
User Guide for CHOLMOD: a sparse Cholesky factorization and

modification package

Timothy A. Davis
DrTimothyAldenDavis@gmail.com, http://www.suitesparse.com

VERSION 3.0.14, Oct 22, 2019

Abstract

CHOLMOD1 is a set of routines for factorizing sparse symmetric positive definite matrices
of the form A or AAT, updating/downdating a sparse Cholesky factorization, solving linear
systems, updating/downdating the solution to the triangular system Lx = b, and many other
sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky
factorization relies on LAPACK and the Level-3 BLAS, and obtains a substantial fraction of the
peak performance of the BLAS. Both real and complex matrices are supported. It also includes
a non-supernodal LDLT factorization method that can factorize symmetric indefinite matrices
if all of their leading submatrices are well-conditioned (D is diagonal). CHOLMOD is written
in ANSI/ISO C, with both C and MATLAB interfaces. This code works on Microsoft Windows
and many versions of Unix and Linux.

CHOLMOD Copyright©2005-2015 by Timothy A. Davis. Portions are also copyrighted by
William W. Hager (the Modify Module), and the University of Florida (the Partition and Core

Modules). All Rights Reserved.
See CHOLMOD/Doc/License.txt for the license. CHOLMOD is also available under other

licenses that permit its use in proprietary applications; contact the authors for details. See
http://www.suitesparse.com for the code and all documentation, including this User Guide.

1CHOLMOD is short for CHOLesky MODification, since a key feature of the package is its ability to up-
date/downdate a sparse Cholesky factorization

1

Contents

1 Overview 8

2 Primary routines and data structures 9

3 Simple example program 11

4 Installation of the C-callable library 12

5 Using CHOLMOD in MATLAB 15
5.1 analyze: order and analyze . 16
5.2 bisect: find a node separator . 17
5.3 chol2: same as chol . 17
5.4 cholmod2: supernodal backslash . 18
5.5 cholmod demo: a short demo program . 19
5.6 cholmod make: compile CHOLMOD in MATLAB . 19
5.7 etree2: same as etree . 20
5.8 graph demo: graph partitioning demo . 21
5.9 lchol: LLT factorization . 22
5.10 ldlchol: LDLT factorization . 22
5.11 ldlsolve: solve using an LDLT factorization . 23
5.12 ldlsplit: split an LDLT factorization . 23
5.13 ldlupdate: update/downdate an LDLT factorization 24
5.14 ldlrowmod: add/delete a row from an LDLT factorization 25
5.15 mread: read a sparse or dense matrix from a Matrix Market file 26
5.16 mwrite: write a sparse or dense matrix to a Matrix Market file 26
5.17 metis: order with METIS . 27
5.18 nesdis: order with CHOLMOD nested dissection . 28
5.19 resymbol: re-do symbolic factorization . 29
5.20 sdmult: sparse matrix times dense matrix . 29
5.21 spsym: determine symmetry . 30
5.22 sparse2: same as sparse . 32
5.23 symbfact2: same as symbfact . 33

6 Installation for use in MATLAB 34
6.1 cholmod make: compiling CHOLMOD in MATLAB 34

7 Using CHOLMOD with GPU acceleration 35
7.1 Compiling CHOLMOD with GPU support . 35
7.2 Enabling GPU acceleration in CHOLMOD . 35
7.3 Adjustable parameters . 36

8 Integer and floating-point types, and notation used 37

2

9 The CHOLMOD Modules, objects, and functions 39
9.1 Core Module: basic data structures and definitions 40

9.1.1 cholmod common: parameters, statistics, and workspace 40
9.1.2 cholmod sparse: a sparse matrix in compressed column form 41
9.1.3 cholmod factor: a symbolic or numeric factorization 42
9.1.4 cholmod dense: a dense matrix . 42
9.1.5 cholmod triplet: a sparse matrix in “triplet” form 43
9.1.6 Memory management routines . 43
9.1.7 cholmod version: Version control . 43

9.2 Check Module: print/check the CHOLMOD objects 44
9.3 Cholesky Module: sparse Cholesky factorization . 45
9.4 Modify Module: update/downdate a sparse Cholesky factorization 46
9.5 MatrixOps Module: basic sparse matrix operations 46
9.6 Supernodal Module: supernodal sparse Cholesky factorization 48
9.7 Partition Module: graph-partitioning-based orderings 48

10 CHOLMOD naming convention, parameters, and return values 49

11 Core Module: cholmod common object 51
11.1 Constant definitions . 51
11.2 cholmod common: parameters, statistics, and workspace 54
11.3 cholmod start: start CHOLMOD . 66
11.4 cholmod finish: finish CHOLMOD . 66
11.5 cholmod defaults: set default parameters . 66
11.6 cholmod maxrank: maximum update/downdate rank 66
11.7 cholmod allocate work: allocate workspace . 67
11.8 cholmod free work: free workspace . 67
11.9 cholmod clear flag: clear Flag array . 67
11.10cholmod error: report error . 68
11.11cholmod dbound: bound diagonal of L . 68
11.12cholmod hypot: sqrt(x*x+y*y) . 68
11.13cholmod divcomplex: complex divide . 69

12 Core Module: cholmod sparse object 70
12.1 cholmod sparse: compressed-column sparse matrix 70
12.2 cholmod allocate sparse: allocate sparse matrix 71
12.3 cholmod free sparse: free sparse matrix . 71
12.4 cholmod reallocate sparse: reallocate sparse matrix 71
12.5 cholmod nnz: number of entries in sparse matrix . 72
12.6 cholmod speye: sparse identity matrix . 72
12.7 cholmod spzeros: sparse zero matrix . 72
12.8 cholmod transpose: transpose sparse matrix . 73
12.9 cholmod ptranspose: transpose/permute sparse matrix 73
12.10cholmod sort: sort columns of a sparse matrix . 73
12.11cholmod transpose unsym: transpose/permute unsymmetric sparse matrix 74

3

12.12cholmod transpose sym: transpose/permute symmetric sparse matrix 75
12.13cholmod band: extract band of a sparse matrix . 76
12.14cholmod band inplace: extract band, in place . 76
12.15cholmod aat: compute AAT . 77
12.16cholmod copy sparse: copy sparse matrix . 77
12.17cholmod copy: copy (and change) sparse matrix . 78
12.18cholmod add: add sparse matrices . 79
12.19cholmod sparse xtype: change sparse xtype . 79

13 Core Module: cholmod factor object 80
13.1 cholmod factor object: a sparse Cholesky factorization 80
13.2 cholmod free factor: free factor . 83
13.3 cholmod allocate factor: allocate factor . 83
13.4 cholmod reallocate factor: reallocate factor . 83
13.5 cholmod change factor: change factor . 84
13.6 cholmod pack factor: pack the columns of a factor 86
13.7 cholmod reallocate column: reallocate one column of a factor 86
13.8 cholmod factor to sparse: sparse matrix copy of a factor 87
13.9 cholmod copy factor: copy factor . 87
13.10cholmod factor xtype: change factor xtype . 87

14 Core Module: cholmod dense object 89
14.1 cholmod dense object: a dense matrix . 89
14.2 cholmod allocate dense: allocate dense matrix . 89
14.3 cholmod free dense: free dense matrix . 89
14.4 cholmod ensure dense: ensure dense matrix has a given size and type 90
14.5 cholmod zeros: dense zero matrix . 91
14.6 cholmod ones: dense matrix, all ones . 91
14.7 cholmod eye: dense identity matrix . 91
14.8 cholmod sparse to dense: dense matrix copy of a sparse matrix 92
14.9 cholmod dense to sparse: sparse matrix copy of a dense matrix 92
14.10cholmod copy dense: copy dense matrix . 92
14.11cholmod copy dense2: copy dense matrix (preallocated) 93
14.12cholmod dense xtype: change dense matrix xtype 93

15 Core Module: cholmod triplet object 94
15.1 cholmod triplet object: sparse matrix in triplet form 94
15.2 cholmod allocate triplet: allocate triplet matrix 95
15.3 cholmod free triplet: free triplet matrix . 95
15.4 cholmod reallocate triplet: reallocate triplet matrix 96
15.5 cholmod sparse to triplet: triplet matrix copy of a sparse matrix 96
15.6 cholmod triplet to sparse: sparse matrix copy of a triplet matrix 96
15.7 cholmod copy triplet: copy triplet matrix . 97
15.8 cholmod triplet xtype: change triplet xtype . 97

4

16 Core Module: memory management 98
16.1 cholmod malloc: allocate memory . 98
16.2 cholmod calloc: allocate and clear memory . 98
16.3 cholmod free: free memory . 99
16.4 cholmod realloc: reallocate memory . 99
16.5 cholmod realloc multiple: reallocate memory . 100

17 Core Module: version control 101
17.1 cholmod version: return current CHOLMOD version 101

18 Check Module routines 102
18.1 cholmod check common: check Common object . 102
18.2 cholmod print common: print Common object . 102
18.3 cholmod check sparse: check sparse matrix . 103
18.4 cholmod print sparse: print sparse matrix . 103
18.5 cholmod check dense: check dense matrix . 104
18.6 cholmod print dense: print dense matrix . 104
18.7 cholmod check factor: check factor . 105
18.8 cholmod print factor: print factor . 105
18.9 cholmod check triplet: check triplet matrix . 106
18.10cholmod print triplet: print triplet matrix . 106
18.11cholmod check subset: check subset . 107
18.12cholmod print subset: print subset . 107
18.13cholmod check perm: check permutation . 108
18.14cholmod print perm: print permutation . 108
18.15cholmod check parent: check elimination tree . 109
18.16cholmod print parent: print elimination tree . 109
18.17cholmod read triplet: read triplet matrix from file 110
18.18cholmod read sparse: read sparse matrix from file 111
18.19cholmod read dense: read dense matrix from file . 112
18.20cholmod read matrix: read a matrix from file . 112
18.21cholmod write sparse: write a sparse matrix to a file 113
18.22cholmod write dense: write a dense matrix to a file 113

19 Cholesky Module routines 114
19.1 cholmod analyze: symbolic factorization . 114
19.2 cholmod factorize: numeric factorization . 116
19.3 cholmod analyze p: symbolic factorization, given permutation 116
19.4 cholmod factorize p: numeric factorization, given permutation 117
19.5 cholmod solve: solve a linear system . 118
19.6 cholmod spsolve: solve a linear system . 118
19.7 cholmod solve2: solve a linear system, reusing workspace 119
19.8 cholmod etree: find elimination tree . 120
19.9 cholmod rowcolcounts: nonzeros counts of a factor 121
19.10cholmod analyze ordering: analyze a permutation 121

5

19.11cholmod amd: interface to AMD . 122
19.12cholmod colamd: interface to COLAMD . 123
19.13cholmod rowfac: row-oriented Cholesky factorization 123
19.14cholmod rowfac mask: row-oriented Cholesky factorization 125
19.15cholmod row subtree: pattern of row of a factor . 126
19.16cholmod row lsubtree: pattern of row of a factor 126
19.17cholmod resymbol: re-do symbolic factorization . 127
19.18cholmod resymbol noperm: re-do symbolic factorization 127
19.19cholmod postorder: tree postorder . 128
19.20cholmod rcond: reciprocal condition number . 129

20 Modify Module routines 130
20.1 cholmod updown: update/downdate . 130
20.2 cholmod updown solve: update/downdate . 131
20.3 cholmod updown mark: update/downdate . 131
20.4 cholmod updown mask: update/downdate . 131
20.5 cholmod rowadd: add row to factor . 132
20.6 cholmod rowadd solve: add row to factor . 133
20.7 cholmod rowdel: delete row from factor . 133
20.8 cholmod rowdel solve: delete row from factor . 134
20.9 cholmod rowadd mark: add row to factor . 134
20.10cholmod rowdel mark: delete row from factor . 135

21 MatrixOps Module routines 136
21.1 cholmod drop: drop small entries . 136
21.2 cholmod norm dense: dense matrix norm . 136
21.3 cholmod norm sparse: sparse matrix norm . 136
21.4 cholmod scale: scale sparse matrix . 137
21.5 cholmod sdmult: sparse-times-dense matrix . 138
21.6 cholmod ssmult: sparse-times-sparse matrix . 138
21.7 cholmod submatrix: sparse submatrix . 139
21.8 cholmod horzcat: horizontal concatenation . 140
21.9 cholmod vertcat: vertical concatenation . 140
21.10cholmod symmetry: compute the symmetry of a matrix 141

22 Supernodal Module routines 143
22.1 cholmod super symbolic: supernodal symbolic factorization 143
22.2 cholmod super numeric: supernodal numeric factorization 144
22.3 cholmod super lsolve: supernodal forward solve . 145
22.4 cholmod super ltsolve: supernodal backsolve . 145

23 Partition Module routines 146
23.1 cholmod nested dissection: nested dissection ordering 146
23.2 cholmod metis: interface to METIS nested dissection 147
23.3 cholmod camd: interface to CAMD . 148
23.4 cholmod ccolamd: interface to CCOLAMD . 149

6

23.5 cholmod csymamd: interface to CSYMAMD . 149
23.6 cholmod bisect: graph bisector . 150
23.7 cholmod metis bisector: interface to METIS node bisector 150
23.8 cholmod collapse septree: prune a separator tree 151

7

1 Overview

CHOLMOD is a set of ANSI C routines for solving systems of linear equations, Ax = b, when A
is sparse and symmetric positive definite, and x and b can be either sparse or dense.2 Complex
matrices are supported, in two different formats. CHOLMOD includes high-performance left-
looking supernodal factorization and solve methods [21], based on LAPACK [3] and the BLAS [12].
After a matrix is factorized, its factors can be updated or downdated using the techniques described
by Davis and Hager in [8, 9, 10]. Many additional sparse matrix operations are provided, for both
symmetric and unsymmetric matrices (square or rectangular), including sparse matrix multiply,
add, transpose, permutation, scaling, norm, concatenation, sub-matrix access, and converting to
alternate data structures. Interfaces to many ordering methods are provided, including minimum
degree (AMD [1, 2], COLAMD [6, 7]), constrained minimum degree (CSYMAMD, CCOLAMD,
CAMD), and graph-partitioning-based nested dissection (METIS [18]). Most of its operations are
available within MATLAB via mexFunction interfaces.

CHOLMOD also includes a non-supernodal LDLT factorization method that can factorize
symmetric indefinite matrices if all of their leading submatrices are well-conditioned (D is diagonal).

A pair of articles on CHOLMOD has been submitted to the ACM Transactions on Mathematical
Software: [4, 11].

CHOLMOD 1.0 replaces chol (the sparse case), symbfact, and etree in MATLAB 7.2 (R2006a),
and is used for x=A\b when A is symmetric positive definite [14]. It will replace sparse in a future
version of MATLAB.

The C-callable CHOLMOD library consists of 133 user-callable routines and one include file.
Each routine comes in two versions, one for int integers and another for long. Many of the routines
can support either real or complex matrices, simply by passing a matrix of the appropriate type.

Nick Gould, Yifan Hu, and Jennifer Scott have independently tested CHOLMOD’s performance,
comparing it with nearly a dozen or so other solvers [17, 16]. Its performance was quite competitive.

2Some support is provided for symmetric indefinite matrices.

8

2 Primary routines and data structures

Five primary CHOLMOD routines are required to factorize A or AAT and solve the related system
Ax = b or AATx = b, for either the real or complex cases:

1. cholmod start: This must be the first call to CHOLMOD.

2. cholmod analyze: Finds a fill-reducing ordering, and performs the symbolic factorization,
either simplicial (non-supernodal) or supernodal.

3. cholmod factorize: Numerical factorization, either simplicial or supernodal, LLT or LDLT

using either the symbolic factorization from cholmod analyze or the numerical factorization
from a prior call to cholmod factorize.

4. cholmod solve: Solves Ax = b, or many other related systems, where x and b are dense
matrices. The cholmod spsolve routine handles the sparse case. Any mixture of real and
complex A and b are allowed.

5. cholmod finish: This must be the last call to CHOLMOD.

Additional routines are also required to create and destroy the matrices A, x, b, and the LLT

or LDLT factorization. CHOLMOD has five kinds of data structures, referred to as objects and
implemented as pointers to struct’s:

1. cholmod common: parameter settings, statistics, and workspace used internally by CHOLMOD.
See Section 11 for details.

2. cholmod sparse: a sparse matrix in compressed-column form, either pattern-only, real, com-
plex, or “zomplex.” In its basic form, the matrix A contains:

� A->p, an integer array of size A->ncol+1.

� A->i, an integer array of size A->nzmax.

� A->x, a double array of size A->nzmax or twice that for the complex case. This is
compatible with the Fortran and ANSI C99 complex data type.

� A->z, a double array of size A->nzmax if A is zomplex. A zomplex matrix has a z

array, thus the name. This is compatible with the MATLAB representation of complex
matrices.

For all four types of matrices, the row indices of entries of column j are located in A->i

[A->p [j] ... A->p [j+1]-1]. For a real matrix, the corresponding numerical values are
in A->x at the same location. For a complex matrix, the entry whose row index is A->i

[p] is contained in A->x [2*p] (the real part) and A->x [2*p+1] (the imaginary part). For
a zomplex matrix, the real part is in A->x [p] and imaginary part is in A->z [p]. See
Section 12 for more details.

3. cholmod factor: A symbolic or numeric factorization, either real, complex, or zomplex. It
can be either an LLT or LDLT factorization, and either simplicial or supernodal. You will
normally not need to examine its contents. See Section 13 for more details.

9

4. cholmod dense: A dense matrix, either real, complex or zomplex, in column-major order.
This differs from the row-major convention used in C. A dense matrix X contains

� X->x, a double array of size X->nzmax or twice that for the complex case.

� X->z, a double array of size X->nzmax if X is zomplex.

For a real dense matrix xij is X->x [i+j*d] where d = X->d is the leading dimension of X.
For a complex dense matrix, the real part of xij is X->x [2*(i+j*d)] and the imaginary part
is X->x [2*(i+j*d)+1]. For a zomplex dense matrix, the real part of xij is X->x [i+j*d]

and the imaginary part is X->z [i+j*d]. Real and complex dense matrices can be passed to
LAPACK and the BLAS. See Section 14 for more details.

5. cholmod triplet: CHOLMOD’s sparse matrix (cholmod sparse) is the primary input for
nearly all CHOLMOD routines, but it can be difficult for the user to construct. A simpler
method of creating a sparse matrix is to first create a cholmod triplet matrix, and then
convert it to a cholmod sparse matrix via the cholmod triplet to sparse routine. In its
basic form, the triplet matrix T contains

� T->i and T->j, integer arrays of size T->nzmax.

� T->x, a double array of size T->nzmax or twice that for the complex case.

� T->z, a double array of size T->nzmax if T is zomplex.

