MPI may later be modified, it is suggested to pass 1 to copy, so that
the function guarantees that a modifiable copy of the MPI is returned. If 0 is used
for copy, this function may return a constant flagged point. In any case gcry_mpi_

point_release needs to be called to release the result. If the public key q is requested
but only the private key d is available, q will be recomputed on the fly.

[Function]gpg_error_t gcry_mpi_ec_set_mpi (const char *name,
gcry mpi t newvalue, gcry ctx t ctx)

Store the MPI newvalue at name into the context ctx. On success 0 is returned; on
error an error code. Valid names are the MPI parameters of an elliptic curve (see
[ecc keyparam], page 36).

[Function]gpg_error_t gcry_mpi_ec_set_point (const char *name,
gcry mpi point t newvalue, gcry ctx t ctx)

Store the point newvalue at name into the context ctx. On success 0 is returned; on
error an error code. Valid names are the point parameters of an elliptic curve (see
[ecc keyparam], page 36).

[Function]gpg_err_code_t gcry_mpi_ec_decode_point (mpi point t result,
gcry mpi t value, gcry ctx t ctx)

Decode the point given as an MPI in value and store at result. To decide which
encoding is used the function takes a context ctx which can be created with gcry_

mpi_ec_new. If NULL is given for the context the function assumes a 0x04 prefixed
uncompressed encoding. On error an error code is returned and result might be
changed.

[Function]int gcry_mpi_ec_get_affine (gcry mpi t x, gcry mpi t y,
gcry mpi point t point, gcry ctx t ctx)

Compute the affine coordinates from the projective coordinates in point and store
them into x and y. If one coordinate is not required, NULL may be passed to x or y.
ctx is the context object which has been created using gcry_mpi_ec_new. Returns 0
on success or not 0 if point is at infinity.

Note that you can use gcry_mpi_ec_set_point with the value GCRYMPI_CONST_ONE

for z to convert affine coordinates back into projective coordinates.

84 The Libgcrypt Reference Manual

[Function]void gcry_mpi_ec_dup (gcry mpi point t w, gcry mpi point t u,
gcry ctx t ctx)

Double the point u of the elliptic curve described by ctx and store the result into w.

[Function]void gcry_mpi_ec_add (gcry mpi point t w, gcry mpi point t u,
gcry mpi point t v, gcry ctx t ctx)

Add the points u and v of the elliptic curve described by ctx and store the result into
w.

[Function]void gcry_mpi_ec_sub (gcry mpi point t w, gcry mpi point t u,
gcry mpi point t v, gcry ctx t ctx)

Subtracts the point v from the point u of the elliptic curve described by ctx and store
the result into w. Only Twisted Edwards curves are supported for now.

[Function]void gcry_mpi_ec_mul (gcry mpi point t w, gcry mpi t n,
gcry mpi point t u, gcry ctx t ctx)

Multiply the point u of the elliptic curve described by ctx by n and store the result
into w.

[Function]int gcry_mpi_ec_curve_point (gcry mpi point t point,
gcry ctx t ctx)

Return true if point is on the elliptic curve described by ctx.

12.8 Miscellaneous

An MPI data type is allowed to be “misused” to store an arbitrary value. Two functions
implement this kludge:

[Function]gcry_mpi_t gcry_mpi_set_opaque (gcry mpi t a, void *p,
unsigned int nbits)

Store nbits of the value p points to in a and mark a as an opaque value (i.e. an value
that can’t be used for any math calculation and is only used to store an arbitrary bit
pattern in a). Ownership of p is taken by this function and thus the user may not use
dereference the passed value anymore. It is required that them memory referenced
by p has been allocated in a way that gcry_free is able to release it.

WARNING: Never use an opaque MPI for actual math operations. The only valid
functions are gcry mpi get opaque and gcry mpi release. Use gcry mpi scan to con-
vert a string of arbitrary bytes into an MPI.

[Function]gcry_mpi_t gcry_mpi_set_opaque_copy (gcry mpi t a,
const void *p, unsigned int nbits)

Same as gcry_mpi_set_opaque but ownership of p is not taken instead a copy of p
is used.

[Function]void * gcry_mpi_get_opaque (gcry mpi t a, unsigned int *nbits)
Return a pointer to an opaque value stored in a and return its size in nbits. Note
that the returned pointer is still owned by a and that the function should never be
used for an non-opaque MPI.

Chapter 12: MPI library 85

Each MPI has an associated set of flags for special purposes. The currently defined flags
are:

GCRYMPI_FLAG_SECURE

Setting this flag converts a into an MPI stored in "secure memory". Clearing
this flag is not allowed.

GCRYMPI_FLAG_OPAQUE

This is an internal flag, indicating the an opaque valuue and not an integer is
stored. This is an read-only flag; it may not be set or cleared.

GCRYMPI_FLAG_IMMUTABLE

If this flag is set, the MPI is marked as immutable. Setting or changing the value
of that MPI is ignored and an error message is logged. The flag is sometimes
useful for debugging.

GCRYMPI_FLAG_CONST

If this flag is set, the MPI is marked as a constant and as immutable Setting or
changing the value of that MPI is ignored and an error message is logged. Such
an MPI will never be deallocated and may thus be used without copying. Note
that using gcry mpi copy will return a copy of that constant with this and the
immutable flag cleared. A few commonly used constants are pre-defined and ac-
cessible using the macros GCRYMPI_CONST_ONE, GCRYMPI_CONST_TWO, GCRYMPI_
CONST_THREE, GCRYMPI_CONST_FOUR, and GCRYMPI_CONST_EIGHT.

GCRYMPI_FLAG_USER1

GCRYMPI_FLAG_USER2

GCRYMPI_FLAG_USER3

GCRYMPI_FLAG_USER4

These flags are reserved for use by the application.

[Function]void gcry_mpi_set_flag (gcry mpi t a, enum gcry mpi flag flag)
Set the flag for the MPI a. The only allowed flags are GCRYMPI_FLAG_SECURE,
GCRYMPI_FLAG_IMMUTABLE, and GCRYMPI_FLAG_CONST.

[Function]void gcry_mpi_clear_flag (gcry mpi t a,
enum gcry mpi flag flag)

Clear flag for the multi-precision-integers a. The only allowed flag is GCRYMPI_FLAG_
IMMUTABLE but only if GCRYMPI_FLAG_CONST is not set. If GCRYMPI_FLAG_CONST is
set, clearing GCRYMPI_FLAG_IMMUTABLE will simply be ignored.

o

[Function]int gcry_mpi_get_flag (gcry mpi t a, enum gcry mpi flag flag)
Return true if flag is set for a.

To put a random value into an MPI, the following convenience function may be used:

[Function]void gcry_mpi_randomize (gcry mpi t w, unsigned int nbits,
enum gcry random level level)

Set the multi-precision-integers w to a random non-negative number of nbits, using
random data quality of level level. In case nbits is not a multiple of a byte, nbits

86 The Libgcrypt Reference Manual

is rounded up to the next byte boundary. When using a level of GCRY_WEAK_RANDOM
this function makes use of gcry_create_nonce.

87

13 Prime numbers

13.1 Generation

[Function]gcry_error_t gcry_prime_generate (gcry mpi t *prime,unsigned
int prime_bits, unsigned int factor_bits, gcry mpi t **factors,
gcry prime check func t cb_func, void *cb_arg, gcry random level t
random_level, unsigned int flags)

Generate a new prime number of prime bits bits and store it in prime. If factor bits
is non-zero, one of the prime factors of (prime - 1) / 2 must be factor bits bits long.
If factors is non-zero, allocate a new, NULL-terminated array holding the prime factors
and store it in factors. flags might be used to influence the prime number generation
process.

[Function]gcry_error_t gcry_prime_group_generator (gcry mpi t *r_g,
gcry mpi t prime, gcry mpi t *factors, gcry mpi t start_g)

Find a generator for prime where the factorization of (prime-1) is in the NULL termi-
nated array factors. Return the generator as a newly allocated MPI in r g. If start g
is not NULL, use this as the start for the search.

[Function]void gcry_prime_release_factors (gcry mpi t *factors)
Convenience function to release the factors array.

13.2 Checking

[Function]gcry_error_t gcry_prime_check (gcry mpi t p, unsigned int
flags)

Check whether the number p is prime. Returns zero in case p is indeed a prime,
returns GPG_ERR_NO_PRIME in case p is not a prime and a different error code in case
something went horribly wrong.

89

14 Utilities

14.1 Memory allocation

[Function]void * gcry_malloc (size t n)
This function tries to allocate n bytes of memory. On success it returns a pointer to
the memory area, in an out-of-core condition, it returns NULL.

[Function]void * gcry_malloc_secure (size t n)
Like gcry_malloc, but uses secure memory.

[Function]void * gcry_calloc (size t n, size t m)
This function allocates a cleared block of memory (i.e. initialized with zero bytes)
long enough to contain a vector of n elements, each of size m bytes. On success it
returns a pointer to the memory block; in an out-of-core condition, it returns NULL.

[Function]void * gcry_calloc_secure (size t n, size t m)
Like gcry_calloc, but uses secure memory.

[Function]void * gcry_realloc (void *p, size t n)
This function tries to resize the memory area pointed to by p to n bytes. On success
it returns a pointer to the new memory area, in an out-of-core condition, it returns
NULL. Depending on whether the memory pointed to by p is secure memory or not,
gcry realloc tries to use secure memory as well.

[Function]void gcry_free (void *p)
Release the memory area pointed to by p.

14.2 Context management

Some function make use of a context object. As of now there are only a few math functions.
However, future versions of Libgcrypt may make more use of this context object.

[Data type]gcry_ctx_t
This type is used to refer to the general purpose context object.

[Function]void gcry_ctx_release (gcry ctx t ctx)
Release the context object ctx and all associated resources. A NULL passed as ctx is
ignored.

14.3 Buffer description

To help hashing non-contiguous areas of memory a general purpose data type is defined:

[Data type]gcry_buffer_t
This type is a structure to describe a buffer. The user should make sure that this
structure is initialized to zero. The available fields of this structure are:

.size This is either 0 for no information available or indicates the allocated
length of the buffer.

90 The Libgcrypt Reference Manual

.off This is the offset into the buffer.

.len This is the valid length of the buffer starting at .off.

.data This is the address of the buffer.

14.4 How to return Libgcrypt’s configuration.

Although GCRYCTL_PRINT_CONFIG can be used to print configuration options, it is sometimes
necessary to check them in a program. This can be accomplished by using this function:

[Function]char * gcry_get_config (int mode, const char *what)
This function returns a malloced string with colon delimited configure options. With
a value of 0 for mode this string resembles the output of GCRYCTL_PRINT_CONFIG.
However, if what is not NULL, only the line where the first field (e.g. "cpu-arch")
matches what is returned.

Other values than 0 for mode are not defined. The caller shall free the string using
gcry_free. On error NULL is returned and ERRNO is set; if a value for WHAT is
unknow ERRNO will be set to 0.

91

15 Tools

15.1 A HMAC-SHA-256 tool

This is a standalone HMAC-SHA-256 implementation used to compute an HMAC-SHA-256
message authentication code. The tool has originally been developed as a second imple-
mentation for Libgcrypt to allow comparing against the primary implementation and to be
used for internal consistency checks. It should not be used for sensitive data because no
mechanisms to clear the stack etc are used.

The code has been written in a highly portable manner and requires only a few standard
definitions to be provided in a config.h file.

hmac256 is commonly invoked as

hmac256 "This is my key" foo.txt

This compute the MAC on the file foo.txt using the key given on the command line.

hmac256 understands these options:

--binary Print the MAC as a binary string. The default is to print the MAC encoded
has lower case hex digits.

--version

Print version of the program and exit.

93

16 Configuration files and environment variables

This chapter describes which files and environment variables can be used to change the
behaviour of Libgcrypt.

The environment variables considered by Libgcrypt are:

GCRYPT_BARRETT

By setting this variable to any value a different algorithm for modular reduction
is used for ECC.

GCRYPT_RNDUNIX_DBG

GCRYPT_RNDUNIX_DBGALL

These two environment variables are used to enable debug output for the rn-
dunix entropy gatherer, which is used on systems lacking a /dev/random device.
The value of GCRYPT_RNDUNIX_DBG is a file name or - for stdout. Debug output
is the written to this file. By setting GCRYPT_RNDUNIX_DBGALL to any value the
debug output will be more verbose.

GCRYPT_RNDW32_NOPERF

Setting this environment variable on Windows to any value disables the use of
performance data (HKEY_PERFORMANCE_DATA) as source for entropy. On some
older Windows systems this could help to speed up the creation of random
numbers but also decreases the amount of data used to init the random number
generator.

GCRYPT_RNDW32_DBG

Setting the value of this variable to a positive integer logs information about
the Windows entropy gatherer using the standard log interface.

HOME This is used to locate the socket to connect to the EGD random daemon. The
EGD can be used on system without a /dev/random to speed up the random
number generator. It is not needed on the majority of today’s operating systems
and support for EGD requires the use of a configure option at build time.

The files which Libgcrypt uses to retrieve system information and the files which can be
created by the user to modify Libgcrypt’s behavior are:

/etc/gcrypt/hwf.deny

This file can be used to disable the use of hardware based optimizations, see
[hardware features], page 7.

/etc/gcrypt/random.conf

This file can be used to globally change parameters of the random generator.
The file is a simple text file where empty lines and lines with the first non
white-space character being ’#’ are ignored. Supported options are

disable-jent

Disable the use of the jitter based entropy generator.

only-urandom

Always use the non-blocking /dev/urandom or the respective sys-
tem call instead of the blocking /dev/random. If Libgcrypt is used

94 The Libgcrypt Reference Manual

early in the boot process of the system, this option should only be
used if the system also supports the getrandom system call.

/etc/gcrypt/fips_enabled

/proc/sys/crypto/fips_enabled

On Linux these files are used to enable FIPS mode, see [enabling fips mode],
page 7.

/proc/cpuinfo

/proc/self/auxv

On Linux running on the ARM architecture, these files are used to read hard-
ware capabilities of the CPU.

95

17 Architecture

This chapter describes the internal architecture of Libgcrypt.

Libgcrypt is a function library written in ISO C-90. Any compliant compiler should be
able to build Libgcrypt as long as the target is either a POSIX platform or compatible to
the API used by Windows NT. Provisions have been take so that the library can be directly
used from C++ applications; however building with a C++ compiler is not supported.

Building Libgcrypt is done by using the common ./configure && make approach. The
configure command is included in the source distribution and as a portable shell script it
works on any Unix-alike system. The result of running the configure script are a C header
file (config.h), customized Makefiles, the setup of symbolic links and a few other things.
After that the make tool builds and optionally installs the library and the documentation.
See the files INSTALL and README in the source distribution on how to do this.

Libgcrypt is developed using a Subversion1 repository. Although all released versions are
tagged in this repository, they should not be used to build production versions of Libgcrypt.
Instead released tarballs should be used. These tarballs are available from several places
with the master copy at ‘ftp://ftp.gnupg.org/gcrypt/libgcrypt/’. Announcements of
new releases are posted to the ‘gnupg-announce@gnupg.org’ mailing list2.

Public−Key

Encryption

Multi−Precision−

Integers

Prime−Number

Generator

Random

Numbers

Symmetric

Encryption

Hashing

MACing

Memory MiscelleanousS−expressions

Figure 17.1: Libgcrypt subsystems

Libgcrypt consists of several subsystems (see Figure 17.1) and all these subsystems pro-
vide a public API; this includes the helper subsystems like the one for S-expressions. The

1 A version control system available for many platforms
2 See http://www.gnupg.org/documentation/mailing-lists.en.html for details.

http://www.gnupg.org/documentation/mailing-lists.en.html

96 The Libgcrypt Reference Manual

API style depends on the subsystem; in general an open-use-close approach is implemented.
The open returns a handle to a context used for all further operations on this handle, several
functions may then be used on this handle and a final close function releases all resources
associated with the handle.