The kth entry in the data structure has row index T->i [k] and column index T->j [k].
For a real triplet matrix, its numerical value is T->x [k]. For a complex triplet matrix, its
real part is T->x [2*k] and its imaginary part is T->x [2*k+1]. For a zomplex matrix, the
real part is T->x [k] and imaginary part is T->z [k]. The entries can be in any order, and
duplicates are permitted. See Section 15 for more details.

Each of the five objects has a routine in CHOLMOD to create and destroy it. CHOLMOD
provides many other operations on these objects as well. A few of the most important ones are
illustrated in the sample program in the next section.

10

3 Simple example program

#include "cholmod.h"

int main (void)

{

cholmod_sparse *A ;

cholmod_dense *x, *b, *r ;

cholmod_factor *L ;

double one [2] = {1,0}, m1 [2] = {-1,0} ; /* basic scalars */

cholmod_common c ;

cholmod_start (&c) ; /* start CHOLMOD */

A = cholmod_read_sparse (stdin, &c) ; /* read in a matrix */

cholmod_print_sparse (A, "A", &c) ; /* print the matrix */

if (A == NULL || A->stype == 0) /* A must be symmetric */

{

cholmod_free_sparse (&A, &c) ;

cholmod_finish (&c) ;

return (0) ;

}

b = cholmod_ones (A->nrow, 1, A->xtype, &c) ; /* b = ones(n,1) */

L = cholmod_analyze (A, &c) ; /* analyze */

cholmod_factorize (A, L, &c) ; /* factorize */

x = cholmod_solve (CHOLMOD_A, L, b, &c) ; /* solve Ax=b */

r = cholmod_copy_dense (b, &c) ; /* r = b */

#ifndef NMATRIXOPS

cholmod_sdmult (A, 0, m1, one, x, r, &c) ; /* r = r-Ax */

printf ("norm(b-Ax) %8.1e\n",

cholmod_norm_dense (r, 0, &c)) ; /* print norm(r) */

#else

printf ("residual norm not computed (requires CHOLMOD/MatrixOps)\n") ;

#endif

cholmod_free_factor (&L, &c) ; /* free matrices */

cholmod_free_sparse (&A, &c) ;

cholmod_free_dense (&r, &c) ;

cholmod_free_dense (&x, &c) ;

cholmod_free_dense (&b, &c) ;

cholmod_finish (&c) ; /* finish CHOLMOD */

return (0) ;

}

Purpose: The Demo/cholmod simple.c program illustrates the basic usage of CHOLMOD. It
reads a triplet matrix from a file (in Matrix Market format), converts it into a sparse matrix, creates
a linear system, solves it, and prints the norm of the residual.

See the CHOLMOD/Demo/cholmod demo.c program for a more elaborate example, and
CHOLMOD/Demo/cholmod l demo.c for its long integer version.

11

4 Installation of the C-callable library

CHOLMOD requires a suite of external packages, many of which are distributed along with
CHOLMOD, but three of which are not. Those included with CHOLMOD are:

� AMD: an approximate minimum degree ordering algorithm, by Tim Davis, Patrick Amestoy,
and Iain Duff [1, 2].

� COLAMD: an approximate column minimum degree ordering algorithm, by Tim Davis, Stefan
Larimore, John Gilbert, and Esmond Ng [6, 7].

� CCOLAMD: a constrained approximate column minimum degree ordering algorithm, by Tim
Davis and Siva Rajamanickam, based directly on COLAMD. This package is not required if
CHOLMOD is compiled with the -DNCAMD flag.

� CAMD: a constrained approximate minimum degree ordering algorithm, by Tim Davis and
Yanqing Chen, based directly on AMD. This package is not required if CHOLMOD is compiled
with the -DNCAMD flag.

� SuiteSparse config: a single place where all sparse matrix packages authored or co-authored
by Davis are configured. Also includes a version of the xerbla routine for the BLAS.

Three other packages are required for optimal performance:

� METIS 5.1.0: a graph partitioning package by George Karypis, Univ. of Minnesota. Not
needed if -DNPARTITION is used. See http://www-users.cs.umn.edu/∼karypis/metis.

� BLAS: the Basic Linear Algebra Subprograms. Not needed if -DNSUPERNODAL is used. See
http://www.netlib.org for the reference BLAS (not meant for production use). For Kazushige
Goto’s optimized BLAS (highly recommended for CHOLMOD) see
http://www.tacc.utexas.edu/∼kgoto/ or http://www.cs.utexas.edu/users/flame/goto/. I rec-
ommend that you avoid the Intel MKL BLAS; one recent version returns NaN’s, where both
the Goto BLAS and the standard Fortran reference BLAS return the correct answer. See
CHOLMOD/README for more information.

� LAPACK: the Basic Linear Algebra Subprograms. Not needed if -DNSUPERNODAL is used. See
http://www.netlib.org.

� CUDA BLAS: CHOLMOD can exploit an NVIDIA GPU by using the CUDA BLAS for large
supernodes. This feature is new to CHOLMOD v2.0.0.

You must first obtain and install LAPACK, and the BLAS. METIS 5.1.0 is optional; a copy of it
is in SuiteSparse. System-dependent configurations in the SuiteSparse config/SuiteSparse config.mk

file. This file has been changed in CHOLMOD version 3.0.7; it now automatically detects your
system, your BLAS, and whether or not you have CUDA installed, and whether or not you have
METIS 5.1.0. You still may need to edit it to refine the compilation parameters for your particular
system, but it is likely it will work unmodified.
Here are some of the various parameters that you can control in your SuiteSparse config/SuiteSparse config.mk

file. You can set them without editing that file, simply by including them on your make command.
For example, to -lmyblas, use make BLAS=-lmyblas. For a complete list, including their default
values, do make config.

12

� CC = your C compiler, such as cc.

� CF = optimization flags, such as -O.

� RANLIB = your system’s ranlib program, if needed.

� ARCHIVE = the command to create a library (such as ar).

� RM = the command to delete a file.

� MV = the command to rename a file.

� F77 = the command to compile a Fortran program (optional).

� F77FLAGS = the Fortran compiler flags (optional).

� F77LIB = the Fortran libraries (optional).

� LDLIBS = basic libraries, such as -lm.

� BLAS = your BLAS library.

� LAPACK = your LAPACK library.

� METIS PATH = the path to your copy of the METIS 5.1.0 source code.

� METIS = your METIS library.

� GPU CONFIG = configuration settings specific to the CUDA BLAS.

� CHOLMOD CONFIG = configuration settings specific to CHOLMOD.

CHOLMOD’s specific settings are given by the CHOLMOD CONFIG string:

� -DNCHECK: do not include the Check module.

� -DNCHOLESKY: do not include the Cholesky module.

� -DNPARTITION: do not include the interface to METIS in the Partition module.

� -DCAMD: do not include the interfaces to CAMD, CCOLAMD, and CSYMAMD in the Parti-
tion module.

� -DNMATRIXOPS: do not include the MatrixOps module. Note that the Demo requires the
MatrixOps module.

� -DNMODIFY: do not include the Modify module.

� -DNSUPERNODAL: do not include the Supernodal module.

� -DNPRINT: do not print anything.

� -D’LONGBLAS=long’ or -DLONGBLAS=’long long’ defines the integers used by LAPACK and
the BLAS (defaults to int).

13

� -DNSUNPERF: for Solaris only. If defined, do not use the Sun Performance Library.

� -DNLARGEFILE: CHOLMOD now assumes support for large files (2GB or larger). If this
causes problems, you can compile CHOLMOD with -DNLARGEFILE. To use large files,
you should #include "cholmod.h" (or at least #include "cholmod io64.h") before any
other #include statements, in your application that uses CHOLMOD. You may need to use
fopen64 to create a file pointer to pass to CHOLMOD, if you are using a non-gcc compiler.

Type make in the CHOLMOD directory. The AMD, COLAMD, CAMD, CCOLAMD, and CHOLMOD

libraries will be compiled, as will the C version of the null-output xerbla routine in case you need
it. No Fortran compiler is required in this case. A short demo program will be compiled and
tested on a few matrices. The residuals should all be small. Compare your output with the
CHOLMOD/Demo/make.out file.

CHOLMOD is now ready for use in your own applications. You must link your programs with
the libcholmod.*, libamd.*, libcolamd.*, LAPACK, and BLAS libraries, as well as the xerbla
library if you need it (SuiteSparse config/xerbla/libcerbla.* for the C version or
SuiteSparse config/xerbla/libxerbla.* for the Fortran version). Unless you use -DNPARTITION,
you must also link with the METIS 5.1.0 library. Unless -DNCAMD is present at compile time, you
must link with CAMD/libcamd.*, and CCOLAMD/libccolamd.*.

The make command now copies all of these libraries and include files into a single place:
SuiteSparse/lib and SuiteSparse/include. To tell your your compiler where to find them,
use -LSuiteSparse/lib and -ISuiteSparse/include.

To install CHOLMOD in /usr/local/lib and /usr/local/include, do make install. If you do
this, youdo not need the -L and -I option when compiling your program. Documentation is also
installed in /usr/local/doc. The installation location can be changed at the make command line;
see the SuiteSparse/README.txt file for details. To remove CHOLMOD, do make uninstall.

14

5 Using CHOLMOD in MATLAB

CHOLMOD includes a set of m-files and mexFunctions in the CHOLMOD/MATLAB directory.
The following functions are provided:

analyze order and analyze a matrix
bisect find a node separator
chol2 same as chol
cholmod2 same as x=A\b if A is symmetric positive definite
cholmod demo a short demo program
cholmod make compiles CHOLMOD for use in MATLAB
etree2 same as etree
graph demo graph partitioning demo
lchol L*L’ factorization
ldlchol L*D*L’ factorization
ldl normest estimate norm(A-L*D*L’)
ldlsolve x = L’\(D\(L\b))
ldlsplit split the output of ldlchol into L and D

ldlupdate update/downdate an L*D*L’ factorization
ldlrowmod add/delete a row from an L*D*L’ factorization
metis interface to METIS NodeND ordering
mread read a sparse or dense Matrix Market file
mwrite write a sparse or dense Matrix Market file
nesdis CHOLMOD’s nested dissection ordering
resymbol recomputes the symbolic factorization
sdmult S*F where S is sparse and F is dense
spsym determine symmetry
sparse2 same as sparse
symbfact2 same as symbfact

Each function is described in the next sections.

15

5.1 analyze: order and analyze

ANALYZE order and analyze a matrix using CHOLMOD’s best-effort ordering.

Example:

[p count] = analyze (A) orders A, using just tril(A)

[p count] = analyze (A,’sym’) orders A, using just tril(A)

[p count] = analyze (A,’row’) orders A*A’

[p count] = analyze (A,’col’) orders A’*A

an optional 3rd parameter modifies the ordering strategy:

[p count] = analyze (A,’sym’,k) orders A, using just tril(A)

[p count] = analyze (A,’row’,k) orders A*A’

[p count] = analyze (A,’col’,k) orders A’*A

Returns a permutation and the count of the number of nonzeros in each

column of L for the permuted matrix A. That is, count is returned as:

count = symbfact2 (A (p,p)) if ordering A

count = symbfact2 (A (p,:),’row’) if ordering A*A’

count = symbfact2 (A (:,p),’col’) if ordering A’*A

CHOLMOD uses the following ordering strategy:

k = 0: Try AMD. If that ordering gives a flop count >= 500 * nnz(L)

and a fill-in of nnz(L) >= 5*nnz(C), then try METIS_NodeND (where

C = A, A*A’, or A’*A is the matrix being ordered. Selects the best

ordering tried. This is the default.

if k > 0, then multiple orderings are attempted.

k = 1 or 2: just try AMD

k = 3: also try METIS_NodeND

k = 4: also try NESDIS, CHOLMOD’s nested dissection (NESDIS), with

default parameters. Uses METIS’s node bisector and CCOLAMD.

k = 5: also try the natural ordering (p = 1:n)

k = 6: also try NESDIS with large leaves of the separator tree

k = 7: also try NESDIS with tiny leaves and no CCOLAMD ordering

k = 8: also try NESDIS with no dense-node removal

k = 9: also try COLAMD if ordering A’*A or A*A’, (AMD if ordering A).

k > 9 is treated as k = 9

k = -1: just use AMD

k = -2: just use METIS

k = -3: just use NESDIS

The method returning the smallest nnz(L) is used for p and count.

k = 4 takes much longer than (say) k = 0, but it can reduce nnz(L) by

a typical 5% to 10%. k = 5 to 9 is getting extreme, but if you have

lots of time and want to find the best ordering possible, set k = 9.

If METIS is not installed for use in CHOLMOD, then the strategy is

different:

16

k = 1 to 4: just try AMD

k = 5 to 8: also try the natural ordering (p = 1:n)

k = 9: also try COLAMD if ordering A’*A or A*A’, (AMD if ordering A).

k > 9 is treated as k = 9

See also METIS, NESDIS, BISECT, SYMBFACT, AMD

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

5.2 bisect: find a node separator

BISECT computes a node separator based on METIS_ComputeVertexSeparator.

Example:

s = bisect(A) bisects A. Uses tril(A) and assumes A is symmetric.

s = bisect(A,’sym’) the same as p=bisect(A).

s = bisect(A,’col’) bisects A’*A.

s = bisect(A,’row’) bisects A*A’.

A must be square for p=bisect(A) and bisect(A,’sym’).

s is a vector of length equal to the dimension of A, A’*A, or A*A’,

depending on the matrix bisected. s(i)=0 if node i is in the left subgraph,

s(i)=1 if it is in the right subgraph, and s(i)=2 if node i is in the node

separator.

Requires METIS, authored by George Karypis, Univ. of Minnesota. This

MATLAB interface, via CHOLMOD, is by Tim Davis.

See also METIS, NESDIS

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

5.3 chol2: same as chol

CHOL2 sparse Cholesky factorization, A=R’R.

Note that A=L*L’ (LCHOL) and A=L*D*L’ (LDLCHOL) factorizations are faster

than R’*R (CHOL2 and CHOL) and use less memory. The LL’ and LDL’

factorization methods use tril(A). This method uses triu(A), just like

the built-in CHOL.

Example:

R = chol2 (A) same as R = chol (A), just faster

[R,p] = chol2 (A) same as [R,p] = chol(A), just faster

[R,p,q] = chol2 (A) factorizes A(q,q) into R’*R, where q is

a fill-reducing ordering

A must be sparse.

See also LCHOL, LDLCHOL, CHOL, LDLUPDATE.

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

17

5.4 cholmod2: supernodal backslash

CHOLMOD2 supernodal sparse Cholesky backslash, x = A\b

Example:

x = cholmod2 (A,b)

Computes the LL’ factorization of A(p,p), where p is a fill-reducing

ordering, then solves a sparse linear system Ax=b. A must be sparse,

symmetric, and positive definite). Uses only the upper triangular part

of A. A second output, [x,stats]=cholmod2(A,b), returns statistics:

stats(1) estimate of the reciprocal of the condition number

stats(2) ordering used:

0: natural, 1: given, 2:amd, 3:metis, 4:nesdis,

5:colamd, 6: natural but postordered.

stats(3) nnz(L)

stats(4) flop count in Cholesky factorization. Excludes solution

of upper/lower triangular systems, which can be easily

computed from stats(3) (roughly 4*nnz(L)*size(b,2)).

stats(5) memory usage in MB.

The 3rd argument select the ordering method to use. If not present or -1,

the default ordering strategy is used (AMD, and then try METIS if AMD finds

an ordering with high fill-in, and use the best method tried).

Other options for the ordering parameter:

0 natural (no etree postordering)

-1 use CHOLMOD’s default ordering strategy (AMD, then try METIS)

-2 AMD, and then try NESDIS (not METIS) if AMD has high fill-in

-3 use AMD only

-4 use METIS only

-5 use NESDIS only

-6 natural, but with etree postordering

p user permutation (vector of size n, with a permutation of 1:n)

See also CHOL, MLDIVIDE.

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

18

5.5 cholmod demo: a short demo program

CHOLMOD_DEMO a demo for CHOLMOD

Tests CHOLMOD with various randomly-generated matrices, and the west0479

matrix distributed with MATLAB. Random matrices are not good test cases,

but they are easily generated. It also compares CHOLMOD and MATLAB on the

sparse matrix problem used in the MATLAB BENCH command.

See CHOLMOD/MATLAB/Test/cholmod_test.m for a lengthy test using matrices from

the UF sparse matrix collection.

Example:

cholmod_demo

See also BENCH

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

L = full (L) ;

L = full (L) ;

5.6 cholmod make: compile CHOLMOD in MATLAB

CHOLMOD_MAKE compiles the CHOLMOD mexFunctions

Example:

cholmod_make

CHOLMOD relies on AMD and COLAMD, and optionally CCOLAMD, CAMD, and METIS.

You must type the cholmod_make command while in the CHOLMOD/MATLAB directory.

See also analyze, bisect, chol2, cholmod2, etree2, lchol, ldlchol, ldlsolve,

ldlupdate, metis, spsym, nesdis, septree, resymbol, sdmult, sparse2,

symbfact2, mread, mwrite, ldlrowmod

Copyright 2006-2015, Timothy A. Davis, http://www.suitesparse.com

MATLAB 8.3.0 now has a -silent option to keep ’mex’ from burbling too much

remove the renamed METIS files, if they exist

19

5.7 etree2: same as etree

ETREE2 sparse elimination tree.

Finds the elimination tree of A, A’*A, or A*A’, and optionaly postorders

the tree. parent(j) is the parent of node j in the tree, or 0 if j is a

root. The symmetric case uses only the upper or lower triangular part of

A (etree2(A) uses the upper part, and etree2(A,’lo’) uses the lower part).

Example:

parent = etree2 (A) finds the elimination tree of A, using triu(A)

parent = etree2 (A,’sym’) same as etree2(A)

parent = etree2 (A,’col’) finds the elimination tree of A’*A

parent = etree2 (A,’row’) finds the elimination tree of A*A’

parent = etree2 (A,’lo’) finds the elimination tree of A, using tril(A)

[parent,post] = etree2 (...) also returns a post-ordering of the tree.

If you have a fill-reducing permutation p, you can combine it with an

elimination tree post-ordering using the following code. Post-ordering has

no effect on fill-in (except for lu), but it does improve the performance

of the subsequent factorization.

For the symmetric case, suitable for chol(A(p,p)):

[parent post] = etree2 (A (p,p)) ;

p = p (post) ;

For the column case, suitable for qr(A(:,p)) or lu(A(:,p)):

[parent post] = etree2 (A (:,p), ’col’) ;

p = p (post) ;

For the row case, suitable for qr(A(p,:)’) or chol(A(p,:)*A(p,:)’):

[parent post] = etree2 (A (p,:), ’row’) ;

p = p (post) ;

See also TREELAYOUT, TREEPLOT, ETREEPLOT, ETREE

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

20

5.8 graph demo: graph partitioning demo

GRAPH_DEMO graph partitioning demo

graph_demo(n) constructs an set of n-by-n 2D grids, partitions them, and

plots them in one-second intervals. n is optional; it defaults to 60.