17.1 Public-Key Architecture

Because public key cryptography is almost always used to process small amounts of data
(hash values or session keys), the interface is not implemented using the open-use-close
paradigm, but with single self-contained functions. Due to the wide variety of parameters
required by different algorithms S-expressions, as flexible way to convey these parameters,
are used. There is a set of helper functions to work with these S-expressions.

Aside of functions to register new algorithms, map algorithms names to algorithms
identifiers and to lookup properties of a key, the following main functions are available:

gcry_pk_encrypt

Encrypt data using a public key.

gcry_pk_decrypt

Decrypt data using a private key.

gcry_pk_sign

Sign data using a private key.

gcry_pk_verify

Verify that a signature matches the data.

gcry_pk_testkey

Perform a consistency over a public or private key.

gcry_pk_genkey

Create a new public/private key pair.

All these functions lookup the module implementing the algorithm and pass the actual
work to that module. The parsing of the S-expression input and the construction of S-
expression for the return values is done by the high level code (cipher/pubkey.c). Thus
the internal interface between the algorithm modules and the high level functions passes
data in a custom format.

By default Libgcrypt uses a blinding technique for RSA decryption to mitigate real world
timing attacks over a network: Instead of using the RSA decryption directly, a blinded
value y = xre mod n is decrypted and the unblinded value x′ = y′r−1 mod n returned.
The blinding value r is a random value with the size of the modulus n and generated with
GCRY_WEAK_RANDOM random level.

The algorithm used for RSA and DSA key generation depends on whether Libgcrypt is
operated in standard or in FIPS mode. In standard mode an algorithm based on the Lim-
Lee prime number generator is used. In FIPS mode RSA keys are generated as specified in
ANSI X9.31 (1998) and DSA keys as specified in FIPS 186-2.

Chapter 17: Architecture 97

17.2 Symmetric Encryption Subsystem Architecture

The interface to work with symmetric encryption algorithms is made up of functions from
the gcry_cipher_ name space. The implementation follows the open-use-close paradigm
and uses registered algorithm modules for the actual work. Unless a module implements op-
timized cipher mode implementations, the high level code (cipher/cipher.c) implements
the modes and calls the core algorithm functions to process each block.

The most important functions are:

gcry_cipher_open

Create a new instance to encrypt or decrypt using a specified algorithm and
mode.

gcry_cipher_close

Release an instance.

gcry_cipher_setkey

Set a key to be used for encryption or decryption.

gcry_cipher_setiv

Set an initialization vector to be used for encryption or decryption.

gcry_cipher_encrypt

gcry_cipher_decrypt

Encrypt or decrypt data. These functions may be called with arbitrary amounts
of data and as often as needed to encrypt or decrypt all data.

There is no strict alignment requirements for data, but the best performance
can be archived if data is aligned to cacheline boundary.

There are also functions to query properties of algorithms or context, like block length,
key length, map names or to enable features like padding methods.

17.3 Hashing and MACing Subsystem Architecture

The interface to work with message digests and CRC algorithms is made up of functions
from the gcry_md_ name space. The implementation follows the open-use-close paradigm
and uses registered algorithm modules for the actual work. Although CRC algorithms are
not considered cryptographic hash algorithms, they share enough properties so that it makes
sense to handle them in the same way. It is possible to use several algorithms at once with
one context and thus compute them all on the same data.

The most important functions are:

gcry_md_open

Create a new message digest instance and optionally enable one algorithm. A
flag may be used to turn the message digest algorithm into a HMAC algorithm.

gcry_md_enable

Enable an additional algorithm for the instance.

gcry_md_setkey

Set the key for the MAC.

98 The Libgcrypt Reference Manual

gcry_md_write

Pass more data for computing the message digest to an instance.

There is no strict alignment requirements for data, but the best performance
can be archived if data is aligned to cacheline boundary.

gcry_md_putc

Buffered version of gcry_md_write implemented as a macro.

gcry_md_read

Finalize the computation of the message digest or HMAC and return the result.

gcry_md_close

Release an instance

gcry_md_hash_buffer

Convenience function to directly compute a message digest over a memory buffer
without the need to create an instance first.

There are also functions to query properties of algorithms or the instance, like enabled
algorithms, digest length, map algorithm names. it is also possible to reset an instance or
to copy the current state of an instance at any time. Debug functions to write the hashed
data to files are available as well.

17.4 Multi-Precision-Integer Subsystem Architecture

The implementation of Libgcrypt’s big integer computation code is based on an old release
of GNU Multi-Precision Library (GMP). The decision not to use the GMP library directly
was due to stalled development at that time and due to security requirements which could
not be provided by the code in GMP. As GMP does, Libgcrypt provides high performance
assembler implementations of low level code for several CPUS to gain much better perfor-
mance than with a generic C implementation.

Major features of Libgcrypt’s multi-precision-integer code compared to GMP are:

• Avoidance of stack based allocations to allow protection against swapping out of sen-
sitive data and for easy zeroing of sensitive intermediate results.

• Optional use of secure memory and tracking of its use so that results are also put into
secure memory.

• MPIs are identified by a handle (implemented as a pointer) to give better control over
allocations and to augment them with extra properties like opaque data.

• Removal of unnecessary code to reduce complexity.

• Functions specialized for public key cryptography.

17.5 Prime-Number-Generator Subsystem Architecture

Libgcrypt provides an interface to its prime number generator. These functions make use
of the internal prime number generator which is required for the generation for public key
key pairs. The plain prime checking function is exported as well.

Chapter 17: Architecture 99

The generation of random prime numbers is based on the Lim and Lee algorithm to
create practically save primes.3 This algorithm creates a pool of smaller primes, select a
few of them to create candidate primes of the form 2∗p0 ∗p1 ∗ ...∗pn+1, tests the candidate
for primality and permutates the pool until a prime has been found. It is possible to clamp
one of the small primes to a certain size to help DSA style algorithms. Because most of the
small primes in the pool are not used for the resulting prime number, they are saved for
later use (see save_pool_prime and get_pool_prime in cipher/primegen.c). The prime
generator optionally supports the finding of an appropriate generator.

The primality test works in three steps:

1. The standard sieve algorithm using the primes up to 4999 is used as a quick first check.

2. A Fermat test filters out almost all non-primes.

3. A 5 round Rabin-Miller test is finally used. The first round uses a witness of 2, whereas
the next rounds use a random witness.

To support the generation of RSA and DSA keys in FIPS mode according to X9.31
and FIPS 186-2, Libgcrypt implements two additional prime generation functions: _gcry_
derive_x931_prime and _gcry_generate_fips186_2_prime. These functions are internal
and not available through the public API.

17.6 Random-Number Subsystem Architecture

Libgcrypt provides 3 levels or random quality: The level GCRY_VERY_STRONG_RANDOM usu-
ally used for key generation, the level GCRY_STRONG_RANDOM for all other strong random
requirements and the function gcry_create_nonce which is used for weaker usages like
nonces. There is also a level GCRY_WEAK_RANDOM which in general maps to GCRY_STRONG_

RANDOM except when used with the function gcry_mpi_randomize, where it randomizes an
multi-precision-integer using the gcry_create_nonce function.

There are two distinct random generators available:

• The Continuously Seeded Pseudo Random Number Generator (CSPRNG), which
is based on the classic GnuPG derived big pool implementation. Implemented in
random/random-csprng.c and used by default.

• A FIPS approved ANSI X9.31 PRNG using AES with a 128 bit key. Implemented in
random/random-fips.c and used if Libgcrypt is in FIPS mode.

Both generators make use of so-called entropy gathering modules:

rndlinux Uses the operating system provided /dev/random and /dev/urandom devices.
The /dev/gcrypt/random.conf config option only-urandom can be used to
inhibit the use of the blocking /dev/random device.

rndunix Runs several operating system commands to collect entropy from sources like
virtual machine and process statistics. It is a kind of poor-man’s /dev/random
implementation. It is not available in FIPS mode.