Example:

graph_demo

See also DELSQ, NUMGRID, GPLOT, TREEPLOT

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

21

5.9 lchol: LLT factorization

LCHOL sparse A=L*L’ factorization.

Note that L*L’ (LCHOL) and L*D*L’ (LDLCHOL) factorizations are faster than

R’*R (CHOL2 and CHOL) and use less memory. The LL’ and LDL’ factorization

methods use tril(A). A must be sparse.

Example:

L = lchol (A) same as L = chol (A’)’, just faster

[L,p] = lchol (A) same as [R,p] = chol(A’) ; L=R’, just faster

[L,p,q] = lchol (A) factorizes A(q,q) into L*L’, where q is a

fill-reducing ordering

See also CHOL2, LDLCHOL, CHOL.

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

5.10 ldlchol: LDLT factorization

LDLCHOL sparse A=LDL’ factorization

Note that L*L’ (LCHOL) and L*D*L’ (LDLCHOL) factorizations are faster than

R’*R (CHOL2 and CHOL) and use less memory. The LL’ and LDL’ factorization

methods use tril(A). A must be sparse.

Example:

LD = ldlchol (A) return the LDL’ factorization of A

[LD,p] = ldlchol (A) similar [R,p] = chol(A), but for L*D*L’

[LD,p,q] = ldlchol (A) factorizes A(q,q) into L*D*L’, where q is a

fill-reducing ordering

LD = ldlchol (A,beta) return the LDL’ factorization of A*A’+beta*I

[LD,p] = ldlchol (A,beta) like [R,p] = chol(A*A’+beta+I)

[LD,p,q] = ldlchol (A,beta) factorizes A(q,:)*A(q,:)’+beta*I into L*D*L’

The output matrix LD contains both L and D. D is on the diagonal of LD, and

L is contained in the strictly lower triangular part of LD. The unit-

diagonal of L is not stored. You can obtain the L and D matrices with

[L,D] = ldlsplit (LD). LD is in the form needed by ldlupdate.

Explicit zeros may appear in the LD matrix. The pattern of LD matches the

pattern of L as computed by symbfact2, even if some entries in LD are

explicitly zero. This is to ensure that ldlupdate and ldlsolve work

properly. You must NOT modify LD in MATLAB itself and then use ldlupdate

or ldlsolve if LD contains explicit zero entries; ldlupdate and ldlsolve

will fail catastrophically in this case.

You MAY modify LD in MATLAB if you do not pass it back to ldlupdate or

ldlsolve. Just be aware that LD contains explicit zero entries, contrary

to the standard practice in MATLAB of removing those entries from all

sparse matrices. LD = sparse2 (LD) will remove any zero entries in LD.

See also LDLUPDATE, LDLSOLVE, LDLSPLIT, CHOL2, LCHOL, CHOL, SPARSE2

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

22

5.11 ldlsolve: solve using an LDLT factorization

LDLSOLVE solve LDL’x=b using a sparse LDL’ factorization

Example:

x = ldlsolve (LD,b)

solves the system L*D*L’*x=b for x. This is equivalent to

[L,D] = ldlsplit (LD) ;

x = L’ \ (D \ (L \ b)) ;

LD is from ldlchol, or as updated by ldlupdate or ldlrowmod. You must not

modify LD as obtained from ldlchol, ldlupdate, or ldlrowmod prior to passing

it to this function. See ldlupdate for more details.

See also LDLCHOL, LDLUPDATE, LDLSPLIT, LDLROWMOD

Copyright 2006-2017, Timothy A. Davis, http://www.suitesparse.com

5.12 ldlsplit: split an LDLT factorization

LDLSPLIT split an LDL’ factorization into L and D.

Example:

[L,D] = ldlsplit (LD)

LD contains an LDL’ factorization, computed with LD = ldlchol(A),

for example. The diagonal of LD contains D, and the entries below

the diagonal contain L (which has a unit diagonal). This function

splits LD into its two components L and D so that L*D*L’ = A.

See also LDLCHOL, LDLSOLVE, LDLUPDATE.

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

23

5.13 ldlupdate: update/downdate an LDLT factorization

LDLUPDATE multiple-rank update or downdate of a sparse LDL’ factorization.

On input, LD contains the LDL’ factorization of A (L*D*L’=A or A(q,q)).

The unit-diagonal of L is not stored. In its place is the diagonal matrix

D. LD can be computed using the CHOLMOD mexFunctions:

LD = ldlchol (A) ;

or

[LD,p,q] = ldlchol (A) ;

With this LD, either of the following MATLAB statements,

Example:

LD = ldlupdate (LD,C)

LD = ldlupdate (LD,C,’+’)

return the LDL’ factorization of A+C*C’ or A(q,q)-C*C’ if LD holds the LDL’

factorization of A(q,q) on input. For a downdate:

LD = ldlupdate (LD,C,’-’)

returns the LDL’ factorization of A-C*C’ or A(q,q)-C*C’.

LD and C must be sparse and real. LD must be square, and C must have the

same number of rows as LD. You must not modify LD in MATLAB (see the

WARNING below).

Note that if C is sparse with few columns, most of the time spent in this

routine is taken by copying the input LD to the output LD. If MATLAB

allowed mexFunctions to safely modify its inputs, this mexFunction would

be much faster, since not all of LD changes.

See also LDLCHOL, LDLSPLIT, LDLSOLVE, CHOLUPDATE

===

=============================== WARNING ===================================

===

MATLAB drops zero entries from its sparse matrices. LD can contain

numerically zero entries that are symbolically present in the sparse matrix

data structure. These are essential for ldlupdate and ldlsolve to work

properly, since they exploit the graph-theoretic structure of a sparse

Cholesky factorization. If you modify LD in MATLAB, those zero entries may

get dropped and the required graph property will be destroyed. In this

case, ldlupdate and ldlsolve will fail catastrophically (possibly with a

segmentation fault, terminating MATLAB). It takes much more time to ensure

this property holds than the time it takes to do the update/downdate or the

solve, so ldlupdate and ldlsolve simply assume the propertly holds.

===

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

24

5.14 ldlrowmod: add/delete a row from an LDLT factorization

LDLROWMOD add/delete a row from a sparse LDL’ factorization.

On input, LD contains the LDL’ factorization of A (L*D*L’=A or A(q,q)).

The unit-diagonal of L is not stored. In its place is the diagonal matrix

D. LD can be computed using the CHOLMOD mexFunctions:

LD = ldlchol (A) ;

or

[LD,p,q] = ldlchol (A) ;

With this LD, either of the following MATLAB statements,

Example:

LD = ldlrowmod (LD,k,C) add row k to an LDL’ factorization

returns the LDL’ factorization of S, where S = A except for S(:,k) = C

and S (k,:) = C. The kth row of A is assumed to initially be equal to

the kth row of identity. To delete a row:

LD = ldlrowmod (LD,k) delete row k from an LDL’ factorization

returns the LDL’ factorization of S, where S = A except that S(:,k) and

S (k,:) become the kth column/row of speye(n), repespectively.

LD and C must be sparse and real. LD must be square, and C must have the

same number of rows as LD. You must not modify LD in MATLAB (see the

WARNING below).

Note that if C is sparse with few columns, most of the time spent in this

routine is taken by copying the input LD to the output LD. If MATLAB

allowed mexFunctions to safely modify its inputs, this mexFunction would

be much faster, since not all of LD changes.

See also LDLCHOL, LDLSPLIT, LDLSOLVE, CHOLUPDATE, LDLUPDATE

===

=============================== WARNING ===================================

===

MATLAB drops zero entries from its sparse matrices. LD can contain

numerically zero entries that are symbolically present in the sparse matrix

data structure. These are essential for ldlrowmod and ldlsolve to work

properly, since they exploit the graph-theoretic structure of a sparse

Cholesky factorization. If you modify LD in MATLAB, those zero entries may

get dropped and the required graph property will be destroyed. In this

case, ldlrowmod and ldlsolve will fail catastrophically (possibly with a

segmentation fault, terminating MATLAB). It takes much more time to ensure

this property holds than the time it takes to do the row add/delete or the

solve, so ldlrowmod and ldlsolve simply assume the propertly holds.

===

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

25

5.15 mread: read a sparse or dense matrix from a Matrix Market file

MREAD read a sparse matrix from a file in Matrix Market format.

Example:

A = mread (filename)

[A Z] = mread (filename, prefer_binary)

Unlike MMREAD, only the matrix is returned; the file format is not

returned. Explicit zero entries can be present in the file; these are not

included in A. They appear as the nonzero pattern of the binary matrix Z.

If prefer_binary is not present, or zero, a symmetric pattern-only matrix

is returned with A(i,i) = 1+length(find(A(:,i))) if it is present in the

pattern, and A(i,j) = -1 for off-diagonal entries. If you want the original

Matrix Market matrix in this case, simply use A = mread (filename,1).

Compare with mmread.m at http://math.nist.gov/MatrixMarket

See also load

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

5.16 mwrite: write a sparse or dense matrix to a Matrix Market file

MWRITE write a matrix to a file in Matrix Market form.

Example:

mtype = mwrite (filename, A, Z, comments_filename)

A can be sparse or full.

If present and non-empty, A and Z must have the same dimension. Z contains

the explicit zero entries in the matrix (which MATLAB drops). The entries

of Z appear as explicit zeros in the output file. Z is optional. If it is

an empty matrix it is ignored. Z must be sparse or empty, if present.

It is ignored if A is full.

filename is the name of the output file. comments_filename is the file

whose contents are include after the Matrix Market header and before the

first data line. Ignored if an empty string or not present.

See also mread.

Copyright 2006-2007, Timothy A. Davis

26

5.17 metis: order with METIS

METIS nested dissection ordering via METIS_NodeND.

Example:

p = metis(A) returns p such chol(A(p,p)) is typically sparser than

chol(A). Uses tril(A) and assumes A is symmetric.

p = metis(A,’sym’) the same as p=metis(A).

p = metis(A,’col’) returns p so that chol(A(:,p)’*A(:,p)) is typically

sparser than chol(A’*A).

p = metis(A,’row’) returns p so that chol(A(p,:)*A(p,:)’) is typically

sparser than chol(A’*A).

A must be square for p=metis(A) or metis(A,’sym’)

Requires METIS, authored by George Karypis, Univ. of Minnesota. This

MATLAB interface, via CHOLMOD, is by Tim Davis.

See also NESDIS, BISECT

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

27

5.18 nesdis: order with CHOLMOD nested dissection

NESDIS nested dissection ordering via CHOLMOD’s nested dissection.

Example:

p = nesdis(A) returns p such chol(A(p,p)) is typically sparser than

chol(A). Uses tril(A) and assumes A is symmetric.

p = nesdis(A,’sym’) the same as p=nesdis(A).

p = nesdis(A,’col’) returns p so that chol(A(:,p)’*A(:,p)) is typically

sparser than chol(A’*A).

p = nesdis(A,’row’) returns p so that chol(A(p,:)*A(p,:)’) is typically

sparser than chol(A’*A).

A must be square for p=nesdis(A) or nesdis(A,’sym’).

With three output arguments, [p cp cmember] = nesdis(...), the separator

tree and node-to-component mapping is returned. cmember(i)=c means that

node i is in component c, where c is in the range of 1 to the number of

components. length(cp) is the number of components found. cp is the

separator tree; cp(c) is the parent of component c, or 0 if c is a root.

There can be anywhere from 1 to n components, where n is dimension of A,

A*A’, or A’*A. cmember is a vector of length n.

An optional 3rd input argument, nesdis (A,mode,opts), modifies the default

parameters. opts(1) specifies the smallest subgraph that should not be

partitioned (default is 200). opts(2) is 0 by default; if nonzero,

connected components (formed after the node separator is removed) are

partitioned independently. The default value tends to lead to a more

balanced separator tree, cp. opts(3) defines when a separator is kept; it

is kept if the separator size is < opts(3) times the number of nodes in the

graph being cut (valid range is 0 to 1, default is 1).

opts(4) specifies graph is to be ordered after it is dissected. For the

’sym’ case: 0: natural ordering, 1: CAMD, 2: CSYMAMD. For other cases:

0: natural ordering, nonzero: CCOLAMD. The default is 1, to use CAMD for

the symmetric case and CCOLAMD for the other cases.

If opts is shorter than length 4, defaults are used for entries

that are not present.

NESDIS uses METIS’ node separator algorithm to recursively partition the

graph. This gives a set of constraints (cmember) that is then passed to

CCOLAMD, CSYMAMD, or CAMD, constrained minimum degree ordering algorithms.

NESDIS typically takes slightly more time than METIS (METIS_NodeND), but

tends to produce better orderings.

Requires METIS, authored by George Karypis, Univ. of Minnesota. This

MATLAB interface, via CHOLMOD, is by Tim Davis.

See also METIS, BISECT, AMD

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

28

5.19 resymbol: re-do symbolic factorization

RESYMBOL recomputes the symbolic Cholesky factorization of the matrix A.

Example:

L = resymbol (L, A)

Recompute the symbolic Cholesky factorization of the matrix A. A must be

symmetric. Only tril(A) is used. Entries in L that are not in the Cholesky

factorization of A are removed from L. L can be from an LL’ or LDL’

factorization (lchol or ldlchol). resymbol is useful after a series of

downdates via ldlupdate or ldlrowmod, since downdates do not remove any

entries in L. The numerical values of A are ignored; only its nonzero

pattern is used.

See also LCHOL, LDLUPDATE, LDLROWMOD

Copyright 2006-2015, Timothy A. Davis, http://www.suitesparse.com

5.20 sdmult: sparse matrix times dense matrix

SDMULT sparse matrix times dense matrix

Compute C = S*F or S’*F where S is sparse and F is full (C is also sparse).

S and F must both be real or both be complex. This function is

substantially faster than the MATLAB expression C=S*F when F has many

columns.

Example:

C = sdmult (S,F) ; C = S*F

C = sdmult (S,F,0) ; C = S*F

C = sdmult (S,F,1) ; C = S’*F

See also MTIMES

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

29

5.21 spsym: determine symmetry

SPSYM determine if a sparse matrix is symmetric, Hermitian, or skew-symmetric.

If so, also determine if its diagonal has all positive real entries.

A must be sparse.

Example:

result = spsym (A) ;

result = spsym (A,quick) ;

If quick = 0, or is not present, then this routine returns:

1: if A is rectangular

2: if A is unsymmetric

3: if A is symmetric, but with one or more A(j,j) <= 0

4: if A is Hermitian, but with one or more A(j,j) <= 0 or with

nonzero imaginary part

5: if A is skew symmetric (and thus the diagonal is all zero as well)

6: if A is symmetric with real positive diagonal

7: if A is Hermitian with real positive diagonal

If quick is nonzero, then the function can return more quickly, as soon as

it finds a diagonal entry that is <= 0 or with a nonzero imaginary part.

In this case, it returns 2 for a square matrix, even if the matrix might

otherwise be symmetric or Hermitian.

Regardless of the value of "quick", this function returns 6 or 7 if A is

a candidate for sparse Cholesky.

For an MATLAB M-file function that computes the same thing as this

mexFunction (but much slower), see the get_symmetry function by typing

"type spsym".

This spsym function does not compute the transpose of A, nor does it need

to examine the entire matrix if it is unsymmetric. It uses very little

memory as well (just size-n workspace, where n = size (A,1)).

Examples:

load west0479

A = west0479 ;

spsym (A)

spsym (A+A’)

spsym (A-A’)

spsym (A+A’+3*speye(size(A,1)))

See also mldivide.

function result = get_symmetry (A,quick)

%GET_SYMMETRY: does the same thing as the spsym mexFunction.

% It’s just a lot slower and uses much more memory. This function

% is meant for testing and documentation only.

[m n] = size (A) ;

if (m ~= n)

result = 1 ; % rectangular

return

end

30

if (nargin < 2)

quick = 0 ;

end

d = diag (A) ;

posdiag = all (real (d) > 0) & all (imag (d) == 0) ;

if (quick & ~posdiag)

result = 2 ; % Not a candidate for sparse Cholesky.

elseif (~isreal (A) & nnz (A-A’) == 0)

if (posdiag)

result = 7 ; % complex Hermitian, with positive diagonal

else

result = 4 ; % complex Hermitian, nonpositive diagonal

end

elseif (nnz (A-A.’) == 0)

if (posdiag)

result = 6 ; % symmetric with positive diagonal

else

result = 3 ; % symmetric, nonpositive diagonal

end

elseif (nnz (A+A.’) == 0)

result = 5 ; % skew symmetric

else

result = 2 ; % unsymmetric

end

With additional outputs, spsym computes the following for square matrices:

(in this case "quick" is ignored, and set to zero):

[result xmatched pmatched nzoffdiag nnzdiag] = spsym(A)

xmatched is the number of nonzero entries for which A(i,j) = conj(A(j,i)).

pmatched is the number of entries (i,j) for which A(i,j) and A(j,i) are

both in the pattern of A (the value doesn’t matter). nzoffdiag is the

total number of off-diagonal entries in the pattern. nzdiag is the number

of diagonal entries in the pattern. If the matrix is rectangular,

xmatched, pmatched, nzoffdiag, and nzdiag are not computed (all of them are

returned as zero). Note that a matched pair, A(i,j) and A(j,i) for i != j,

is counted twice (once per entry).

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

31

5.22 sparse2: same as sparse

SPARSE2 replacement for SPARSE

Example:

S = sparse2 (i,j,s,m,n,nzmax)

Identical to the MATLAB sparse function (just faster).

An additional feature is added that is not part of the MATLAB sparse

function, the Z matrix. With an extra output,

[S Z] = sparse2 (i,j,s,m,n,nzmax)

the matrix Z is a binary real matrix whose nonzero pattern contains the

explicit zero entries that were dropped from S. Z only contains entries

for the sparse2(i,j,s,...) usage. [S Z]=sparse2(X) where X is full always

returns Z with nnz(Z) = 0, as does [S Z]=sparse2(m,n). More precisely,

Z is the following matrix (where ... means the optional m, n, and nzmax

parameters).

S = sparse (i,j,s, ...)

Z = spones (sparse (i,j,1, ...)) - spones (S)

See also sparse.

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

32

5.23 symbfact2: same as symbfact

SYMBFACT2 symbolic factorization

Analyzes the Cholesky factorization of A, A’*A, or A*A’.