3 Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based schemes using a prime
order subgroup. In Burton S. Kaliski Jr., editor, Advances in Cryptology: Crypto ’97, pages 249-263,
Berlin / Heidelberg / New York, 1997. Springer-Verlag. Described on page 260.

100 The Libgcrypt Reference Manual

rndegd Uses the operating system provided Entropy Gathering Daemon (EGD). The
EGD basically uses the same algorithms as rndunix does. However as a system
daemon it keeps on running and thus can serve several processes requiring
entropy input and does not waste collected entropy if the application does not
need all the collected entropy. It is not available in FIPS mode.

rndw32 Targeted for the Microsoft Windows OS. It uses certain properties of that sys-
tem and is the only gathering module available for that OS.

rndhw Extra module to collect additional entropy by utilizing a hardware random
number generator. As of now the supported hardware RNG is the Padlock
engine of VIA (Centaur) CPUs and x86 CPUs with the RDRAND instruction.
It is not available in FIPS mode.

rndjent Extra module to collect additional entropy using a CPU jitter based approach.
This is only used on X86 hardware where the RDTSC opcode is available. The
/dev/gcrypt/random.conf config option disable-jent can be used to inhibit
the use of this module.

17.6.1 Description of the CSPRNG

This random number generator is loosely modelled after the one described in Peter Gut-
mann’s paper: "Software Generation of Practically Strong Random Numbers".4

A pool of 600 bytes is used and mixed using the core SHA-1 hash transform function.
Several extra features are used to make the robust against a wide variety of attacks and to
protect against failures of subsystems. The state of the generator may be saved to a file
and initially seed form a file.

Depending on how Libgcrypt was build the generator is able to select the best working
entropy gathering module. It makes use of the slow and fast collection methods and requires
the pool to initially seeded form the slow gatherer or a seed file. An entropy estimation is
used to mix in enough data from the gather modules before returning the actual random
output. Process fork detection and protection is implemented.

The implementation of the nonce generator (for gcry_create_nonce) is a straightfor-
ward repeated hash design: A 28 byte buffer is initially seeded with the PID and the time
in seconds in the first 20 bytes and with 8 bytes of random taken from the GCRY_STRONG_

RANDOM generator. Random numbers are then created by hashing all the 28 bytes with
SHA-1 and saving that again in the first 20 bytes. The hash is also returned as result.

17.6.2 Description of the FIPS X9.31 PRNG

The core of this deterministic random number generator is implemented according to the
document “NIST-Recommended Random Number Generator Based on ANSI X9.31 Ap-
pendix A.2.4 Using the 3-Key Triple DES and AES Algorithms”, dated 2005-01-31. This
implementation uses the AES variant.

The generator is based on contexts to utilize the same core functions for all random
levels as required by the high-level interface. All random generators return their data in
128 bit blocks. If the caller requests less bits, the extra bits are not used. The key for each

4 Also described in chapter 6 of his book "Cryptographic Security Architecture", New York, 2004, ISBN
0-387-95387-6.

Chapter 17: Architecture 101

generator is only set once at the first time a generator context is used. The seed value is
set along with the key and again after 1000 output blocks.

On Unix like systems the GCRY_VERY_STRONG_RANDOM and GCRY_STRONG_RANDOM gener-
ators are keyed and seeded using the rndlinux module with the /dev/random device. Thus
these generators may block until the OS kernel has collected enough entropy. When used
with Microsoft Windows the rndw32 module is used instead.

The generator used for gcry_create_nonce is keyed and seeded from the GCRY_STRONG_
RANDOM generator. Thus is may also block if the GCRY_STRONG_RANDOM generator has not
yet been used before and thus gets initialized on the first use by gcry_create_nonce. This
special treatment is justified by the weaker requirements for a nonce generator and to save
precious kernel entropy for use by the “real” random generators.

A self-test facility uses a separate context to check the functionality of the core X9.31
functions using a known answers test. During runtime each output block is compared to
the previous one to detect a stuck generator.

The DT value for the generator is made up of the current time down to microseconds
(if available) and a free running 64 bit counter. When used with the test context the DT
value is taken from the context and incremented on each use.

103

Appendix A Description of the Self-Tests

In addition to the build time regression test suite, Libgcrypt implements self-tests to be
performed at runtime. Which self-tests are actually used depends on the mode Libgcrypt
is used in. In standard mode a limited set of self-tests is run at the time an algorithm is
first used. Note that not all algorithms feature a self-test in standard mode. The GCRYCTL_
SELFTEST control command may be used to run all implemented self-tests at any time; this
will even run more tests than those run in FIPS mode.

If any of the self-tests fails, the library immediately returns an error code to the caller.
If Libgcrypt is in FIPS mode the self-tests will be performed within the “Self-Test” state
and any failure puts the library into the “Error” state.

A.1 Power-Up Tests

Power-up tests are only performed if Libgcrypt is in FIPS mode.

A.1.1 Symmetric Cipher Algorithm Power-Up Tests

The following symmetric encryption algorithm tests are run during power-up:

3DES To test the 3DES 3-key EDE encryption in ECB mode these tests are run:

1. A known answer test is run on a 64 bit test vector processed by 64 rounds
of Single-DES block encryption and decryption using a key changed with
each round.

2. A known answer test is run on a 64 bit test vector processed by 16 rounds
of 2-key and 3-key Triple-DES block encryption and decryptions using a
key changed with each round.

3. 10 known answer tests using 3-key Triple-DES EDE encryption, comparing
the ciphertext to the known value, then running a decryption and compar-
ing it to the initial plaintext.

(cipher/des.c:selftest)

AES-128 A known answer tests is run using one test vector and one test key with AES
in ECB mode. (cipher/rijndael.c:selftest_basic_128)

AES-192 A known answer tests is run using one test vector and one test key with AES
in ECB mode. (cipher/rijndael.c:selftest_basic_192)

AES-256 A known answer tests is run using one test vector and one test key with AES
in ECB mode. (cipher/rijndael.c:selftest_basic_256)

A.1.2 Hash Algorithm Power-Up Tests

The following hash algorithm tests are run during power-up:

SHA-1 A known answer test using the string "abc" is run. (cipher/sha1.c:
selftests_sha1)

SHA-224 A known answer test using the string "abc" is run. (cipher/sha256.c:
selftests_sha224)

104 The Libgcrypt Reference Manual

SHA-256 A known answer test using the string "abc" is run. (cipher/sha256.c:
selftests_sha256)

SHA-384 A known answer test using the string "abc" is run. (cipher/sha512.c:
selftests_sha384)

SHA-512 A known answer test using the string "abc" is run. (cipher/sha512.c:
selftests_sha512)

A.1.3 MAC Algorithm Power-Up Tests

The following MAC algorithm tests are run during power-up:

HMAC SHA-1
A known answer test using 9 byte of data and a 64 byte key is run.
(cipher/hmac-tests.c:selftests_sha1)

HMAC SHA-224
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha224)

HMAC SHA-256
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha256)

HMAC SHA-384
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha384)

HMAC SHA-512
A known answer test using 28 byte of data and a 4 byte key is run.
(cipher/hmac-tests.c:selftests_sha512)

A.1.4 Random Number Power-Up Test

The DRNG is tested during power-up this way:

1. Requesting one block of random using the public interface to check general working
and the duplicated block detection.

2. 3 know answer tests using pre-defined keys, seed and initial DT values. For each test 3
blocks of 16 bytes are requested and compared to the expected result. The DT value
is incremented for each block.

A.1.5 Public Key Algorithm Power-Up Tests

The public key algorithms are tested during power-up:

RSA A pre-defined 1024 bit RSA key is used and these tests are run in turn:

1. Conversion of S-expression to internal format. (cipher/rsa.c:
selftests_rsa)

2. Private key consistency check. (cipher/rsa.c:selftests_rsa)

3. A pre-defined 20 byte value is signed with PKCS#1 padding for SHA-1.
The result is verified using the public key against the original data and
against modified data. (cipher/rsa.c:selftest_sign_1024)

Appendix A: Description of the Self-Tests 105

4. A 1000 bit random value is encrypted and checked that it does not match
the original random value. The encrypted result is then decrypted and
checked that it matches the original random value. (cipher/rsa.c:
selftest_encr_1024)

DSA A pre-defined 1024 bit DSA key is used and these tests are run in turn:

1. Conversion of S-expression to internal format. (cipher/dsa.c:
selftests_dsa)

2. Private key consistency check. (cipher/dsa.c:selftests_dsa)

3. A pre-defined 20 byte value is signed with PKCS#1 padding for SHA-1.
The result is verified using the public key against the original data and
against modified data. (cipher/dsa.c:selftest_sign_1024)

A.1.6 Integrity Power-Up Tests

The integrity of the Libgcrypt is tested during power-up but only if checking has been
enabled at build time. The check works by computing a HMAC SHA-256 checksum over
the file used to load Libgcrypt into memory. That checksum is compared against a checksum
stored in a file of the same name but with a single dot as a prefix and a suffix of .hmac.

A.1.7 Critical Functions Power-Up Tests

The 3DES weak key detection is tested during power-up by calling the detection function
with keys taken from a table listening all weak keys. The table itself is protected using a
SHA-1 hash. (cipher/des.c:selftest)

A.2 Conditional Tests

The conditional tests are performed if a certain condition is met. This may occur at any
time; the library does not necessary enter the “Self-Test” state to run these tests but will
transit to the “Error” state if a test failed.

A.2.1 Key-Pair Generation Tests

After an asymmetric key-pair has been generated, Libgcrypt runs a pair-wise consistency
tests on the generated key. On failure the generated key is not used, an error code is
returned and, if in FIPS mode, the library is put into the “Error” state.

RSA The test uses a random number 64 bits less the size of the modulus as plaintext
and runs an encryption and decryption operation in turn. The encrypted value
is checked to not match the plaintext and the result of the decryption is checked
to match the plaintext.

A new random number of the same size is generated, signed and verified to test
the correctness of the signing operation. As a second signing test, the signature
is modified by incrementing its value and then verified with the expected result
that the verification fails. (cipher/rsa.c:test_keys)

DSA The test uses a random number of the size of the Q parameter to create a
signature and then checks that the signature verifies. As a second signing test,
the data is modified by incrementing its value and then verified against the

106 The Libgcrypt Reference Manual

signature with the expected result that the verification fails. (cipher/dsa.c:
test_keys)

A.2.2 Software Load Tests

No code is loaded at runtime.

A.2.3 Manual Key Entry Tests

A manual key entry feature is not implemented in Libgcrypt.

A.2.4 Continuous RNG Tests

The continuous random number test is only used in FIPS mode. The RNG generates blocks
of 128 bit size; the first block generated per context is saved in the context and another block
is generated to be returned to the caller. Each block is compared against the saved block
and then stored in the context. If a duplicated block is detected an error is signaled and the
library is put into the “Fatal-Error” state. (random/random-fips.c:x931_aes_driver)

A.3 Application Requested Tests

The application may requests tests at any time by means of the GCRYCTL_SELFTEST control
command. Note that using these tests is not FIPS conform: Although Libgcrypt rejects
all application requests for services while running self-tests, it does not ensure that no
other operations of Libgcrypt are still being executed. Thus, in FIPS mode an application
requesting self-tests needs to power-cycle Libgcrypt instead.

When self-tests are requested, Libgcrypt runs all the tests it does during power-up as
well as a few extra checks as described below.

A.3.1 Symmetric Cipher Algorithm Tests

The following symmetric encryption algorithm tests are run in addition to the power-up
tests:

AES-128 A known answer tests with test vectors taken from NIST SP800-38a and using
the high level functions is run for block modes CFB and OFB.

A.3.2 Hash Algorithm Tests

The following hash algorithm tests are run in addition to the power-up tests:

SHA-1
SHA-224
SHA-256

1. A known answer test using a 56 byte string is run.

2. A known answer test using a string of one million letters "a" is run.

(cipher/sha1.c:selftests_sha1, cipher/sha256.c:selftests_sha224,
cipher/sha256.c:selftests_sha256)

SHA-384

SHA-512

1. A known answer test using a 112 byte string is run.

Appendix A: Description of the Self-Tests 107

2. A known answer test using a string of one million letters "a" is run.

(cipher/sha512.c:selftests_sha384, cipher/sha512.c:selftests_

sha512)

A.3.3 MAC Algorithm Tests

The following MAC algorithm tests are run in addition to the power-up tests:

HMAC SHA-1
1. A known answer test using 9 byte of data and a 20 byte key is run.

2. A known answer test using 9 byte of data and a 100 byte key is run.

3. A known answer test using 9 byte of data and a 49 byte key is run.

(cipher/hmac-tests.c:selftests_sha1)

HMAC SHA-224
HMAC SHA-256
HMAC SHA-384
HMAC SHA-512

1. A known answer test using 9 byte of data and a 20 byte key is run.

2. A known answer test using 50 byte of data and a 20 byte key is run.

3. A known answer test using 50 byte of data and a 26 byte key is run.

4. A known answer test using 54 byte of data and a 131 byte key is run.

5. A known answer test using 152 byte of data and a 131 byte key is run.

(cipher/hmac-tests.c:selftests_sha224, cipher/hmac-tests.c:

selftests_sha256, cipher/hmac-tests.c:selftests_sha384, cipher/

hmac-tests.c:selftests_sha512)

109

Appendix B Description of the FIPS Mode

This appendix gives detailed information pertaining to the FIPS mode. In particular, the
changes to the standard mode and the finite state machine are described. The self-tests
required in this mode are described in the appendix on self-tests.

B.1 Restrictions in FIPS Mode

If Libgcrypt is used in FIPS mode these restrictions are effective:

• The cryptographic algorithms are restricted to this list:

GCRY CIPHER 3DES
3 key EDE Triple-DES symmetric encryption.

GCRY CIPHER AES128
AES 128 bit symmetric encryption.

GCRY CIPHER AES192
AES 192 bit symmetric encryption.

GCRY CIPHER AES256
AES 256 bit symmetric encryption.

GCRY MD SHA1
SHA-1 message digest.

GCRY MD SHA224
SHA-224 message digest.

GCRY MD SHA256
SHA-256 message digest.

GCRY MD SHA384
SHA-384 message digest.

GCRY MD SHA512
SHA-512 message digest.

GCRY MD SHA1,GCRY MD FLAG HMAC
HMAC using a SHA-1 message digest.

GCRY MD SHA224,GCRY MD FLAG HMAC
HMAC using a SHA-224 message digest.

GCRY MD SHA256,GCRY MD FLAG HMAC
HMAC using a SHA-256 message digest.

GCRY MD SHA384,GCRY MD FLAG HMAC
HMAC using a SHA-384 message digest.

GCRY MD SHA512,GCRY MD FLAG HMAC
HMAC using a SHA-512 message digest.

GCRY PK RSA
RSA encryption and signing.

110 The Libgcrypt Reference Manual

GCRY PK DSA
DSA signing.

Note that the CRC algorithms are not considered cryptographic algorithms and thus
are in addition available.

• RSA key generation refuses to create a key with a keysize of less than 1024 bits.

• DSA key generation refuses to create a key with a keysize other than 1024 bits.

• The transient-key flag for RSA and DSA key generation is ignored.

• Support for the VIA Padlock engine is disabled.

• FIPS mode may only be used on systems with a /dev/random device. Switching into
FIPS mode on other systems will fail at runtime.

• Saving and loading a random seed file is ignored.

• An X9.31 style random number generator is used in place of the large-pool-CSPRNG
generator.

• The command GCRYCTL_ENABLE_QUICK_RANDOM is ignored.

• Message digest debugging is disabled.

• All debug output related to cryptographic data is suppressed.