Example:

count = symbfact2 (A) returns row counts of R=chol(A)

count = symbfact2 (A,’col’) returns row counts of R=chol(A’*A)

count = symbfact2 (A,’sym’) same as symbfact2(A)

count = symbfact2 (A,’lo’) same as symbfact2(A’), uses tril(A)

count = symbfact2 (A,’row’) returns row counts of R=chol(A*A’)

The flop count for a subsequent LL’ factorization is sum(count.^2)

[count, h, parent, post, R] = symbfact2 (...) returns:

h: height of the elimination tree

parent: the elimination tree itself

post: postordering of the elimination tree

R: a 0-1 matrix whose structure is that of chol(A) for the symmetric

case, chol(A’*A) for the ’col’ case, or chol(A*A’) for the

’row’ case.

symbfact2(A) and symbfact2(A,’sym’) uses the upper triangular part of A

(triu(A)) and assumes the lower triangular part is the transpose of

the upper triangular part. symbfact2(A,’lo’) uses tril(A) instead.

With one to four output arguments, symbfact2 takes time almost proportional

to nnz(A)+n where n is the dimension of R, and memory proportional to

nnz(A). Computing the 5th argument takes more time and memory, both

O(nnz(L)). Internally, the pattern of L is computed and R=L’ is returned.

The following forms return L = R’ instead of R. They are faster and take

less memory than the forms above. They return the same count, h, parent,

and post outputs.

[count, h, parent, post, L] = symbfact2 (A,’col’,’L’)

[count, h, parent, post, L] = symbfact2 (A,’sym’,’L’)

[count, h, parent, post, L] = symbfact2 (A,’lo’, ’L’)

[count, h, parent, post, L] = symbfact2 (A,’row’,’L’)

See also CHOL, ETREE, TREELAYOUT, SYMBFACT

Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com

33

6 Installation for use in MATLAB

6.1 cholmod make: compiling CHOLMOD in MATLAB

This is the preferred method, since it allows METIS to be reconfigured to use the MATLAB
memory-management functions instead of malloc and free; this avoids the issue of METIS termi-
nating MATLAB if it runs out of memory. It is also simpler for Windows users, who do not have
the make command (unless you obtain a copy of Cygwin).

Start MATLAB, cd to the CHOLMOD/MATLAB directory, and type cholmod make in the MAT-
LAB command window. This will compile the MATLAB interfaces for AMD, COLAMD, CAMD,
CCOLAMD, METIS, and CHOLMOD.

34

7 Using CHOLMOD with GPU acceleration

Starting with CHOLMOD v2.0.0, it is possible to accelerate the numerical factorization phase of
CHOLMOD using NVIDIA GPUs. Due to the large computational capability of the GPUs, enabling
this capability can result in significant performance improvements. Similar to CPU processing, the
GPU is better able to accelerate the dense math associated with larger supernodes. Hence the
GPU will provide more significant performance improvements for larger matrices that have more,
larger supernodes.

In CHOLMOD v2.3.0 this GPU capability has been improved to provide a significant increase
in performance and the interface has been expanded to make the use of GPUs more flexible.
CHOLMOD can take advantage of a single NVIDIA GPU that supports CUDA and has at least
64MB of memory. (But substantially more memory, typically about 3 GB, is recommended for best
performance.)

Only the long integer version of CHOLMOD can leverage GPU acceleration.

7.1 Compiling CHOLMOD with GPU support

In order to support GPU processing, CHOLMOD must be compiled with the preprocessor macro
GPU BLAS defined. All GPU code is conditional upon this macro. As well, the environment variable
CUDA ROOT must be defined and point to the installation of the CUDA toolkit to be used for
compilation of CHOLMOD. Typically this would be /usr/local/cuda.

The SuiteSparse config.mk should automatically detect if you have CUDA installed on your
system. If so, then it will do everything for you without the need to edit the SuiteSparse config.mk

file.

7.2 Enabling GPU acceleration in CHOLMOD

Even if compiled with GPU support, in CHOLMOD v.2.3.0, GPU processing is not enabled by
default and must be specifically requested. There are two ways to do this, either in the code calling
CHOLMOD or using environment variables.

The code author can specify the use of GPU processing with the Common->useGPU variable. If
this is set to 1, CHOLMOD will attempt to use the GPU. If this is set to 0 the use of the GPU will be
prohibited. If this is set to -1, which is the default case, then the environment variables (following
paragraph) will be queried to determine if the GPU is to be used. Note that the default value of -1
is set when cholmod start(Common) is called, so the code author must set Common->useGPU after
calling cholmod start.

Alternatively, or if it is not possible to modify the code calling CHOLMOD, GPU processing
can invoked using the CHOLMOD USE GPU environment variable. This makes it possible for any
CHOLMOD user to invoke GPU processing even if the author of the calling program did not
consider this. The interpretation of the environment variable CHOLMOD USE GPU is that if the string
evaluates to an integer other than zero, GPU processing will be enabled. Note that the setting
of Common->useGPU takes precedence and the environment variable CHOLMOD USE GPU will only be
queried if Common->useGPU = -1.

Note that in either case, if GPU processing is requested, but there is no GPU present, CHOLMOD
will continue using the CPU only. Consequently it is always safe to request GPU processing.

35

7.3 Adjustable parameters

There are a number of parameters that have been added to CHOLMOD to control GPU process-
ing. All of these have appropriate defaults such that GPU processing can be used without any
modification. However, for any particular combination of CPU/GPU, better performance might be
obtained by adjusting these parameters.

From t cholmod gpu.c

CHOLMOD ND ROW LIMIT : Minimum number of rows required in a descendant supernode
to be eligible for GPU processing during supernode assembly

CHOLMOD ND COL LIMIT : Minimum number of columns in a descendant supernode to be
eligible for GPU processing during supernode assembly

CHOLMOD POTRF LIMIT : Minimum number of columns in a supernode to be eligible for
POTRF and TRSM processing on the GPU

CHOLMOD GPU SKIP : Number of small descendant supernodes to assembled on the CPU
before querying if the GPU is needs more descendant supernodes queued

From cholmod core.h

CHOLMOD HOST SUPERNODE BUFFERS : Number of buffers in which to queue descendant
supernodes for GPU processing

Programatically

Common->maxGpuMemBytes : Specifies the maximum amount of memory, in bytes, that
CHOLMOD can allocate on the GPU. If this parameter is not set, CHOLMOD will
allocate as much GPU memory as possible. Hence, the purpose of this parameter is to
restrict CHOLMOD’s GPU memory use so that CHOLMOD can be used simultaneously
with other codes that also use GPU acceleration and require some amount of GPU
memory. If the specified amount of GPU memory is not allocatable, CHOLMOD will
allocate the available memory and continue.

Common->maxGpuMemFraction : Entirely similar to Common->maxGpuMemBytes but with
the memory specified as a fraction of total GPUmemory. Note that if both maxGpuMemBytes
and maxGpuMemFraction are specified, whichever results in the minimum amount of
memory will be used.

Environment variables

CHOLMOD GPU MEM BYTES : Environment variable with a meaning equivalent to Common->maxGpuMemBytes.
This will only be queried if Common->useGPU = -1.

CHOLMOD GPU MEM FRACTION : Environment variable with a meaning equivalent to Common->maxGpuMemFraction.
This will only be queried if Common->useGPU = -1.

36

8 Integer and floating-point types, and notation used

CHOLMOD supports both int and long integers. CHOLMOD routines with the prefix cholmod

use int integers, cholmod l routines use long. All floating-point values are double.
The long integer is redefinable, via SuiteSparse config.h. That file defines a C preprocessor

token SuiteSparse long which is long on all systems except for Windows-64, in which case it is
defined as int64. The intent is that with suitable compile-time switches, int is a 32-bit integer
and SuiteSparse long is a 64-bit integer. The term long is used to describe the latter integer
throughout this document (except in the prototypes).

Two kinds of complex matrices are supported: complex and zomplex. A complex matrix is held
in a manner that is compatible with the Fortran and ANSI C99 complex data type. A complex
array of size n is a double array x of size 2*n, with the real and imaginary parts interleaved (the
real part comes first, as a double, followed the imaginary part, also as a double. Thus, the real
part of the kth entry is x[2*k] and the imaginary part is x[2*k+1].

A zomplex matrix of size n stores its real part in one double array of size n called x and its
imaginary part in another double array of size n called z (thus the name “zomplex”). This also how
MATLAB stores its complex matrices. The real part of the kth entry is x[k] and the imaginary
part is z[k].

Unlike UMFPACK, the same routine name in CHOLMOD is used for pattern-only, real, complex,
and zomplex matrices. For example, the statement

C = cholmod_copy_sparse (A, &Common) ;

creates a copy of a pattern, real, complex, or zomplex sparse matrix A. The xtype (pattern, real,
complex, or zomplex) of the resulting sparse matrix C is the same as A (a pattern-only sparse matrix
contains no floating-point values). In the above case, C and A use int integers. For long integers,
the statement would become:

C = cholmod_l_copy_sparse (A, &Common) ;

The last parameter of all CHOLMOD routines is always &Common, a pointer to the cholmod common

object, which contains parameters, statistics, and workspace used throughout CHOLMOD.
The xtype of a CHOLMOD object (sparse matrix, triplet matrix, dense matrix, or factorization)

determines whether it is pattern-only, real, complex, or zomplex.
The names of the int versions are primarily used in this document. To obtain the name of the

long version of the same routine, simply replace cholmod with cholmod l .
MATLAB matrix notation is used throughout this document and in the comments in the

CHOLMOD code itself. If you are not familiar with MATLAB, here is a short introduction to
the notation, and a few minor variations used in CHOLMOD:

� C=A+B and C=A*B, respectively are a matrix add and multiply if both A and B are matrices of
appropriate size. If A is a scalar, then it is added to or multiplied with every entry in B.

� a:b where a and b are integers refers to the sequence a, a+1, ... b.

� [A B] and [A,B] are the horizontal concatenation of A and B.

� [A;B] is the vertical concatenation of A and B.

37

� A(i,j) can refer either to a scalar or a submatrix. For example:
A(1,1) a scalar.
A(:,j) column j of A.
A(i,:) row i of A.
A([1 2], [1 2]) a 2-by-2 matrix containing the 2-by-2 leading minor of A.

If p is a permutation of 1:n, and A is n-by-n, then A(p,p) corresponds to the permuted

matrix PAPT.

� tril(A) is the lower triangular part of A, including the diagonal.

� tril(A,k) is the lower triangular part of A, including entries on and below the kth diagonal.

� triu(A) is the upper triangular part of A, including the diagonal.

� triu(A,k) is the upper triangular part of A, including entries on and above the kth diagonal.

� size(A) returns the dimensions of A.

� find(x) if x is a vector returns a list of indices i for which x(i) is nonzero.

� A’ is the transpose of A if A is real, or the complex conjugate transpose if A is complex.

� A.’ is the array transpose of A.

� diag(A) is the diagonal of A if A is a matrix.

� C=diag(s) is a diagonal matrix if s is a vector, with the values of s on the diagonal of C.

� S=spones(A) returns a binary matrix S with the same nonzero pattern of A.

� nnz(A) is the number of nonzero entries in A.

Variations to MATLAB notation used in this document:

� CHOLMOD uses 0-based notation (the first entry in the matrix is A(0,0)). MATLAB is
1-based. The context is usually clear.

� I is the identity matrix.

� A(:,f), where f is a set of columns, is interpreted differently in CHOLMOD, but just for the
set named f. See cholmod transpose unsym for details.

38

9 The CHOLMOD Modules, objects, and functions

CHOLMOD contains a total of 133 int-based routines (and the same number of long routines),
divided into a set of inter-related Modules. Each Module contains a set of related functions. The
functions are divided into two types: Primary and Secondary, to reflect how a user will typically
use CHOLMOD. Most users will find the Primary routines to be sufficient to use CHOLMOD in
their programs. Each Module exists as a sub-directory (a folder for Windows users) within the
CHOLMOD directory (or folder).

There are seven Modules that provide user-callable routines for CHOLMOD.

1. Core: basic data structures and definitions

2. Check: prints/checks each of CHOLMOD’s objects

3. Cholesky: sparse Cholesky factorization

4. Modify: sparse Cholesky update/downdate and row-add/row-delete

5. MatrixOps: sparse matrix operators (add, multiply, norm, scale)

6. Supernodal: supernodal sparse Cholesky factorization

7. Partition: graph-partitioning-based orderings

Two additional Modules are required to compile the CHOLMOD library:

1. Include: include files for CHOLMOD and programs that use CHOLMOD

2. Lib: where the CHOLMOD library is built

Five additional Modules provide support functions and documentation:

1. Demo: simple programs that illustrate the use of CHOLMOD

2. Doc: documentation (including this document)

3. MATLAB: CHOLMOD’s interface to MATLAB

4. Tcov: an exhaustive test coverage (requires Linux or Solaris)

5. Valgrind: runs the Tcov test under valgrind (requires Linux)

39

9.1 Core Module: basic data structures and definitions

CHOLMOD includes five basic objects, defined in the Core Module. The Core Module provides
basic operations for these objects and is required by all six other CHOLMOD library Modules:

9.1.1 cholmod common: parameters, statistics, and workspace

You must call cholmod start before calling any other CHOLMOD routine, and you must call
cholmod finish as your last call to CHOLMOD (with the exception of cholmod print common

and cholmod check common in the Check Module). Once the cholmod common object is initial-
ized, the user may modify CHOLMOD’s parameters held in this object, and obtain statistics on
CHOLMOD’s activity.

Primary routines for the cholmod common object:

� cholmod start: the first call to CHOLMOD.

� cholmod finish: the last call to CHOLMOD (frees workspace in the cholmod common object).

Secondary routines for the cholmod common object:

� cholmod defaults: restores default parameters

� cholmod maxrank: determine maximum rank for update/downdate.

� cholmod allocate work: allocate workspace.

� cholmod free work: free workspace.

� cholmod clear flag: clear Flag array.

� cholmod error: called when CHOLMOD encounters and error.

� cholmod dbound: bounds the diagonal of L or D.

� cholmod hypot: compute sqrt(x*x+y*y) accurately.

� cholmod divcomplex: complex divide.

40

9.1.2 cholmod sparse: a sparse matrix in compressed column form

A sparse matrix A is held in compressed column form. In the basic type (“packed,” which corre-
sponds to how MATLAB stores its sparse matrices), and nrow-by-ncol matrix with nzmax entries is
held in three arrays: p of size ncol+1, i of size nzmax, and x of size nzmax. Row indices of nonzero
entries in column j are held in i [p[j] ... p[j+1]-1], and their corresponding numerical values
are held in x [p[j] ... p[j+1]-1]. The first column starts at location zero (p[0]=0). There
may be no duplicate entries. Row indices in each column may be sorted or unsorted (the A->sorted
flag must be false if the columns are unsorted). The A->stype determines the storage mode: 0 if
the matrix is unsymmetric, 1 if the matrix is symmetric with just the upper triangular part stored,
and -1 if the matrix is symmetric with just the lower triangular part stored.

In “unpacked” form, an additional array nz of size ncol is used. The end of column j in i and
x is given by p[j]+nz[j]. Columns not need be in any particular order (p[0] need not be zero),
and there may be gaps between the columns.

Primary routines for the cholmod sparse object:

� cholmod allocate sparse: allocate a sparse matrix

� cholmod free sparse: free a sparse matrix

Secondary routines for the cholmod sparse object:

� cholmod reallocate sparse: change the size (number of entries) of a sparse matrix.

� cholmod nnz: number of nonzeros in a sparse matrix.

� cholmod speye: sparse identity matrix.

� cholmod spzeros: sparse zero matrix.

� cholmod transpose: transpose a sparse matrix.

� cholmod ptranspose: transpose/permute a sparse matrix.

� cholmod transpose unsym: transpose/permute an unsymmetric sparse matrix.

� cholmod transpose sym: transpose/permute a symmetric sparse matrix.

� cholmod sort: sort row indices in each column of a sparse matrix.

� cholmod band: extract a band of a sparse matrix.

� cholmod band inplace: remove entries not with a band.

� cholmod aat: C = A*A’.

� cholmod copy sparse: C = A, create an exact copy of a sparse matrix.

� cholmod copy: C = A, with possible change of stype.

� cholmod add: C = alpha*A + beta*B.

� cholmod sparse xtype: change the xtype of a sparse matrix.

41

9.1.3 cholmod factor: a symbolic or numeric factorization

A factor can be in LLT or LDLT form, and either supernodal or simplicial form. In simplicial
form, this is very much like a packed or unpacked cholmod sparse matrix. In supernodal form,
adjacent columns with similar nonzero pattern are stored as a single block (a supernode).

Primary routine for the cholmod factor object:

� cholmod free factor: free a factor

Secondary routines for the cholmod factor object:

� cholmod allocate factor: allocate a factor. You will normally use cholmod analyze to
create a factor.

� cholmod reallocate factor: change the number of entries in a factor.

� cholmod change factor: change the type of a factor (LDLT to LLT, supernodal to simpli-
cial, etc.).

� cholmod pack factor: pack the columns of a factor.

� cholmod reallocate column: resize a single column of a factor.

� cholmod factor to sparse: create a sparse matrix copy of a factor.

� cholmod copy factor: create a copy of a factor.

� cholmod factor xtype: change the xtype of a factor.

9.1.4 cholmod dense: a dense matrix

This consists of a dense array of numerical values and its dimensions.

Primary routines for the cholmod dense object:

� cholmod allocate dense: allocate a dense matrix.

� cholmod free dense: free a dense matrix.

Secondary routines for the cholmod dense object:

� cholmod zeros: allocate a dense matrix of all zeros.

� cholmod ones: allocate a dense matrix of all ones.

� cholmod eye: allocate a dense identity matrix .

� cholmod sparse to dense: create a dense matrix copy of a sparse matrix.

� cholmod dense to sparse: create a sparse matrix copy of a dense matrix.

� cholmod copy dense: create a copy of a dense matrix.

� cholmod copy dense2: copy a dense matrix (pre-allocated).

� cholmod dense xtype: change the xtype of a dense matrix.

42

9.1.5 cholmod triplet: a sparse matrix in “triplet” form

The cholmod sparse matrix is the basic sparse matrix used in CHOLMOD, but it can be difficult
for the user to construct. It also does not easily support the inclusion of new entries in the matrix.
The cholmod triplet matrix is provided to address these issues. A sparse matrix in triplet form
consists of three arrays of size nzmax: i, j, and x, and a z array for the zomplex case.

Primary routines for the cholmod triplet object:

� cholmod allocate triplet: allocate a triplet matrix.

� cholmod free triplet: free a triplet matrix.

� cholmod triplet to sparse: create a sparse matrix copy of a triplet matrix.

Secondary routines for the cholmod triplet object:

� cholmod reallocate triplet: change the number of entries in a triplet matrix.