• On-the-fly self-tests are not performed, instead self-tests are run before entering oper-
ational state.

• The function gcry_set_allocation_handler may not be used. If it is used Libgcrypt
disables FIPS mode unless Enforced FIPS mode is enabled, in which case Libgcrypt
will enter the error state.

• The digest algorithm MD5 may not be used. If it is used Libgcrypt disables FIPS
mode unless Enforced FIPS mode is enabled, in which case Libgcrypt will enter the
error state.

• In Enforced FIPS mode the command GCRYCTL_DISABLE_SECMEM is ignored. In stan-
dard FIPS mode it disables FIPS mode.

• A handler set by gcry_set_outofcore_handler is ignored.

• A handler set by gcry_set_fatalerror_handler is ignored.

Note that when we speak about disabling FIPS mode, it merely means that the function
gcry_fips_mode_active returns false; it does not mean that any non FIPS algorithms are
allowed.

B.2 FIPS Finite State Machine

The FIPS mode of libgcrypt implements a finite state machine (FSM) using 8 states (see
Table B.1) and checks at runtime that only valid transitions (see Table B.2) may happen.

Appendix B: Description of the FIPS Mode 111

1

2

3

6

7

8

10

11

12

13

14

15 5

16

4

9

Operational

Init

Self−Test Error

Fatal−Error

ShutdownPower−On

Power−Off

17

19

18

20

Figure B.1: FIPS mode state diagram

112 The Libgcrypt Reference Manual

States used by the FIPS FSM:

Power-Off Libgcrypt is not runtime linked to another application. This usually means
that the library is not loaded into main memory. This state is documentation
only.

Power-On Libgcrypt is loaded into memory and API calls may be made. Compiler in-
troduced constructor functions may be run. Note that Libgcrypt does not
implement any arbitrary constructor functions to be called by the operating
system

Init The Libgcrypt initialization functions are performed and the library has not
yet run any self-test.

Self-Test Libgcrypt is performing self-tests.

Operational
Libgcrypt is in the operational state and all interfaces may be used.

Error Libgrypt is in the error state. When calling any FIPS relevant interfaces they
either return an error (GPG_ERR_NOT_OPERATIONAL) or put Libgcrypt into the
Fatal-Error state and won’t return.

Fatal-Error
Libgcrypt is in a non-recoverable error state and will automatically transit into
the Shutdown state.

Shutdown Libgcrypt is about to be terminated and removed from the memory. The ap-
plication may at this point still running cleanup handlers.

Table B.1: FIPS mode states

Appendix B: Description of the FIPS Mode 113

The valid state transitions (see Figure B.1) are:

1 Power-Off to Power-On is implicitly done by the OS loading Libgcrypt as a
shared library and having it linked to an application.

2 Power-On to Init is triggered by the application calling the Libgcrypt initial-
ization function gcry_check_version.

3 Init to Self-Test is either triggered by a dedicated API call or implicit by in-
voking a libgrypt service controlled by the FSM.

4 Self-Test to Operational is triggered after all self-tests passed successfully.

5 Operational to Shutdown is an artificial state without any direct action in
Libgcrypt. When reaching the Shutdown state the library is deinitialized and
can’t return to any other state again.

6 Shutdown to Power-off is the process of removing Libgcrypt from the computer’s
memory. For obvious reasons the Power-Off state can’t be represented within
Libgcrypt and thus this transition is for documentation only.

7 Operational to Error is triggered if Libgcrypt detected an application error
which can’t be returned to the caller but still allows Libgcrypt to properly run.
In the Error state all FIPS relevant interfaces return an error code.

8 Error to Shutdown is similar to the Operational to Shutdown transition (5).

9 Error to Fatal-Error is triggered if Libgrypt detects an fatal error while already
being in Error state.

10 Fatal-Error to Shutdown is automatically entered by Libgcrypt after having
reported the error.

11 Power-On to Shutdown is an artificial state to document that Libgcrypt has
not ye been initialized but the process is about to terminate.

12 Power-On to Fatal-Error will be triggered if certain Libgcrypt functions are
used without having reached the Init state.

13 Self-Test to Fatal-Error is triggered by severe errors in Libgcrypt while running
self-tests.

14 Self-Test to Error is triggered by a failed self-test.

15 Operational to Fatal-Error is triggered if Libcrypt encountered a
non-recoverable error.

16 Operational to Self-Test is triggered if the application requested to run the
self-tests again.

17 Error to Self-Test is triggered if the application has requested to run self-tests
to get to get back into operational state after an error.

18 Init to Error is triggered by errors in the initialization code.

19 Init to Fatal-Error is triggered by non-recoverable errors in the initialization
code.

20 Error to Error is triggered by errors while already in the Error state.

Table B.2: FIPS mode state transitions

114 The Libgcrypt Reference Manual

B.3 FIPS Miscellaneous Information

Libgcrypt does not do any key management on itself; the application needs to care about it.
Keys which are passed to Libgcrypt should be allocated in secure memory as available with
the functions gcry_malloc_secure and gcry_calloc_secure. By calling gcry_free on
this memory, the memory and thus the keys are overwritten with zero bytes before releasing
the memory.

For use with the random number generator, Libgcrypt generates 3 internal keys which
are stored in the encryption contexts used by the RNG. These keys are stored in secure
memory for the lifetime of the process. Application are required to use GCRYCTL_TERM_

SECMEM before process termination. This will zero out the entire secure memory and thus
also the encryption contexts with these keys.

115

GNU Lesser General Public License

Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this
license or the ordinary General Public License is the better strategy to use in any particular
case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish); that you receive source code
or can get it if you want it; that you can change the software and use pieces of it in new
free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must
give the recipients all the rights that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them with the library after
making changes to the library and recompiling it. And you must show them these terms so
they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we
offer you this license, which gives you legal permission to copy, distribute and/or modify
the library.

To protect each distributor, we want to make it very clear that there is no warranty for
the free library. Also, if the library is modified by someone else and passed on, the recipients
should know that what they have is not the original version, so that the original author’s
reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program.
We wish to make sure that a company cannot effectively restrict the users of a free program

116 The Libgcrypt Reference Manual

by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent
license obtained for a version of the library must be consistent with the full freedom of use
specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General
Public License. This license, the GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary General Public License. We
use this license for certain libraries in order to permit linking those libraries into non-free
programs.

When a program is linked with a library, whether statically or using a shared library,
the combination of the two is legally speaking a combined work, a derivative of the original
library. The ordinary General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General Public License permits
more lax criteria for linking other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many libraries. However, the
Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest
possible use of a certain library, so that it becomes a de-facto standard. To achieve this,
non-free programs must be allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this case, there is little to
gain by limiting the free library to free software only, so we use the Lesser General Public
License.

In other cases, permission to use a particular library in non-free programs enables a
greater number of people to use a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many more people to use the whole
GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it
does ensure that the user of a program that is linked with the Library has the freedom and
the wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that
uses the library”. The former contains code derived from the library, whereas the latter
must be combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains
a notice placed by the copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public License (also called “this
License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

GNU Lesser General Public License 117

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Library
or any derivative work under copyright law: that is to say, a work containing the
Library or a portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications
to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is
not restricted, and output from such a program is covered only if its contents constitute
a work based on the Library (independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does and what the program
that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence of any warranty; and
distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to
be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table used by this function must
be optional: if the application does not supply it, the square root function must
still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered indepen-
dent and separate works in themselves, then this License, and its terms, do not apply

118 The Libgcrypt Reference Manual

to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Library, the distri-
bution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the notices
that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above provided
that you accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled
to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather
than a “work that uses the library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for
this to be true is not precisely defined by law.