� cholmod sparse to triplet: create a triplet matrix copy of a sparse matrix.

� cholmod copy triplet: create a copy of a triplet matrix.

� cholmod triplet xtype: change the xtype of a triplet matrix.

9.1.6 Memory management routines

By default, CHOLMOD uses the ANSI C malloc, free, calloc, and realloc routines. You may
use different routines by modifying function pointers in the cholmod common object.

Primary routines:

� cholmod malloc: malloc wrapper.

� cholmod free: free wrapper.

Secondary routines:

� cholmod calloc: calloc wrapper.

� cholmod realloc: realloc wrapper.

� cholmod realloc multiple: realloc wrapper for multiple objects.

9.1.7 cholmod version: Version control

The cholmod version function returns the current version of CHOLMOD.

43

9.2 Check Module: print/check the CHOLMOD objects

The Check Module contains routines that check and print the five basic objects in CHOLMOD,
and three kinds of integer vectors (a set, a permutation, and a tree). It also provides a routine to
read a sparse matrix from a file in Matrix Market format (http://www.nist.gov/MatrixMarket).
Requires the Core Module.

Primary routines:

� cholmod print common: print the cholmod common object, including statistics on CHOLMOD’s
behavior (fill-in, flop count, ordering methods used, and so on).

� cholmod write sparse: write a sparse matrix to a file in Matrix Market format.

� cholmod write dense: write a sparse matrix to a file in Matrix Market format.

� cholmod read matrix: read a sparse or dense matrix from a file in Matrix Market format.

Secondary routines:

� cholmod check common: check the cholmod common object

� cholmod check sparse: check a sparse matrix

� cholmod print sparse: print a sparse matrix

� cholmod check dense: check a dense matrix

� cholmod print dense: print a dense matrix

� cholmod check factor: check a Cholesky factorization

� cholmod print factor: print a Cholesky factorization

� cholmod check triplet: check a triplet matrix

� cholmod print triplet: print a triplet matrix

� cholmod check subset: check a subset (integer vector in given range)

� cholmod print subset: print a subset (integer vector in given range)

� cholmod check perm: check a permutation (an integer vector)

� cholmod print perm: print a permutation (an integer vector)

� cholmod check parent: check an elimination tree (an integer vector)

� cholmod print parent: print an elimination tree (an integer vector)

� cholmod read triplet: read a triplet matrix from a file

� cholmod read sparse: read a sparse matrix from a file

� cholmod read dense: read a dense matrix from a file

44

9.3 Cholesky Module: sparse Cholesky factorization

The primary routines are all that a user requires to order, analyze, and factorize a sparse symmetric
positive definite matrix A (or AAT), and to solve Ax = b (or AATx = b). The primary routines
rely on the secondary routines, the Core Module, and the AMD and COLAMD packages. They
make optional use of the Supernodal and Partition Modules, the METIS package, the CAMD
package, and the CCOLAMD package. The CholeskyModule is required by the PartitionModule.

Primary routines:

� cholmod analyze: order and analyze (simplicial or supernodal).

� cholmod factorize: simplicial or supernodal Cholesky factorization.

� cholmod solve: solve a linear system (simplicial or supernodal, dense x and b).

� cholmod spsolve: solve a linear system (simplicial or supernodal, sparse x and b).

Secondary routines:

� cholmod analyze p: analyze, with user-provided permutation or f set.

� cholmod factorize p: factorize, with user-provided permutation or f .

� cholmod analyze ordering: analyze a permutation

� cholmod solve2: solve a linear system, reusing workspace.

� cholmod etree: find the elimination tree.

� cholmod rowcolcounts: compute the row/column counts of L.

� cholmod amd: order using AMD.

� cholmod colamd: order using COLAMD.

� cholmod rowfac: incremental simplicial factorization.

� cholmod row subtree: find the nonzero pattern of a row of L.

� cholmod row lsubtree: find the nonzero pattern of a row of L.

� cholmod row lsubtree: find the nonzero pattern of L−1b.

� cholmod resymbol: recompute the symbolic pattern of L.

� cholmod resymbol noperm: recompute the symbolic pattern of L, no permutation.

� cholmod postorder: postorder a tree.

� cholmod rcond: compute the reciprocal condition number estimate.

� cholmod rowfac mask: for use in LPDASA only.

45

9.4 Modify Module: update/downdate a sparse Cholesky factorization

The Modify Module contains sparse Cholesky modification routines: update, downdate, row-add,
and row-delete. It can also modify a corresponding solution to Lx = b when L is modified. This
module is most useful when applied on a Cholesky factorization computed by the Cholesky module,
but it does not actually require the Cholesky module. The Core module can create an identity
Cholesky factorization (LDLT where L = D = I) that can then be modified by these routines.
Requires the Core module. Not required by any other CHOLMOD Module.

Primary routine:

� cholmod updown: multiple rank update/downdate

Secondary routines:

� cholmod updown solve: update/downdate, and modify solution to Lx = b

� cholmod updown mark: update/downdate, and modify solution to partial Lx = b

� cholmod updown mask: for use in LPDASA only.

� cholmod rowadd: add a row to an LDLT factorization

� cholmod rowadd solve: add a row, and update solution to Lx = b

� cholmod rowadd mark: add a row, and update solution to partial Lx = b

� cholmod rowdel: delete a row from an LDLT factorization

� cholmod rowdel solve: delete a row, and downdate Lx = b

� cholmod rowdel mark: delete a row, and downdate solution to partial Lx = b

9.5 MatrixOps Module: basic sparse matrix operations

The MatrixOps Module provides basic operations on sparse and dense matrices. Requires the Core
module. Not required by any other CHOLMOD module. In the descriptions below, A, B, and C:

are sparse matrices (cholmod sparse), X and Y are dense matrices (cholmod dense), s is a scalar
or vector, and alpha beta are scalars.

� cholmod drop: drop entries from A with absolute value ≥ a given tolerance.

� cholmod norm dense: s = norm (X), 1-norm, infinity-norm, or 2-norm

� cholmod norm sparse: s = norm (A), 1-norm or infinity-norm

� cholmod horzcat: C = [A,B]

� cholmod scale: A = diag(s)*A, A*diag(s), s*A or diag(s)*A*diag(s).

� cholmod sdmult: Y = alpha*(A*X) + beta*Y or alpha*(A’*X) + beta*Y.

� cholmod ssmult: C = A*B

46

� cholmod submatrix: C = A (i,j), where i and j are arbitrary integer vectors.

� cholmod vertcat: C = [A ; B].

� cholmod symmetry: determine symmetry of a matrix.

47

9.6 Supernodal Module: supernodal sparse Cholesky factorization

The Supernodal Module performs supernodal analysis, factorization, and solve. The simplest way
to use these routines is via the Cholesky Module. This Module does not provide any fill-reducing
orderings. It normally operates on matrices ordered by the Cholesky Module. It does not require
the Cholesky Module itself, however. Requires the Core Module, and two external packages:
LAPACK and the BLAS. Optionally used by the Cholesky Module. All are secondary routines
since these functions are more easily used via the Cholesky Module.

Secondary routines:

� cholmod super symbolic: supernodal symbolic analysis

� cholmod super numeric: supernodal numeric factorization

� cholmod super lsolve: supernodal Lx = b solve

� cholmod super ltsolve: supernodal LTx = b solve

9.7 Partition Module: graph-partitioning-based orderings

The Partition Module provides graph partitioning and graph-partition-based orderings. It in-
cludes an interface to CAMD, CCOLAMD, and CSYMAMD, constrained minimum degree ordering
methods which order a matrix following constraints determined via nested dissection. Requires the
Core and Cholesky Modules, and two packages: METIS 5.1.0, CAMD, and CCOLAMD. Option-
ally used by the Cholesky Module. All are secondary routines since these are more easily used by
the Cholesky Module.

Note that METIS does not have a version that uses long integers. If you try to use these
routines (except the CAMD, CCOLAMD, and CSYMAMD interfaces) on a matrix that is too
large, an error code will be returned.

Secondary routines:

� cholmod nested dissection: CHOLMOD nested dissection ordering

� cholmod metis: METIS nested dissection ordering (METIS NodeND)

� cholmod camd: interface to CAMD ordering

� cholmod ccolamd: interface to CCOLAMD ordering

� cholmod csymamd: interface to CSYMAMD ordering

� cholmod bisect: graph partitioner (currently based on METIS)

� cholmod metis bisector: direct interface to METIS NodeComputeSeparator.

� cholmod collapse septree: pruned a separator tree from cholmod nested dissection.

48

10 CHOLMOD naming convention, parameters, and return val-
ues

All routine names, data types, and CHOLMOD library files use the cholmod prefix. All macros
and other #define statements visible to the user program use the CHOLMOD prefix. The cholmod.h
file must be included in user programs that use CHOLMOD:

#include "cholmod.h"

All CHOLMOD routines (in all modules) use the following protocol for return values:

� int: TRUE (1) if successful, or FALSE (0) otherwise. (exception: cholmod divcomplex).

� long: a value ≥ 0 if successful, or -1 otherwise.

� double: a value ≥ 0 if successful, or -1 otherwise.

� size t: a value > 0 if successful, or 0 otherwise.

� void *: a non-NULL pointer to newly allocated memory if successful, or NULL otherwise.

� cholmod sparse *: a non-NULL pointer to a newly allocated sparse matrix if successful, or
NULL otherwise.

� cholmod factor *: a non-NULL pointer to a newly allocated factor if successful, or NULL

otherwise.

� cholmod triplet *: a non-NULL pointer to a newly allocated triplet matrix if successful, or
NULL otherwise.

� cholmod dense *: a non-NULL pointer to a newly allocated dense matrix if successful, or NULL
otherwise.

TRUE and FALSE are not defined in cholmod.h, since they may conflict with the user program. A
routine that described here returning TRUE or FALSE returns 1 or 0, respectively. Any TRUE/FALSE
parameter is true if nonzero, false if zero.
Input, output, and input/output parameters:

� Input parameters appear first in the parameter lists of all CHOLMOD routines. They are
not modified by CHOLMOD.

� Input/output parameters (except for Common) appear next. They must be defined on input,
and are modified on output.

� Output parameters are listed next. If they are pointers, they must point to allocated space
on input, but their contents are not defined on input.

� Workspace parameters appear next. They are used in only two routines in the Supernodal
module.

49

� The cholmod common *Common parameter always appears as the last parameter (with two
exceptions: cholmod hypot and cholmod divcomplex). It is always an input/output param-
eter.

A floating-point scalar is passed to CHOLMOD as a pointer to a double array of size two. The
first entry in this array is the real part of the scalar, and the second entry is the imaginary part.
The imaginary part is only accessed if the other inputs are complex or zomplex. In some cases the
imaginary part is always ignored (cholmod factor p, for example).

50

11 Core Module: cholmod common object

11.1 Constant definitions

/* itype defines the types of integer used: */

#define CHOLMOD_INT 0 /* all integer arrays are int */

#define CHOLMOD_INTLONG 1 /* most are int, some are SuiteSparse_long */

#define CHOLMOD_LONG 2 /* all integer arrays are SuiteSparse_long */

/* The itype of all parameters for all CHOLMOD routines must match.

* FUTURE WORK: CHOLMOD_INTLONG is not yet supported.

*/

/* dtype defines what the numerical type is (double or float): */

#define CHOLMOD_DOUBLE 0 /* all numerical values are double */

#define CHOLMOD_SINGLE 1 /* all numerical values are float */

/* The dtype of all parameters for all CHOLMOD routines must match.

*

* Scalar floating-point values are always passed as double arrays of size 2

* (for the real and imaginary parts). They are typecast to float as needed.

* FUTURE WORK: the float case is not supported yet.

*/

/* xtype defines the kind of numerical values used: */

#define CHOLMOD_PATTERN 0 /* pattern only, no numerical values */

#define CHOLMOD_REAL 1 /* a real matrix */

#define CHOLMOD_COMPLEX 2 /* a complex matrix (ANSI C99 compatible) */

#define CHOLMOD_ZOMPLEX 3 /* a complex matrix (MATLAB compatible) */

/* The xtype of all parameters for all CHOLMOD routines must match.

*

* CHOLMOD_PATTERN: x and z are ignored.

* CHOLMOD_DOUBLE: x is non-null of size nzmax, z is ignored.

* CHOLMOD_COMPLEX: x is non-null of size 2*nzmax doubles, z is ignored.

* CHOLMOD_ZOMPLEX: x and z are non-null of size nzmax

*

* In the real case, z is ignored. The kth entry in the matrix is x [k].

* There are two methods for the complex case. In the ANSI C99-compatible

* CHOLMOD_COMPLEX case, the real and imaginary parts of the kth entry

* are in x [2*k] and x [2*k+1], respectively. z is ignored. In the

* MATLAB-compatible CHOLMOD_ZOMPLEX case, the real and imaginary

* parts of the kth entry are in x [k] and z [k].

*

* Scalar floating-point values are always passed as double arrays of size 2

* (real and imaginary parts). The imaginary part of a scalar is ignored if

* the routine operates on a real matrix.

*

* These Modules support complex and zomplex matrices, with a few exceptions:

*

* Check all routines

* Cholesky all routines

* Core all except cholmod_aat, add, band, copy

* Demo all routines

* Partition all routines

51

* Supernodal all routines support any real, complex, or zomplex input.

* There will never be a supernodal zomplex L; a complex

* supernodal L is created if A is zomplex.

* Tcov all routines

* Valgrind all routines

*

* These Modules provide partial support for complex and zomplex matrices:

*

* MATLAB all routines support real and zomplex only, not complex,

* with the exception of ldlupdate, which supports

* real matrices only. This is a minor constraint since

* MATLAB’s matrices are all real or zomplex.

* MatrixOps only norm_dense, norm_sparse, and sdmult support complex

* and zomplex

*

* These Modules do not support complex and zomplex matrices at all:

*

* Modify all routines support real matrices only

*/

/* Definitions for cholmod_common: */

#define CHOLMOD_MAXMETHODS 9 /* maximum number of different methods that */

/* cholmod_analyze can try. Must be >= 9. */

/* Common->status values. zero means success, negative means a fatal error,

* positive is a warning. */

#define CHOLMOD_OK 0 /* success */

#define CHOLMOD_NOT_INSTALLED (-1) /* failure: method not installed */

#define CHOLMOD_OUT_OF_MEMORY (-2) /* failure: out of memory */

#define CHOLMOD_TOO_LARGE (-3) /* failure: integer overflow occured */

#define CHOLMOD_INVALID (-4) /* failure: invalid input */

#define CHOLMOD_GPU_PROBLEM (-5) /* failure: GPU fatal error */

#define CHOLMOD_NOT_POSDEF (1) /* warning: matrix not pos. def. */

#define CHOLMOD_DSMALL (2) /* warning: D for LDL’ or diag(L) or */

/* LL’ has tiny absolute value */

/* ordering method (also used for L->ordering) */

#define CHOLMOD_NATURAL 0 /* use natural ordering */

#define CHOLMOD_GIVEN 1 /* use given permutation */

#define CHOLMOD_AMD 2 /* use minimum degree (AMD) */

#define CHOLMOD_METIS 3 /* use METIS’ nested dissection */

#define CHOLMOD_NESDIS 4 /* use CHOLMOD’s version of nested dissection:*/

/* node bisector applied recursively, followed

* by constrained minimum degree (CSYMAMD or

* CCOLAMD) */

#define CHOLMOD_COLAMD 5 /* use AMD for A, COLAMD for A*A’ */

/* POSTORDERED is not a method, but a result of natural ordering followed by a

* weighted postorder. It is used for L->ordering, not method [].ordering. */

#define CHOLMOD_POSTORDERED 6 /* natural ordering, postordered. */

/* supernodal strategy (for Common->supernodal) */

#define CHOLMOD_SIMPLICIAL 0 /* always do simplicial */

#define CHOLMOD_AUTO 1 /* select simpl/super depending on matrix */

#define CHOLMOD_SUPERNODAL 2 /* always do supernodal */

52

Purpose: These definitions are used within the cholmod common object, called Common both here
and throughout the code.

53

11.2 cholmod common: parameters, statistics, and workspace

typedef struct cholmod_common_struct

{

/* -- */

/* parameters for symbolic/numeric factorization and update/downdate */

/* -- */

double dbound ; /* Smallest absolute value of diagonal entries of D

* for LDL’ factorization and update/downdate/rowadd/

* rowdel, or the diagonal of L for an LL’ factorization.

* Entries in the range 0 to dbound are replaced with dbound.

* Entries in the range -dbound to 0 are replaced with -dbound. No

* changes are made to the diagonal if dbound <= 0. Default: zero */

double grow0 ; /* For a simplicial factorization, L->i and L->x can

* grow if necessary. grow0 is the factor by which

* it grows. For the initial space, L is of size MAX (1,grow0) times

* the required space. If L runs out of space, the new size of L is

* MAX(1.2,grow0) times the new required space. If you do not plan on

* modifying the LDL’ factorization in the Modify module, set grow0 to

* zero (or set grow2 to 0, see below). Default: 1.2 */

double grow1 ;

size_t grow2 ; /* For a simplicial factorization, each column j of L

* is initialized with space equal to

* grow1*L->ColCount[j] + grow2. If grow0 < 1, grow1 < 1, or grow2 == 0,

* then the space allocated is exactly equal to L->ColCount[j]. If the

* column j runs out of space, it increases to grow1*need + grow2 in

* size, where need is the total # of nonzeros in that column. If you do

* not plan on modifying the factorization in the Modify module, set

* grow2 to zero. Default: grow1 = 1.2, grow2 = 5. */

size_t maxrank ; /* rank of maximum update/downdate. Valid values:

* 2, 4, or 8. A value < 2 is set to 2, and a

* value > 8 is set to 8. It is then rounded up to the next highest

* power of 2, if not already a power of 2. Workspace (Xwork, below) of

* size nrow-by-maxrank double’s is allocated for the update/downdate.

* If an update/downdate of rank-k is requested, with k > maxrank,

* it is done in steps of maxrank. Default: 8, which is fastest.

* Memory usage can be reduced by setting maxrank to 2 or 4.

*/

double supernodal_switch ; /* supernodal vs simplicial factorization */

int supernodal ; /* If Common->supernodal <= CHOLMOD_SIMPLICIAL

* (0) then cholmod_analyze performs a

* simplicial analysis. If >= CHOLMOD_SUPERNODAL (2), then a supernodal

* analysis is performed. If == CHOLMOD_AUTO (1) and

* flop/nnz(L) < Common->supernodal_switch, then a simplicial analysis

* is done. A supernodal analysis done otherwise.

* Default: CHOLMOD_AUTO. Default supernodal_switch = 40 */

int final_asis ; /* If TRUE, then ignore the other final_* parameters

* (except for final_pack).