GNU Lesser General Public License 119

If such an object file uses only numerical parameters, data structure layouts and ac-
cessors, and small macros and small inline functions (ten lines or less in length), then
the use of the object file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the Library will still
fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also
fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that
uses the Library” with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice, provided that the terms
permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must
be distributed under Sections 1 and 2 above); and, if the work is an executable
linked with the Library, with the complete machine-readable “work that uses the
Library”, as object code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions
files in the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present
on the user’s computer system, rather than copying library functions into the
executable, and (2) will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is interface-compatible with
the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same
place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed need not include anything that
is normally distributed (in either source or binary form) with the major components

120 The Libgcrypt Reference Manual

(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro-
prietary libraries that do not normally accompany the operating system. Such a con-
tradiction means you cannot use both them and the Library together in an executable
that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and
provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except
as expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with
or modify the Library subject to these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Library.

GNU Lesser General Public License 121

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribu-
tion conditions are incompatible with these, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free soft-
ware and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

122 The Libgcrypt Reference Manual

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU Lesser General Public License 123

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,
we recommend making it free software that everyone can redistribute and change. You can
do so by permitting redistribution under these terms (or, alternatively, under the terms of
the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to where the full notice
is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307,

USA.

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

125

GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

126 The Libgcrypt Reference Manual

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

GNU General Public License 127

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

128 The Libgcrypt Reference Manual

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

GNU General Public License 129

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM ISWITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

130 The Libgcrypt Reference Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,

59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

131

List of Figures and Tables

Figure 17.1: Libgcrypt subsystems . 95
Figure B.1: FIPS mode state diagram . 111
Table B.1: FIPS mode states . 112
Table B.2: FIPS mode state transitions . 113

133

Concept Index

/
/etc/gcrypt/fips enabled . 94
/etc/gcrypt/hwf.deny . 93
/etc/gcrypt/random.conf . 93
/proc/cpuinfo . 94
/proc/self/auxv . 94

3
3DES . 25

A
Advanced Encryption Standard 25
AES . 25
AES-Wrap mode . 27
Arcfour . 26

B
BLAKE2b-512, BLAKE2b-384,

BLAKE2b-256, BLAKE2b-160 51
BLAKE2s-256, BLAKE2s-224,

BLAKE2s-160, BLAKE2s-128 51
Blowfish . 25
bug emulation . 54

C
Camellia . 26
CAST5 . 25
CBC, Cipher Block Chaining mode 27
CBC-MAC . 29
CCM, Counter with CBC-MAC mode 27
CFB, Cipher Feedback mode 27
ChaCha20 . 26
cipher text stealing . 29
comp . 39
CRC32 . 51
CTR, Counter mode . 27

D
DES . 26
DES-EDE . 25
Digital Encryption Standard 25
disable-jent . 93

E
EAX, EAX mode . 28
ECB, Electronic Codebook mode 27
EdDSA . 39
Enforced FIPS mode . 7
error codes . 15
error codes, list of . 17, 18
error codes, printing of . 20
error sources . 15
error sources, printing of . 20
error strings . 20
error values . 15
error values, printing of . 20

F
fips enabled . 94
FIPS 140 . 7
FIPS 186 . 40, 96
FIPS 186-2 . 40
FIPS mode . 7

G
GCM, Galois/Counter Mode 27
GCRYPT BARRETT . 93
GCRYPT RNDUNIX DBG . 93
GCRYPT RNDUNIX DBGALL 93
GCRYPT RNDW32 DBG . 93
GCRYPT RNDW32 NOPERF 93
GOST 28147-89 . 26
GOST 28147-89 CryptoPro keymeshing 26
GPL, GNU General Public License 125

H
hardware features . 7
HAVAL . 51
HMAC . 54
HMAC-BLAKE2s, HMAC-BLAKE2b 59
HMAC-GOSTR-3411-94 . 59
HMAC-MD2, HMAC-MD4, HMAC-MD5 59
HMAC-RIPE-MD-160 . 59
HMAC-SHA-1 . 59
HMAC-SHA-224, HMAC-SHA-256,

HMAC-SHA-384, HMAC-SHA-512 59
HMAC-SHA-512/224, HMAC-SHA-512/256 59
HMAC-SHA3-224, HMAC-SHA3-256,

HMAC-SHA3-384, HMAC-SHA3-512 59
HMAC-SM3 . 59
HMAC-Stribog-256, HMAC-Stribog-512 59
HMAC-TIGER1 . 59
HMAC-Whirlpool . 59
HOME . 93

134 The Libgcrypt Reference Manual

I
IDEA . 25

L
LGPL, GNU Lesser General Public License . . . 115

M
MD2, MD4, MD5 . 51

N
no-blinding . 39
no-keytest . 40
nocomp . 39

O
OAEP . 39
OCB, OCB3 . 28
OFB, Output Feedback mode 27
only-urandom . 93

P
param . 39
PKCS1 . 39
Poly1305 based AEAD mode with ChaCha20 . . . 28
PSS . 39

R
RC2 . 26
RC4 . 26
rfc-2268 . 26
RFC6979 . 39
Rijndael . 25
RIPE-MD-160 . 51

S
Salsa20 . 26
Salsa20/12 . 26
Seed (cipher) . 26
Serpent . 26
SHA-1 . 51
SHA-224, SHA-256, SHA-384, SHA-512,

SHA-512/224, SHA-512/256 51
SHA3-224, SHA3-256, SHA3-384, SHA3-512,

SHAKE128, SHAKE256 . 51
SM3 . 51
SM4 (cipher) . 26
sync mode (OpenPGP) . 29

T
TIGER, TIGER1, TIGER2 . 51
transient-key . 39
Triple-DES . 25
Twofish . 25

W
Whirlpool . 51

X
X9.31 . 40, 96
XTS, XTS mode . 28

135

Function and Data Index

A
AM_PATH_LIBGCRYPT . 4

G
gcry_buffer_t . 89
gcry_calloc . 89
gcry_calloc_secure . 89
gcry_check_version . 4
gcry_cipher_algo_info . 32
gcry_cipher_algo_name . 33
gcry_cipher_authenticate . 30
gcry_cipher_checktag . 30
gcry_cipher_close . 29
gcry_cipher_ctl . 32
gcry_cipher_decrypt . 31
gcry_cipher_encrypt . 31
gcry_cipher_final . 31
gcry_cipher_get_algo_blklen 33
gcry_cipher_get_algo_keylen 33
gcry_cipher_gettag . 30
gcry_cipher_info . 32
gcry_cipher_map_name . 33
gcry_cipher_mode_from_oid 33
gcry_cipher_open . 28
gcry_cipher_reset . 30
gcry_cipher_setctr . 30
gcry_cipher_setiv . 30
gcry_cipher_setkey . 29
gcry_cipher_sync . 31
gcry_control . 9
gcry_create_nonce . 69
gcry_ctx_release . 89
gcry_ctx_t . 89
gcry_ecc_get_algo_keylen . 43
gcry_ecc_mul_point . 44
gcry_err_code . 16
gcry_err_code_from_errno . 17
gcry_err_code_t . 15
gcry_err_code_to_errno . 17
gcry_err_make . 16
gcry_err_make_from_errno . 17
gcry_err_source . 16
gcry_err_source_t . 15
gcry_error . 16
gcry_error_from_errno . 17
gcry_error_t . 16
gcry_fips_mode_active . 13
gcry_free . 89
gcry_get_config . 90
gcry_handler_alloc_t . 22
gcry_handler_error_t . 23
gcry_handler_free_t . 22
gcry_handler_log_t . 23

gcry_handler_no_mem_t . 22
gcry_handler_progress_t . 21
gcry_handler_realloc_t . 22
gcry_handler_secure_check_t 22
gcry_kdf_derive . 67
gcry_mac_algo_name . 64
gcry_mac_close . 63
gcry_mac_get_algo . 64
gcry_mac_get_algo_keylen . 65
gcry_mac_get_algo_maclen . 65
gcry_mac_map_name . 64
gcry_mac_open . 63
gcry_mac_read . 64
gcry_mac_reset . 63
gcry_mac_setiv . 63
gcry_mac_setkey . 63
gcry_mac_test_algo . 64
gcry_mac_verify . 64
gcry_mac_write . 64
gcry_malloc . 89
gcry_malloc_secure . 89
gcry_md_algo_name . 57
gcry_md_close . 55
gcry_md_copy . 55
gcry_md_debug . 58
gcry_md_enable . 55
gcry_md_extract . 56
gcry_md_final . 56
gcry_md_get_algo . 58
gcry_md_get_algo_dlen . 58
gcry_md_get_asnoid . 57
gcry_md_hash_buffer . 57
gcry_md_hash_buffers . 57
gcry_md_is_enabled . 58
gcry_md_is_secure . 58
gcry_md_map_name . 57
gcry_md_open . 54
gcry_md_putc . 56
gcry_md_read . 56
gcry_md_reset . 55
gcry_md_setkey . 55
gcry_md_test_algo . 58
gcry_md_write . 56
gcry_mpi_abs . 78
gcry_mpi_add . 79
gcry_mpi_add_ui . 79
gcry_mpi_addm . 79
gcry_mpi_aprint . 79
gcry_mpi_clear_bit . 81
gcry_mpi_clear_flag . 85
gcry_mpi_clear_highbit . 81
gcry_mpi_cmp . 80
gcry_mpi_cmp_ui . 81
gcry_mpi_copy . 77
gcry_mpi_div . 80