54

* The factor is left as-is when done. Default: TRUE.*/

int final_super ; /* If TRUE, leave a factor in supernodal form when

* supernodal factorization is finished. If FALSE,

* then convert to a simplicial factor when done.

* Default: TRUE */

int final_ll ; /* If TRUE, leave factor in LL’ form when done.

* Otherwise, leave in LDL’ form. Default: FALSE */

int final_pack ; /* If TRUE, pack the columns when done. If TRUE, and

* cholmod_factorize is called with a symbolic L, L is

* allocated with exactly the space required, using L->ColCount. If you

* plan on modifying the factorization, set Common->final_pack to FALSE,

* and each column will be given a little extra slack space for future

* growth in fill-in due to updates. Default: TRUE */

int final_monotonic ; /* If TRUE, ensure columns are monotonic when done.

* Default: TRUE */

int final_resymbol ;/* if cholmod_factorize performed a supernodal

* factorization, final_resymbol is true, and

* final_super is FALSE (convert a simplicial numeric factorization),

* then numerically zero entries that resulted from relaxed supernodal

* amalgamation are removed. This does not remove entries that are zero

* due to exact numeric cancellation, since doing so would break the

* update/downdate rowadd/rowdel routines. Default: FALSE. */

/* supernodal relaxed amalgamation parameters: */

double zrelax [3] ;

size_t nrelax [3] ;

/* Let ns be the total number of columns in two adjacent supernodes.

* Let z be the fraction of zero entries in the two supernodes if they

* are merged (z includes zero entries from prior amalgamations). The

* two supernodes are merged if:

* (ns <= nrelax [0]) || (no new zero entries added) ||

* (ns <= nrelax [1] && z < zrelax [0]) ||

* (ns <= nrelax [2] && z < zrelax [1]) || (z < zrelax [2])

*

* Default parameters result in the following rule:

* (ns <= 4) || (no new zero entries added) ||

* (ns <= 16 && z < 0.8) || (ns <= 48 && z < 0.1) || (z < 0.05)

*/

int prefer_zomplex ; /* X = cholmod_solve (sys, L, B, Common) computes

* x=A\b or solves a related system. If L and B are

* both real, then X is real. Otherwise, X is returned as

* CHOLMOD_COMPLEX if Common->prefer_zomplex is FALSE, or

* CHOLMOD_ZOMPLEX if Common->prefer_zomplex is TRUE. This parameter

* is needed because there is no supernodal zomplex L. Suppose the

* caller wants all complex matrices to be stored in zomplex form

* (MATLAB, for example). A supernodal L is returned in complex form

* if A is zomplex. B can be real, and thus X = cholmod_solve (L,B)

* should return X as zomplex. This cannot be inferred from the input

55

* arguments L and B. Default: FALSE, since all data types are

* supported in CHOLMOD_COMPLEX form and since this is the native type

* of LAPACK and the BLAS. Note that the MATLAB/cholmod.c mexFunction

* sets this parameter to TRUE, since MATLAB matrices are in

* CHOLMOD_ZOMPLEX form.

*/

int prefer_upper ; /* cholmod_analyze and cholmod_factorize work

* fastest when a symmetric matrix is stored in

* upper triangular form when a fill-reducing ordering is used. In

* MATLAB, this corresponds to how x=A\b works. When the matrix is

* ordered as-is, they work fastest when a symmetric matrix is in lower

* triangular form. In MATLAB, R=chol(A) does the opposite. This

* parameter affects only how cholmod_read returns a symmetric matrix.

* If TRUE (the default case), a symmetric matrix is always returned in

* upper-triangular form (A->stype = 1). */

int quick_return_if_not_posdef ; /* if TRUE, the supernodal numeric

* factorization will return quickly if

* the matrix is not positive definite. Default: FALSE. */

int prefer_binary ; /* cholmod_read_triplet converts a symmetric

* pattern-only matrix into a real matrix. If

* prefer_binary is FALSE, the diagonal entries are set to 1 + the degree

* of the row/column, and off-diagonal entries are set to -1 (resulting

* in a positive definite matrix if the diagonal is zero-free). Most

* symmetric patterns are the pattern a positive definite matrix. If

* this parameter is TRUE, then the matrix is returned with a 1 in each

* entry, instead. Default: FALSE. Added in v1.3. */

/* -- */

/* printing and error handling options */

/* -- */

int print ; /* print level. Default: 3 */

int precise ; /* if TRUE, print 16 digits. Otherwise print 5 */

/* CHOLMOD print_function replaced with SuiteSparse_config.print_func */

int try_catch ; /* if TRUE, then ignore errors; CHOLMOD is in the middle

* of a try/catch block. No error message is printed

* and the Common->error_handler function is not called. */

void (*error_handler) (int status, const char *file,

int line, const char *message) ;

/* Common->error_handler is the user’s error handling routine. If not

* NULL, this routine is called if an error occurs in CHOLMOD. status

* can be CHOLMOD_OK (0), negative for a fatal error, and positive for

* a warning. file is a string containing the name of the source code

* file where the error occured, and line is the line number in that

* file. message is a string describing the error in more detail. */

/* -- */

/* ordering options */

56

/* -- */

/* The cholmod_analyze routine can try many different orderings and select

* the best one. It can also try one ordering method multiple times, with

* different parameter settings. The default is to use three orderings,

* the user’s permutation (if provided), AMD which is the fastest ordering

* and generally gives good fill-in, and METIS. CHOLMOD’s nested dissection

* (METIS with a constrained AMD) usually gives a better ordering than METIS

* alone (by about 5% to 10%) but it takes more time.

*

* If you know the method that is best for your matrix, set Common->nmethods

* to 1 and set Common->method [0] to the set of parameters for that method.

* If you set it to 1 and do not provide a permutation, then only AMD will

* be called.

*

* If METIS is not available, the default # of methods tried is 2 (the user

* permutation, if any, and AMD).

*

* To try other methods, set Common->nmethods to the number of methods you

* want to try. The suite of default methods and their parameters is

* described in the cholmod_defaults routine, and summarized here:

*

* Common->method [i]:

* i = 0: user-provided ordering (cholmod_analyze_p only)

* i = 1: AMD (for both A and A*A’)

* i = 2: METIS

* i = 3: CHOLMOD’s nested dissection (NESDIS), default parameters

* i = 4: natural

* i = 5: NESDIS with nd_small = 20000

* i = 6: NESDIS with nd_small = 4, no constrained minimum degree

* i = 7: NESDIS with no dense node removal

* i = 8: AMD for A, COLAMD for A*A’

*

* You can modify the suite of methods you wish to try by modifying

* Common.method [...] after calling cholmod_start or cholmod_defaults.

*

* For example, to use AMD, followed by a weighted postordering:

*

* Common->nmethods = 1 ;

* Common->method [0].ordering = CHOLMOD_AMD ;

* Common->postorder = TRUE ;

*

* To use the natural ordering (with no postordering):

*

* Common->nmethods = 1 ;

* Common->method [0].ordering = CHOLMOD_NATURAL ;

* Common->postorder = FALSE ;

*

* If you are going to factorize hundreds or more matrices with the same

* nonzero pattern, you may wish to spend a great deal of time finding a

* good permutation. In this case, try setting Common->nmethods to 9.

* The time spent in cholmod_analysis will be very high, but you need to

* call it only once.

*

* cholmod_analyze sets Common->current to a value between 0 and nmethods-1.

57

* Each ordering method uses the set of options defined by this parameter.

*/

int nmethods ; /* The number of ordering methods to try. Default: 0.

* nmethods = 0 is a special case. cholmod_analyze

* will try the user-provided ordering (if given) and AMD. Let fl and

* lnz be the flop count and nonzeros in L from AMD’s ordering. Let

* anz be the number of nonzeros in the upper or lower triangular part

* of the symmetric matrix A. If fl/lnz < 500 or lnz/anz < 5, then this

* is a good ordering, and METIS is not attempted. Otherwise, METIS is

* tried. The best ordering found is used. If nmethods > 0, the

* methods used are given in the method[] array, below. The first

* three methods in the default suite of orderings is (1) use the given

* permutation (if provided), (2) use AMD, and (3) use METIS. Maximum

* allowed value is CHOLMOD_MAXMETHODS. */

int current ; /* The current method being tried. Default: 0. Valid

* range is 0 to nmethods-1. */

int selected ; /* The best method found. */

/* The suite of ordering methods and parameters: */

struct cholmod_method_struct

{

/* statistics for this method */

double lnz ; /* nnz(L) excl. zeros from supernodal amalgamation,

* for a "pure" L */

double fl ; /* flop count for a "pure", real simplicial LL’

* factorization, with no extra work due to

* amalgamation. Subtract n to get the LDL’ flop count. Multiply

* by about 4 if the matrix is complex or zomplex. */

/* ordering method parameters */

double prune_dense ;/* dense row/col control for AMD, SYMAMD, CSYMAMD,

* and NESDIS (cholmod_nested_dissection). For a

* symmetric n-by-n matrix, rows/columns with more than

* MAX (16, prune_dense * sqrt (n)) entries are removed prior to

* ordering. They appear at the end of the re-ordered matrix.

*

* If prune_dense < 0, only completely dense rows/cols are removed.

*

* This paramater is also the dense column control for COLAMD and

* CCOLAMD. For an m-by-n matrix, columns with more than

* MAX (16, prune_dense * sqrt (MIN (m,n))) entries are removed prior

* to ordering. They appear at the end of the re-ordered matrix.

* CHOLMOD factorizes A*A’, so it calls COLAMD and CCOLAMD with A’,

* not A. Thus, this parameter affects the dense *row* control for

* CHOLMOD’s matrix, and the dense *column* control for COLAMD and

* CCOLAMD.

*

* Removing dense rows and columns improves the run-time of the

* ordering methods. It has some impact on ordering quality

* (usually minimal, sometimes good, sometimes bad).

58

*

* Default: 10. */

double prune_dense2 ;/* dense row control for COLAMD and CCOLAMD.

* Rows with more than MAX (16, dense2 * sqrt (n))

* for an m-by-n matrix are removed prior to ordering. CHOLMOD’s

* matrix is transposed before ordering it with COLAMD or CCOLAMD,

* so this controls the dense *columns* of CHOLMOD’s matrix, and

* the dense *rows* of COLAMD’s or CCOLAMD’s matrix.

*

* If prune_dense2 < 0, only completely dense rows/cols are removed.

*

* Default: -1. Note that this is not the default for COLAMD and

* CCOLAMD. -1 is best for Cholesky. 10 is best for LU. */

double nd_oksep ; /* in NESDIS, when a node separator is computed, it

* discarded if nsep >= nd_oksep*n, where nsep is

* the number of nodes in the separator, and n is the size of the

* graph being cut. Valid range is 0 to 1. If 1 or greater, the

* separator is discarded if it consists of the entire graph.

* Default: 1 */

double other_1 [4] ; /* future expansion */

size_t nd_small ; /* do not partition graphs with fewer nodes than

* nd_small, in NESDIS. Default: 200 (same as

* METIS) */

size_t other_2 [4] ; /* future expansion */

int aggressive ; /* Aggresive absorption in AMD, COLAMD, SYMAMD,

* CCOLAMD, and CSYMAMD. Default: TRUE */

int order_for_lu ; /* CCOLAMD can be optimized to produce an ordering

* for LU or Cholesky factorization. CHOLMOD only

* performs a Cholesky factorization. However, you may wish to use

* CHOLMOD as an interface for CCOLAMD but use it for your own LU

* factorization. In this case, order_for_lu should be set to FALSE.

* When factorizing in CHOLMOD itself, you should *** NEVER *** set

* this parameter FALSE. Default: TRUE. */

int nd_compress ; /* If TRUE, compress the graph and subgraphs before

* partitioning them in NESDIS. Default: TRUE */

int nd_camd ; /* If 1, follow the nested dissection ordering

* with a constrained minimum degree ordering that

* respects the partitioning just found (using CAMD). If 2, use

* CSYMAMD instead. If you set nd_small very small, you may not need

* this ordering, and can save time by setting it to zero (no

* constrained minimum degree ordering). Default: 1. */

int nd_components ; /* The nested dissection ordering finds a node

* separator that splits the graph into two parts,

* which may be unconnected. If nd_components is TRUE, each of

* these connected components is split independently. If FALSE,

59

* each part is split as a whole, even if it consists of more than

* one connected component. Default: FALSE */

/* fill-reducing ordering to use */

int ordering ;

size_t other_3 [4] ; /* future expansion */

} method [CHOLMOD_MAXMETHODS + 1] ;

int postorder ; /* If TRUE, cholmod_analyze follows the ordering with a

* weighted postorder of the elimination tree. Improves

* supernode amalgamation. Does not affect fundamental nnz(L) and

* flop count. Default: TRUE. */

int default_nesdis ; /* Default: FALSE. If FALSE, then the default

* ordering strategy (when Common->nmethods == 0)

* is to try the given ordering (if present), AMD, and then METIS if AMD

* reports high fill-in. If Common->default_nesdis is TRUE then NESDIS

* is used instead in the default strategy. */

/* -- */

/* memory management, complex divide, and hypot function pointers moved */

/* -- */

/* Function pointers moved from here (in CHOLMOD 2.2.0) to

SuiteSparse_config.[ch]. See CHOLMOD/Include/cholmod_back.h

for a set of macros that can be #include’d or copied into your

application to define these function pointers on any version of CHOLMOD.

*/

/* -- */

/* METIS workarounds */

/* -- */

/* These workarounds were put into place for METIS 4.0.1. They are safe

to use with METIS 5.1.0, but they might not longer be necessary. */

double metis_memory ; /* This is a parameter for CHOLMOD’s interface to

* METIS, not a parameter to METIS itself. METIS

* uses an amount of memory that is difficult to estimate precisely

* beforehand. If it runs out of memory, it terminates your program.

* All routines in CHOLMOD except for CHOLMOD’s interface to METIS

* return an error status and safely return to your program if they run

* out of memory. To mitigate this problem, the CHOLMOD interface

* can allocate a single block of memory equal in size to an empirical

* upper bound of METIS’s memory usage times the Common->metis_memory

* parameter, and then immediately free it. It then calls METIS. If

* this pre-allocation fails, it is possible that METIS will fail as

* well, and so CHOLMOD returns with an out-of-memory condition without

* calling METIS.

*

* METIS_NodeND (used in the CHOLMOD_METIS ordering option) with its

* default parameter settings typically uses about (4*nz+40n+4096)

* times sizeof(int) memory, where nz is equal to the number of entries

60

* in A for the symmetric case or AA’ if an unsymmetric matrix is

* being ordered (where nz includes both the upper and lower parts

* of A or AA’). The observed "upper bound" (with 2 exceptions),

* measured in an instrumented copy of METIS 4.0.1 on thousands of

* matrices, is (10*nz+50*n+4096) * sizeof(int). Two large matrices

* exceeded this bound, one by almost a factor of 2 (Gupta/gupta2).

*

* If your program is terminated by METIS, try setting metis_memory to

* 2.0, or even higher if needed. By default, CHOLMOD assumes that METIS

* does not have this problem (so that CHOLMOD will work correctly when

* this issue is fixed in METIS). Thus, the default value is zero.

* This work-around is not guaranteed anyway.

*

* If a matrix exceeds this predicted memory usage, AMD is attempted

* instead. It, too, may run out of memory, but if it does so it will

* not terminate your program.

*/

double metis_dswitch ; /* METIS_NodeND in METIS 4.0.1 gives a seg */

size_t metis_nswitch ; /* fault with one matrix of order n = 3005 and

* nz = 6,036,025. This is a very dense graph.

* The workaround is to use AMD instead of METIS for matrices of dimension

* greater than Common->metis_nswitch (default 3000) or more and with

* density of Common->metis_dswitch (default 0.66) or more.

* cholmod_nested_dissection has no problems with the same matrix, even

* though it uses METIS_ComputeVertexSeparator on this matrix. If this

* seg fault does not affect you, set metis_nswitch to zero or less,

* and CHOLMOD will not switch to AMD based just on the density of the

* matrix (it will still switch to AMD if the metis_memory parameter

* causes the switch).

*/

/* -- */

/* workspace */

/* -- */

/* CHOLMOD has several routines that take less time than the size of

* workspace they require. Allocating and initializing the workspace would

* dominate the run time, unless workspace is allocated and initialized

* just once. CHOLMOD allocates this space when needed, and holds it here

* between calls to CHOLMOD. cholmod_start sets these pointers to NULL

* (which is why it must be the first routine called in CHOLMOD).

* cholmod_finish frees the workspace (which is why it must be the last

* call to CHOLMOD).

*/

size_t nrow ; /* size of Flag and Head */

SuiteSparse_long mark ; /* mark value for Flag array */

size_t iworksize ; /* size of Iwork. Upper bound: 6*nrow+ncol */

size_t xworksize ; /* size of Xwork, in bytes.

* maxrank*nrow*sizeof(double) for update/downdate.

* 2*nrow*sizeof(double) otherwise */

/* initialized workspace: contents needed between calls to CHOLMOD */

void *Flag ; /* size nrow, an integer array. Kept cleared between

61

* calls to cholmod rouines (Flag [i] < mark) */

void *Head ; /* size nrow+1, an integer array. Kept cleared between

* calls to cholmod routines (Head [i] = EMPTY) */

void *Xwork ; /* a double array. Its size varies. It is nrow for

* most routines (cholmod_rowfac, cholmod_add,

* cholmod_aat, cholmod_norm, cholmod_ssmult) for the real case, twice

* that when the input matrices are complex or zomplex. It is of size

* 2*nrow for cholmod_rowadd and cholmod_rowdel. For cholmod_updown,

* its size is maxrank*nrow where maxrank is 2, 4, or 8. Kept cleared

* between calls to cholmod (set to zero). */

/* uninitialized workspace, contents not needed between calls to CHOLMOD */

void *Iwork ; /* size iworksize, 2*nrow+ncol for most routines,

* up to 6*nrow+ncol for cholmod_analyze. */

int itype ; /* If CHOLMOD_LONG, Flag, Head, and Iwork are

* SuiteSparse_long. Otherwise all three are int. */

int dtype ; /* double or float */

/* Common->itype and Common->dtype are used to define the types of all

* sparse matrices, triplet matrices, dense matrices, and factors

* created using this Common struct. The itypes and dtypes of all

* parameters to all CHOLMOD routines must match. */

int no_workspace_reallocate ; /* this is an internal flag, used as a

* precaution by cholmod_analyze. It is normally false. If true,

* cholmod_allocate_work is not allowed to reallocate any workspace;

* they must use the existing workspace in Common (Iwork, Flag, Head,

* and Xwork). Added for CHOLMOD v1.1 */

/* -- */

/* statistics */

/* -- */

/* fl and lnz are set only in cholmod_analyze and cholmod_rowcolcounts,

* in the Cholesky modudle. modfl is set only in the Modify module. */

int status ; /* error code */

double fl ; /* LL’ flop count from most recent analysis */

double lnz ; /* fundamental nz in L */

double anz ; /* nonzeros in tril(A) if A is symmetric/lower,

* triu(A) if symmetric/upper, or tril(A*A’) if

* unsymmetric, in last call to cholmod_analyze. */

double modfl ; /* flop count from most recent update/downdate/

* rowadd/rowdel (excluding flops to modify the

* solution to Lx=b, if computed) */

size_t malloc_count ; /* # of objects malloc’ed minus the # free’d*/

size_t memory_usage ; /* peak memory usage in bytes */

size_t memory_inuse ; /* current memory usage in bytes */

double nrealloc_col ; /* # of column reallocations */

double nrealloc_factor ;/* # of factor reallocations due to col. reallocs */

62

double ndbounds_hit ; /* # of times diagonal modified by dbound */

double rowfacfl ; /* # of flops in last call to cholmod_rowfac */

double aatfl ; /* # of flops to compute A(:,f)*A(:,f)’ */

int called_nd ; /* TRUE if the last call to

* cholmod_analyze called NESDIS or METIS. */

int blas_ok ; /* FALSE if BLAS int overflow; TRUE otherwise */

/* -- */

/* SuiteSparseQR control parameters: */

/* -- */

double SPQR_grain ; /* task size is >= max (total flops / grain) */

double SPQR_small ; /* task size is >= small */

int SPQR_shrink ; /* controls stack realloc method */

int SPQR_nthreads ; /* number of TBB threads, 0 = auto */

/* -- */

/* SuiteSparseQR statistics */

/* -- */

/* was other1 [0:3] */

double SPQR_flopcount ; /* flop count for SPQR */

double SPQR_analyze_time ; /* analysis time in seconds for SPQR */

double SPQR_factorize_time ; /* factorize time in seconds for SPQR */

double SPQR_solve_time ; /* backsolve time in seconds */

/* was SPQR_xstat [0:3] */

double SPQR_flopcount_bound ; /* upper bound on flop count */

double SPQR_tol_used ; /* tolerance used */

double SPQR_norm_E_fro ; /* Frobenius norm of dropped entries */

/* was SPQR_istat [0:9] */

SuiteSparse_long SPQR_istat [10] ;

/* -- */

/* GPU configuration and statistics */

/* -- */

/* useGPU: 1 if gpu-acceleration is requested */

/* 0 if gpu-acceleration is prohibited */

/* -1 if gpu-acceleration is undefined in which case the */

/* environment CHOLMOD_USE_GPU will be queried and used. */

/* useGPU=-1 is only used by CHOLMOD and treated as 0 by SPQR */

int useGPU;

/* for CHOLMOD: */

size_t maxGpuMemBytes;

double maxGpuMemFraction;

/* for SPQR: */

size_t gpuMemorySize; /* Amount of memory in bytes on the GPU */

double gpuKernelTime; /* Time taken by GPU kernels */

SuiteSparse_long gpuFlops; /* Number of flops performed by the GPU */

63

int gpuNumKernelLaunches; /* Number of GPU kernel launches */

/* If not using the GPU, these items are not used, but they should be

present so that the CHOLMOD Common has the same size whether the GPU

is used or not. This way, all packages will agree on the size of

the CHOLMOD Common, regardless of whether or not they are compiled

with the GPU libraries or not */

#ifdef GPU_BLAS

/* in CUDA, these three types are pointers */

#define CHOLMOD_CUBLAS_HANDLE cublasHandle_t

#define CHOLMOD_CUDASTREAM cudaStream_t

#define CHOLMOD_CUDAEVENT cudaEvent_t

#else

/* ... so make them void * pointers if the GPU is not being used */

#define CHOLMOD_CUBLAS_HANDLE void *

#define CHOLMOD_CUDASTREAM void *

#define CHOLMOD_CUDAEVENT void *

#endif

CHOLMOD_CUBLAS_HANDLE cublasHandle ;

/* a set of streams for general use */

CHOLMOD_CUDASTREAM gpuStream[CHOLMOD_HOST_SUPERNODE_BUFFERS];

CHOLMOD_CUDAEVENT cublasEventPotrf [3] ;

CHOLMOD_CUDAEVENT updateCKernelsComplete;

CHOLMOD_CUDAEVENT updateCBuffersFree[CHOLMOD_HOST_SUPERNODE_BUFFERS];

void *dev_mempool; /* pointer to single allocation of device memory */

size_t dev_mempool_size;

void *host_pinned_mempool; /* pointer to single allocation of pinned mem */

size_t host_pinned_mempool_size;

size_t devBuffSize;

int ibuffer;

double syrkStart ; /* time syrk started */

/* run times of the different parts of CHOLMOD (GPU and CPU) */

double cholmod_cpu_gemm_time ;

double cholmod_cpu_syrk_time ;

double cholmod_cpu_trsm_time ;

double cholmod_cpu_potrf_time ;

double cholmod_gpu_gemm_time ;

double cholmod_gpu_syrk_time ;

double cholmod_gpu_trsm_time ;

double cholmod_gpu_potrf_time ;

double cholmod_assemble_time ;

double cholmod_assemble_time2 ;

/* number of times the BLAS are called on the CPU and the GPU */

size_t cholmod_cpu_gemm_calls ;

size_t cholmod_cpu_syrk_calls ;

64

size_t cholmod_cpu_trsm_calls ;

size_t cholmod_cpu_potrf_calls ;

size_t cholmod_gpu_gemm_calls ;

size_t cholmod_gpu_syrk_calls ;

size_t cholmod_gpu_trsm_calls ;

size_t cholmod_gpu_potrf_calls ;

} cholmod_common ;

Purpose: The cholmod common Common object contains parameters, statistics, and workspace
used within CHOLMOD. The first call to CHOLMOD must be cholmod start, which initializes
this object.

65

11.3 cholmod start: start CHOLMOD

int cholmod_start

(

cholmod_common *Common

) ;

int cholmod_l_start (cholmod_common *) ;

Purpose: Sets the default parameters, clears the statistics, and initializes all workspace pointers
to NULL. The int/long type is set in Common->itype.

11.4 cholmod finish: finish CHOLMOD

int cholmod_finish

(

cholmod_common *Common

) ;

int cholmod_l_finish (cholmod_common *) ;

Purpose: This must be the last call to CHOLMOD.

11.5 cholmod defaults: set default parameters

int cholmod_defaults

(

cholmod_common *Common

) ;

int cholmod_l_defaults (cholmod_common *) ;

Purpose: Sets the default parameters.

11.6 cholmod maxrank: maximum update/downdate rank

size_t cholmod_maxrank /* returns validated value of Common->maxrank */

(

/* ---- input ---- */

size_t n, /* A and L will have n rows */

/* --------------- */

cholmod_common *Common

) ;

size_t cholmod_l_maxrank (size_t, cholmod_common *) ;

Purpose: Returns the maximum rank for an update/downdate.

66

11.7 cholmod allocate work: allocate workspace

int cholmod_allocate_work

(

/* ---- input ---- */

size_t nrow, /* size: Common->Flag (nrow), Common->Head (nrow+1) */

size_t iworksize, /* size of Common->Iwork */

size_t xworksize, /* size of Common->Xwork */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_allocate_work (size_t, size_t, size_t, cholmod_common *) ;

Purpose: Allocates workspace in Common. The workspace consists of the integer Head, Flag, and
Iwork arrays, of size nrow+1, nrow, and iworksize, respectively, and a double array Xwork of size
xworksize. The Head array is normally equal to -1 when it is cleared. If the Flag array is cleared,
all entries are less than Common->mark. The Iwork array is not kept in any particular state. The
integer type is int or long, depending on whether the cholmod or cholmod l routines are used.

11.8 cholmod free work: free workspace

int cholmod_free_work

(

cholmod_common *Common

) ;

int cholmod_l_free_work (cholmod_common *) ;

Purpose: Frees the workspace in Common.

11.9 cholmod clear flag: clear Flag array

SuiteSparse_long cholmod_clear_flag

(

cholmod_common *Common

) ;

SuiteSparse_long cholmod_l_clear_flag (cholmod_common *) ;

Purpose: Increments Common->mark so that the Flag array is now cleared.

67

11.10 cholmod error: report error

int cholmod_error

(

/* ---- input ---- */

int status, /* error status */

const char *file, /* name of source code file where error occured */

int line, /* line number in source code file where error occured*/

const char *message,/* error message */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_error (int, const char *, int, const char *, cholmod_common *) ;

Purpose: This routine is called when CHOLMOD encounters an error. It prints a mes-
sage (if printing is enabled), sets Common->status. It then calls the user error handler routine
Common->error handler, if it is not NULL.

11.11 cholmod dbound: bound diagonal of L

double cholmod_dbound /* returns modified diagonal entry of D or L */

(

/* ---- input ---- */

double dj, /* diagonal entry of D for LDL’ or L for LL’ */

/* --------------- */

cholmod_common *Common

) ;

double cholmod_l_dbound (double, cholmod_common *) ;

Purpose: Ensures that entries on the diagonal of L for an LLT factorization are greater than or
equal to Common->dbound. For an LDLT factorization, it ensures that the magnitude of the entries
of D are greater than or equal to Common->dbound.

11.12 cholmod hypot: sqrt(x*x+y*y)

double cholmod_hypot

(

/* ---- input ---- */

double x, double y

) ;

double cholmod_l_hypot (double, double) ;

Purpose: Computes the magnitude of a complex number. This routine is the default value for
the Common->hypotenuse function pointer. See also hypot, in the standard math.h header. If
you have the ANSI C99 hypot, you can use Common->hypotenuse = hypot. The cholmod hypot

routine is provided in case you are using the ANSI C89 standard, which does not have hypot.

68

11.13 cholmod divcomplex: complex divide

int cholmod_divcomplex /* return 1 if divide-by-zero, 0 otherise */

(

/* ---- input ---- */

double ar, double ai, /* real and imaginary parts of a */

double br, double bi, /* real and imaginary parts of b */

/* ---- output --- */

double *cr, double *ci /* real and imaginary parts of c */

) ;

int cholmod_l_divcomplex (double, double, double, double, double *, double *) ;

Purpose: Divides two complex numbers. It returns 1 if a divide-by-zero occurred, or 0 otherwise.
This routine is the default value for the Common->complex divide function pointer. This return
value is the single exception to the CHOLMOD rule that states all int return values are TRUE

if successful or FALSE otherwise. The exception is made to match the return value of a different
complex divide routine that is not a part of CHOLMOD, but can be used via the function pointer.

69

12 Core Module: cholmod sparse object

12.1 cholmod sparse: compressed-column sparse matrix

typedef struct cholmod_sparse_struct

{

size_t nrow ; /* the matrix is nrow-by-ncol */

size_t ncol ;

size_t nzmax ; /* maximum number of entries in the matrix */

/* pointers to int or SuiteSparse_long: */

void *p ; /* p [0..ncol], the column pointers */

void *i ; /* i [0..nzmax-1], the row indices */

/* for unpacked matrices only: */

void *nz ; /* nz [0..ncol-1], the # of nonzeros in each col. In

* packed form, the nonzero pattern of column j is in

* A->i [A->p [j] ... A->p [j+1]-1]. In unpacked form, column j is in

* A->i [A->p [j] ... A->p [j]+A->nz[j]-1] instead. In both cases, the

* numerical values (if present) are in the corresponding locations in

* the array x (or z if A->xtype is CHOLMOD_ZOMPLEX). */

/* pointers to double or float: */

void *x ; /* size nzmax or 2*nzmax, if present */

void *z ; /* size nzmax, if present */

int stype ; /* Describes what parts of the matrix are considered:

*

* 0: matrix is "unsymmetric": use both upper and lower triangular parts

* (the matrix may actually be symmetric in pattern and value, but

* both parts are explicitly stored and used). May be square or

* rectangular.

* >0: matrix is square and symmetric, use upper triangular part.

* Entries in the lower triangular part are ignored.

* <0: matrix is square and symmetric, use lower triangular part.

* Entries in the upper triangular part are ignored.

*

* Note that stype>0 and stype<0 are different for cholmod_sparse and

* cholmod_triplet. See the cholmod_triplet data structure for more

* details.

*/

int itype ; /* CHOLMOD_INT: p, i, and nz are int.

* CHOLMOD_INTLONG: p is SuiteSparse_long,

* i and nz are int.

* CHOLMOD_LONG: p, i, and nz are SuiteSparse_long */

int xtype ; /* pattern, real, complex, or zomplex */

int dtype ; /* x and z are double or float */

int sorted ; /* TRUE if columns are sorted, FALSE otherwise */

int packed ; /* TRUE if packed (nz ignored), FALSE if unpacked

* (nz is required) */

} cholmod_sparse ;

70

Purpose: Stores a sparse matrix in compressed-column form.

12.2 cholmod allocate sparse: allocate sparse matrix

cholmod_sparse *cholmod_allocate_sparse

(

/* ---- input ---- */

size_t nrow, /* # of rows of A */

size_t ncol, /* # of columns of A */

size_t nzmax, /* max # of nonzeros of A */

int sorted, /* TRUE if columns of A sorted, FALSE otherwise */

int packed, /* TRUE if A will be packed, FALSE otherwise */

int stype, /* stype of A */

int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_allocate_sparse (size_t, size_t, size_t, int, int,

int, int, cholmod_common *) ;

Purpose: Allocates a sparse matrix. A->i, A->x, and A->z are not initialized. The matrix
returned is all zero, but it contains space enough for nzmax entries.

12.3 cholmod free sparse: free sparse matrix

int cholmod_free_sparse

(

/* ---- in/out --- */

cholmod_sparse **A, /* matrix to deallocate, NULL on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_free_sparse (cholmod_sparse **, cholmod_common *) ;

Purpose: Frees a sparse matrix.

12.4 cholmod reallocate sparse: reallocate sparse matrix

int cholmod_reallocate_sparse

(

/* ---- input ---- */

size_t nznew, /* new # of entries in A */

/* ---- in/out --- */

cholmod_sparse *A, /* matrix to reallocate */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_reallocate_sparse (size_t, cholmod_sparse *, cholmod_common *) ;

71

Purpose: Reallocates a sparse matrix, so that it can contain nznew entries.

12.5 cholmod nnz: number of entries in sparse matrix

SuiteSparse_long cholmod_nnz

(

/* ---- input ---- */

cholmod_sparse *A,

/* --------------- */

cholmod_common *Common

) ;

SuiteSparse_long cholmod_l_nnz (cholmod_sparse *, cholmod_common *) ;

Purpose: Returns the number of entries in a sparse matrix.

12.6 cholmod speye: sparse identity matrix

cholmod_sparse *cholmod_speye

(

/* ---- input ---- */

size_t nrow, /* # of rows of A */

size_t ncol, /* # of columns of A */

int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_speye (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns the sparse identity matrix.

12.7 cholmod spzeros: sparse zero matrix

cholmod_sparse *cholmod_spzeros

(

/* ---- input ---- */

size_t nrow, /* # of rows of A */

size_t ncol, /* # of columns of A */

size_t nzmax, /* max # of nonzeros of A */

int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_spzeros (size_t, size_t, size_t, int,

cholmod_common *) ;

Purpose: Returns the sparse zero matrix. This is another name for cholmod allocate sparse,
but with fewer parameters (the matrix is packed, sorted, and unsymmetric).

72

12.8 cholmod transpose: transpose sparse matrix

cholmod_sparse *cholmod_transpose

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to transpose */

int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_transpose (cholmod_sparse *, int, cholmod_common *) ;

Purpose: Returns the transpose or complex conjugate transpose of a sparse matrix.

12.9 cholmod ptranspose: transpose/permute sparse matrix

cholmod_sparse *cholmod_ptranspose

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to transpose */

int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */

int *Perm, /* if non-NULL, F = A(p,f) or A(p,p) */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_ptranspose (cholmod_sparse *, int, SuiteSparse_long *,

SuiteSparse_long *, size_t, cholmod_common *) ;

Purpose: Returns A’ or A(p,p)’ if A is symmetric. Returns A’, A(:,f)’, or A(p,f)’ if A is
unsymmetric. See cholmod transpose unsym for a discussion of how f is used; this usage deviates
from the MATLAB notation. Can also return the array transpose.

12.10 cholmod sort: sort columns of a sparse matrix

int cholmod_sort

(

/* ---- in/out --- */

cholmod_sparse *A, /* matrix to sort */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_sort (cholmod_sparse *, cholmod_common *) ;

Purpose: Sorts the columns of the matrix A. Returns A in packed form, even if it starts as
unpacked. Removes entries in the ignored part of a symmetric matrix.

73

12.11 cholmod transpose unsym: transpose/permute unsymmetric sparse matrix

int cholmod_transpose_unsym

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to transpose */

int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */

int *Perm, /* size nrow, if present (can be NULL) */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* ---- output --- */

cholmod_sparse *F, /* F = A’, A(:,f)’, or A(p,f)’ */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_transpose_unsym (cholmod_sparse *, int, SuiteSparse_long *,

SuiteSparse_long *, size_t, cholmod_sparse *, cholmod_common *) ;

Purpose: Transposes and optionally permutes an unsymmetric sparse matrix. The output matrix
must be preallocated before calling this routine.

Computes F=A’, F=A(:,f)’ or F=A(p,f)’, except that the indexing by f does not work the
same as the MATLAB notation (see below). A->stype is zero, which denotes that both the upper
and lower triangular parts of A are present (and used). The matrix A may in fact be symmetric in
pattern and/or value; A->stype just denotes which part of A are stored. A may be rectangular.

The integer vector p is a permutation of 0:m-1, and f is a subset of 0:n-1, where A is m-by-n.
There can be no duplicate entries in p or f.
Three kinds of transposes are available, depending on the values parameter:

� 0: do not transpose the numerical values; create a CHOLMOD PATTERN matrix

� 1: array transpose

� 2: complex conjugate transpose (same as 2 if input is real or pattern)

The set f is held in fset and fsize:

� fset = NULL means “:” in MATLAB. fset is ignored.

� fset != NULL means f = fset [0..fsize-1].

� fset != NULL and fsize = 0 means f is the empty set.