136 The Libgcrypt Reference Manual

gcry_mpi_dump . 79
gcry_mpi_ec_add . 84
gcry_mpi_ec_curve_point . 84
gcry_mpi_ec_decode_point . 83
gcry_mpi_ec_dup . 84
gcry_mpi_ec_get_affine . 83
gcry_mpi_ec_get_mpi . 82
gcry_mpi_ec_get_point . 83
gcry_mpi_ec_mul . 84
gcry_mpi_ec_new . 82
gcry_mpi_ec_set_mpi . 83
gcry_mpi_ec_set_point . 83
gcry_mpi_ec_sub . 84
gcry_mpi_gcd . 80
gcry_mpi_get_flag . 85
gcry_mpi_get_nbits . 81
gcry_mpi_get_opaque . 84
gcry_mpi_get_ui . 78
gcry_mpi_invm . 80
gcry_mpi_is_neg . 81
gcry_mpi_lshift . 81
gcry_mpi_mod . 80
gcry_mpi_mul . 80
gcry_mpi_mul_2exp . 80
gcry_mpi_mul_ui . 80
gcry_mpi_mulm . 80
gcry_mpi_neg . 78
gcry_mpi_new . 77
gcry_mpi_point_copy . 82
gcry_mpi_point_get . 82
gcry_mpi_point_new . 81
gcry_mpi_point_release . 81
gcry_mpi_point_set . 82
gcry_mpi_point_snatch_get 82
gcry_mpi_point_snatch_set 82
gcry_mpi_point_t . 77
gcry_mpi_powm . 80
gcry_mpi_print . 79
gcry_mpi_randomize . 85
gcry_mpi_release . 77
gcry_mpi_rshift . 81
gcry_mpi_scan . 78
gcry_mpi_set . 77
gcry_mpi_set_bit . 81
gcry_mpi_set_flag . 85
gcry_mpi_set_highbit . 81
gcry_mpi_set_opaque . 84
gcry_mpi_set_opaque_copy . 84
gcry_mpi_set_ui . 77
gcry_mpi_snatch . 78
gcry_mpi_snew . 77
gcry_mpi_sub . 79
gcry_mpi_sub_ui . 79

gcry_mpi_subm . 80
gcry_mpi_swap . 78
gcry_mpi_t . 77
gcry_mpi_test_bit . 81
gcry_pk_algo_info . 44
gcry_pk_algo_name . 44
gcry_pk_ctl . 45
gcry_pk_decrypt . 41
gcry_pk_encrypt . 40
gcry_pk_genkey . 46
gcry_pk_get_keygrip . 44
gcry_pk_get_nbits . 44
gcry_pk_map_name . 44
gcry_pk_sign . 42
gcry_pk_test_algo . 44
gcry_pk_testkey . 44
gcry_pk_verify . 43
gcry_prime_check . 87
gcry_prime_generate . 87
gcry_prime_group_generator 87
gcry_prime_release_factors 87
gcry_pubkey_get_sexp . 49
gcry_random_bytes . 69
gcry_random_bytes_secure . 69
gcry_random_level_t . 69
gcry_randomize . 69
gcry_realloc . 89
gcry_set_allocation_handler 22
gcry_set_fatalerror_handler 23
gcry_set_log_handler . 23
gcry_set_outofcore_handler 22
gcry_set_progress_handler 21
gcry_sexp_build . 71
gcry_sexp_canon_len . 73
gcry_sexp_car . 73
gcry_sexp_cdr . 73
gcry_sexp_create . 71
gcry_sexp_dump . 73
gcry_sexp_extract_param . 75
gcry_sexp_find_token . 73
gcry_sexp_length . 73
gcry_sexp_new . 71
gcry_sexp_nth . 73
gcry_sexp_nth_buffer . 74
gcry_sexp_nth_data . 74
gcry_sexp_nth_mpi . 74
gcry_sexp_nth_string . 74
gcry_sexp_release . 72
gcry_sexp_sprint . 72
gcry_sexp_sscan . 71
gcry_sexp_t . 71
gcry_strerror . 20
gcry_strsource . 20

	1 Introduction
	Getting Started
	Features
	Overview

	2 Preparation
	Header
	Building sources
	Building sources using Automake
	Initializing the library
	Multi-Threading
	How to enable the FIPS mode
	How to disable hardware features

	3 Generalities
	Controlling the library
	Error Handling
	Error Values
	Error Sources
	Error Codes
	Error Strings

	4 Handler Functions
	Progress handler
	Allocation handler
	Error handler
	Logging handler

	5 Symmetric cryptography
	Available ciphers
	Available cipher modes
	Working with cipher handles
	General cipher functions

	6 Public Key cryptography
	Available algorithms
	Used S-expressions
	RSA key parameters
	DSA key parameters
	ECC key parameters

	Cryptographic Functions
	Dedicated functions for elliptic curves.
	General public-key related Functions

	7 Hashing
	Available hash algorithms
	Working with hash algorithms

	8 Message Authentication Codes
	Available MAC algorithms
	Working with MAC algorithms

	9 Key Derivation
	10 Random Numbers
	Quality of random numbers
	Retrieving random numbers

	11 S-expressions
	Data types for S-expressions
	Working with S-expressions

	12 MPI library
	Data types
	Basic functions
	MPI formats
	Calculations
	Comparisons
	Bit manipulations
	EC functions
	Miscellaneous

	13 Prime numbers
	Generation
	Checking

	14 Utilities
	Memory allocation
	Context management
	Buffer description
	How to return Libgcrypt's configuration.

	15 Tools
	A HMAC-SHA-256 tool

	16 Configuration files and environment variables
	17 Architecture
	Public-Key Architecture
	Symmetric Encryption Subsystem Architecture
	Hashing and MACing Subsystem Architecture
	Multi-Precision-Integer Subsystem Architecture
	Prime-Number-Generator Subsystem Architecture
	Random-Number Subsystem Architecture
	Description of the CSPRNG
	Description of the FIPS X9.31 PRNG

	A Description of the Self-Tests
	Power-Up Tests
	Symmetric Cipher Algorithm Power-Up Tests
	Hash Algorithm Power-Up Tests
	MAC Algorithm Power-Up Tests
	Random Number Power-Up Test
	Public Key Algorithm Power-Up Tests
	Integrity Power-Up Tests
	Critical Functions Power-Up Tests

	Conditional Tests
	Key-Pair Generation Tests
	Software Load Tests
	Manual Key Entry Tests
	Continuous RNG Tests

	Application Requested Tests
	Symmetric Cipher Algorithm Tests
	Hash Algorithm Tests
	MAC Algorithm Tests

	B Description of the FIPS Mode
	Restrictions in FIPS Mode
	FIPS Finite State Machine
	FIPS Miscellaneous Information

	GNU Lesser General Public License
	GNU General Public License
	List of Figures and Tables
	Concept Index
	Function and Data Index