Columns not in the set f are considered to be zero. That is, if A is 5-by-10 then F=A(:,[3 4])’

is not 2-by-5, but 10-by-5, and rows 3 and 4 of F are equal to columns 3 and 4 of A (the other rows
of F are zero). More precisely, in MATLAB notation:

[m n] = size (A)

F = A

notf = ones (1,n)

notf (f) = 0

F (:, find (notf)) = 0

F = F’

74

If you want the MATLAB equivalent F=A(p,f) operation, use cholmod submatrix instead
(which does not compute the transpose). F->nzmax must be large enough to hold the matrix F. If
F->nz is present then F->nz [j] is equal to the number of entries in column j of F. A can be sorted
or unsorted, with packed or unpacked columns. If f is present and not sorted in ascending order,
then F is unsorted (that is, it may contain columns whose row indices do not appear in ascending
order). Otherwise, F is sorted (the row indices in each column of F appear in strictly ascending
order).

F is returned in packed or unpacked form, depending on F->packed on input. If F->packed
is FALSE, then F is returned in unpacked form (F->nz must be present). Each row i of F is large
enough to hold all the entries in row i of A, even if f is provided. That is, F->i and F->x [F->p [i]

.. F->p [i] + F->nz [i] - 1] contain all entries in A(i,f), but F->p [i+1] - F->p [i] is
equal to the number of nonzeros in A (i,:), not just A (i,f). The cholmod transpose unsym

routine is the only operation in CHOLMOD that can produce an unpacked matrix.

12.12 cholmod transpose sym: transpose/permute symmetric sparse matrix

int cholmod_transpose_sym

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to transpose */

int values, /* 0: pattern, 1: array transpose, 2: conj. transpose */

int *Perm, /* size nrow, if present (can be NULL) */

/* ---- output --- */

cholmod_sparse *F, /* F = A’ or A(p,p)’ */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_transpose_sym (cholmod_sparse *, int, SuiteSparse_long *,

cholmod_sparse *, cholmod_common *) ;

Purpose: Computes F = A’ or F = A(p,p)’, the transpose or permuted transpose, where
A->stype is nonzero. A must be square and symmetric. If A->stype > 0, then A is a symmetric
matrix where just the upper part of the matrix is stored. Entries in the lower triangular part may
be present, but are ignored. If A->stype < 0, then A is a symmetric matrix where just the lower
part of the matrix is stored. Entries in the upper triangular part may be present, but are ignored.
If F=A’, then F is returned sorted; otherwise F is unsorted for the F=A(p,p)’ case. There can be
no duplicate entries in p.

Three kinds of transposes are available, depending on the values parameter:

� 0: do not transpose the numerical values; create a CHOLMOD PATTERN matrix

� 1: array transpose

� 2: complex conjugate transpose (same as 2 if input is real or pattern)

For cholmod transpose unsym and cholmod transpose sym, the output matrix F must already
be pre-allocated by the caller, with the correct dimensions. If F is not valid or has the wrong
dimensions, it is not modified. Otherwise, if F is too small, the transpose is not computed; the

75

contents of F->p contain the column pointers of the resulting matrix, where F->p [F->ncol] >

F->nzmax. In this case, the remaining contents of F are not modified. F can still be properly freed
with cholmod free sparse.

12.13 cholmod band: extract band of a sparse matrix

cholmod_sparse *cholmod_band

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to extract band matrix from */

SuiteSparse_long k1, /* ignore entries below the k1-st diagonal */

SuiteSparse_long k2, /* ignore entries above the k2-nd diagonal */

int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_band (cholmod_sparse *, SuiteSparse_long,

SuiteSparse_long, int, cholmod_common *) ;

Purpose: Returns C = tril (triu (A,k1), k2). C is a matrix consisting of the diagonals of
A from k1 to k2. k=0 is the main diagonal of A, k=1 is the superdiagonal, k=-1 is the subdiagonal,
and so on. If A is m-by-n, then:

� k1=-m means C = tril (A,k2)

� k2=n means C = triu (A,k1)

� k1=0 and k2=0 means C = diag(A), except C is a matrix, not a vector

Values of k1 and k2 less than -m are treated as -m, and values greater than n are treated as n.
A can be of any symmetry (upper, lower, or unsymmetric); C is returned in the same form, and

packed. If A->stype > 0, entries in the lower triangular part of A are ignored, and the opposite is
true if A->stype < 0. If A has sorted columns, then so does C. C has the same size as A.

C can be returned as a numerical valued matrix (if A has numerical values and mode > 0), as a
pattern-only (mode = 0), or as a pattern-only but with the diagonal entries removed (mode < 0).

The xtype of A can be pattern or real. Complex or zomplex cases are supported only if mode is
≤ 0 (in which case the numerical values are ignored).

12.14 cholmod band inplace: extract band, in place

int cholmod_band_inplace

(

/* ---- input ---- */

SuiteSparse_long k1, /* ignore entries below the k1-st diagonal */

SuiteSparse_long k2, /* ignore entries above the k2-nd diagonal */

int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag) */

/* ---- in/out --- */

cholmod_sparse *A, /* matrix from which entries not in band are removed */

/* --------------- */

76

cholmod_common *Common

) ;

int cholmod_l_band_inplace (SuiteSparse_long, SuiteSparse_long, int,

cholmod_sparse *, cholmod_common *) ;

Purpose: Same as cholmod band, except that it always operates in place. Only packed matrices
can be converted in place.

12.15 cholmod aat: compute AAT

cholmod_sparse *cholmod_aat

(

/* ---- input ---- */

cholmod_sparse *A, /* input matrix; C=A*A’ is constructed */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int mode, /* >0: numerical, 0: pattern, <0: pattern (no diag),

* -2: pattern only, no diagonal, add 50%+n extra

* space to C */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_aat (cholmod_sparse *, SuiteSparse_long *, size_t,

int, cholmod_common *) ;

Purpose: Computes C = A*A’ or C = A(:,f)*A(:,f)’. A can be packed or unpacked, sorted or
unsorted, but must be stored with both upper and lower parts (A->stype of zero). C is returned as
packed, C->stype of zero (both upper and lower parts present), and unsorted. See cholmod ssmult

in the MatrixOps Module for a more general matrix-matrix multiply. The xtype of A can be pattern
or real. Complex or zomplex cases are supported only if mode is ≤ 0 (in which case the numerical
values are ignored). You can trivially convert C to a symmetric upper/lower matrix by changing
C->stype to 1 or -1, respectively, after calling this routine.

12.16 cholmod copy sparse: copy sparse matrix

cholmod_sparse *cholmod_copy_sparse

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to copy */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_copy_sparse (cholmod_sparse *, cholmod_common *) ;

Purpose: Returns an exact copy of the input sparse matrix A.

77

12.17 cholmod copy: copy (and change) sparse matrix

Purpose: C = A, which allocates C and copies A into C, with possible change of stype. The
diagonal can optionally be removed. The numerical entries can optionally be copied. This routine
differs from cholmod copy sparse, which makes an exact copy of a sparse matrix.

A can be of any type (packed/unpacked, upper/lower/unsymmetric). C is packed and can be of
any stype (upper/lower/unsymmetric), except that if A is rectangular C can only be unsymmetric.
If the stype of A and C differ, then the appropriate conversion is made.
There are three cases for A->stype:

� < 0, lower: assume A is symmetric with just tril(A) stored; the rest of A is ignored

� 0, unsymmetric: assume A is unsymmetric; consider all entries in A

� > 0, upper: assume A is symmetric with just triu(A) stored; the rest of A is ignored

There are three cases for the requested symmetry of C (stype parameter):

� < 0, lower: return just tril(C)

� 0, unsymmetric: return all of C

� > 0, upper: return just triu(C)

This gives a total of nine combinations:
Equivalent MATLAB statements Using cholmod copy

C = A ; A unsymmetric, C unsymmetric
C = tril (A) ; A unsymmetric, C lower
C = triu (A) ; A unsymmetric, C upper
U = triu (A) ; L = tril (U’,-1) ; C = L+U ; A upper, C unsymmetric
C = triu (A)’ ; A upper, C lower
C = triu (A) ; A upper, C upper
L = tril (A) ; U = triu (L’,1) ; C = L+U ; A lower, C unsymmetric
C = tril (A) ; A lower, C lower
C = tril (A)’ ; A lower, C upper

The xtype of A can be pattern or real. Complex or zomplex cases are supported only if values
is FALSE (in which case the numerical values are ignored).

78

12.18 cholmod add: add sparse matrices

cholmod_sparse *cholmod_add

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to add */

cholmod_sparse *B, /* matrix to add */

double alpha [2], /* scale factor for A */

double beta [2], /* scale factor for B */

int values, /* if TRUE compute the numerical values of C */

int sorted, /* if TRUE, sort columns of C */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_add (cholmod_sparse *, cholmod_sparse *, double *,

double *, int, int, cholmod_common *) ;

Purpose: Returns C = alpha*A + beta*B. If the stype of A and B match, then C has the same
stype. Otherwise, C->stype is zero (C is unsymmetric).

12.19 cholmod sparse xtype: change sparse xtype

int cholmod_sparse_xtype

(

/* ---- input ---- */

int to_xtype, /* requested xtype (pattern, real, complex, zomplex) */

/* ---- in/out --- */

cholmod_sparse *A, /* sparse matrix to change */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_sparse_xtype (int, cholmod_sparse *, cholmod_common *) ;

Purpose: Changes the xtype of a sparse matrix, to pattern, real, complex, or zomplex. Changing
from complex or zomplex to real discards the imaginary part.

79

13 Core Module: cholmod factor object

13.1 cholmod factor object: a sparse Cholesky factorization

typedef struct cholmod_factor_struct

{

/* -- */

/* for both simplicial and supernodal factorizations */

/* -- */

size_t n ; /* L is n-by-n */

size_t minor ; /* If the factorization failed, L->minor is the column

* at which it failed (in the range 0 to n-1). A value

* of n means the factorization was successful or

* the matrix has not yet been factorized. */

/* -- */

/* symbolic ordering and analysis */

/* -- */

void *Perm ; /* size n, permutation used */

void *ColCount ; /* size n, column counts for simplicial L */

void *IPerm ; /* size n, inverse permutation. Only created by

* cholmod_solve2 if Bset is used. */

/* -- */

/* simplicial factorization */

/* -- */

size_t nzmax ; /* size of i and x */

void *p ; /* p [0..ncol], the column pointers */

void *i ; /* i [0..nzmax-1], the row indices */

void *x ; /* x [0..nzmax-1], the numerical values */

void *z ;

void *nz ; /* nz [0..ncol-1], the # of nonzeros in each column.

* i [p [j] ... p [j]+nz[j]-1] contains the row indices,

* and the numerical values are in the same locatins

* in x. The value of i [p [k]] is always k. */

void *next ; /* size ncol+2. next [j] is the next column in i/x */

void *prev ; /* size ncol+2. prev [j] is the prior column in i/x.

* head of the list is ncol+1, and the tail is ncol. */

/* -- */

/* supernodal factorization */

/* -- */

/* Note that L->x is shared with the simplicial data structure. L->x has

* size L->nzmax for a simplicial factor, and size L->xsize for a supernodal

* factor. */

size_t nsuper ; /* number of supernodes */

80

size_t ssize ; /* size of s, integer part of supernodes */

size_t xsize ; /* size of x, real part of supernodes */

size_t maxcsize ; /* size of largest update matrix */

size_t maxesize ; /* max # of rows in supernodes, excl. triangular part */

void *super ; /* size nsuper+1, first col in each supernode */

void *pi ; /* size nsuper+1, pointers to integer patterns */

void *px ; /* size nsuper+1, pointers to real parts */

void *s ; /* size ssize, integer part of supernodes */

/* -- */

/* factorization type */

/* -- */

int ordering ; /* ordering method used */

int is_ll ; /* TRUE if LL’, FALSE if LDL’ */

int is_super ; /* TRUE if supernodal, FALSE if simplicial */

int is_monotonic ; /* TRUE if columns of L appear in order 0..n-1.

* Only applicable to simplicial numeric types. */

/* There are 8 types of factor objects that cholmod_factor can represent

* (only 6 are used):

*

* Numeric types (xtype is not CHOLMOD_PATTERN)

* --

*

* simplicial LDL’: (is_ll FALSE, is_super FALSE). Stored in compressed

* column form, using the simplicial components above (nzmax, p, i,

* x, z, nz, next, and prev). The unit diagonal of L is not stored,

* and D is stored in its place. There are no supernodes.

*

* simplicial LL’: (is_ll TRUE, is_super FALSE). Uses the same storage

* scheme as the simplicial LDL’, except that D does not appear.

* The first entry of each column of L is the diagonal entry of

* that column of L.

*

* supernodal LDL’: (is_ll FALSE, is_super TRUE). Not used.

* FUTURE WORK: add support for supernodal LDL’

*

* supernodal LL’: (is_ll TRUE, is_super TRUE). A supernodal factor,

* using the supernodal components described above (nsuper, ssize,

* xsize, maxcsize, maxesize, super, pi, px, s, x, and z).

*

*

* Symbolic types (xtype is CHOLMOD_PATTERN)

* ---

*

* simplicial LDL’: (is_ll FALSE, is_super FALSE). Nothing is present

* except Perm and ColCount.

*

* simplicial LL’: (is_ll TRUE, is_super FALSE). Identical to the

* simplicial LDL’, except for the is_ll flag.

*

* supernodal LDL’: (is_ll FALSE, is_super TRUE). Not used.

81

* FUTURE WORK: add support for supernodal LDL’

*

* supernodal LL’: (is_ll TRUE, is_super TRUE). A supernodal symbolic

* factorization. The simplicial symbolic information is present

* (Perm and ColCount), as is all of the supernodal factorization

* except for the numerical values (x and z).

*/

int itype ; /* The integer arrays are Perm, ColCount, p, i, nz,

* next, prev, super, pi, px, and s. If itype is

* CHOLMOD_INT, all of these are int arrays.

* CHOLMOD_INTLONG: p, pi, px are SuiteSparse_long, others int.

* CHOLMOD_LONG: all integer arrays are SuiteSparse_long. */

int xtype ; /* pattern, real, complex, or zomplex */

int dtype ; /* x and z double or float */

int useGPU; /* Indicates the symbolic factorization supports

* GPU acceleration */

} cholmod_factor ;

Purpose: An LLT or LDLT factorization in simplicial or supernodal form. A simplicial factor
is very similar to a cholmod sparse matrix. For an LDLT factorization, the diagonal matrix D is
stored as the diagonal of L; the unit-diagonal of L is not stored.

82

13.2 cholmod free factor: free factor

int cholmod_free_factor

(

/* ---- in/out --- */

cholmod_factor **L, /* factor to free, NULL on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_free_factor (cholmod_factor **, cholmod_common *) ;

Purpose: Frees a factor.

13.3 cholmod allocate factor: allocate factor

cholmod_factor *cholmod_allocate_factor

(

/* ---- input ---- */

size_t n, /* L is n-by-n */

/* --------------- */

cholmod_common *Common

) ;

cholmod_factor *cholmod_l_allocate_factor (size_t, cholmod_common *) ;

Purpose: Allocates a factor and sets it to identity.

13.4 cholmod reallocate factor: reallocate factor

int cholmod_reallocate_factor

(

/* ---- input ---- */

size_t nznew, /* new # of entries in L */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_reallocate_factor (size_t, cholmod_factor *, cholmod_common *) ;

Purpose: Reallocates a simplicial factor so that it can contain nznew entries.

83

13.5 cholmod change factor: change factor

int cholmod_change_factor

(

/* ---- input ---- */

int to_xtype, /* to CHOLMOD_PATTERN, _REAL, _COMPLEX, _ZOMPLEX */

int to_ll, /* TRUE: convert to LL’, FALSE: LDL’ */

int to_super, /* TRUE: convert to supernodal, FALSE: simplicial */

int to_packed, /* TRUE: pack simplicial columns, FALSE: do not pack */

int to_monotonic, /* TRUE: put simplicial columns in order, FALSE: not */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_change_factor (int, int, int, int, int, cholmod_factor *,

cholmod_common *) ;

Purpose: Change the numeric or symbolic, LLT or LDLT, simplicial or super, packed or un-
packed, and monotonic or non-monotonic status of a cholmod factor object.

There are four basic classes of factor types:

1. simplicial symbolic: Consists of two size-n arrays: the fill-reducing permutation (L->Perm)
and the nonzero count for each column of L (L->ColCount). All other factor types also include
this information. L->ColCount may be exact (obtained from the analysis routines), or it may
be a guess. During factorization, and certainly after update/downdate, the columns of L can
have a different number of nonzeros. L->ColCount is used to allocate space. L->ColCount is
exact for the supernodal factorizations. The nonzero pattern of L is not kept.

2. simplicial numeric: These represent L in a compressed column form. The variants of this type
are:

� LDLT: L is unit diagonal. Row indices in column j are located in L->i [L->p [j] ...

L->p [j] + L->nz [j]], and corresponding numeric values are in the same locations
in L->x. The total number of entries is the sum of L->nz [j]. The unit diagonal is not
stored; D is stored on the diagonal of L instead. L->p may or may not be monotonic.
The order of storage of the columns in L->i and L->x is given by a doubly-linked list
(L->prev and L->next). L->p is of size n+1, but only the first n entries are used.

For the complex case, L->x is stored interleaved with real and imaginary parts, and is of
size 2*lnz*sizeof(double). For the zomplex case, L->x is of size lnz*sizeof(double)
and holds the real part; L->z is the same size and holds the imaginary part.

� LLT: This is identical to the LDLT form, except that the non-unit diagonal of L is
stored as the first entry in each column of L.

3. supernodal symbolic: A representation of the nonzero pattern of the supernodes for a supern-
odal factorization. There are L->nsuper supernodes. Columns L->super [k] to L->super

[k+1]-1 are in the kth supernode. The row indices for the kth supernode are in L->s [L->pi

84

[k] ... L->pi [k+1]-1]. The numerical values are not allocated (L->x), but when they
are they will be located in L->x [L->px [k] ... L->px [k+1]-1], and the L->px array is
defined in this factor type.

For the complex case, L->x is stored interleaved with real/imaginary parts, and is of size
2*L->xsize*sizeof(double). The zomplex supernodal case is not supported, since it is not
compatible with LAPACK and the BLAS.

4. supernodal numeric: Always an LLT factorization. L has a non-unit diagonal. L->x contains
the numerical values of the supernodes, as described above for the supernodal symbolic factor.
For the complex case, L->x is stored interleaved, and is of size 2*L->xsize*sizeof(double).
The zomplex supernodal case is not supported, since it is not compatible with LAPACK and
the BLAS.

In all cases, the row indices in each column (L->i for simplicial L and L->s for supernodal L)
are kept sorted from low indices to high indices. This means the diagonal of L (or D for a LDLT

factorization) is always kept as the first entry in each column. The elimination tree is not kept.
The parent of node j can be found as the second row index in the jth column. If column j has no
off-diagonal entries then node j is a root of the elimination tree.

The cholmod change factor routine can do almost all possible conversions. It cannot do the
following conversions:

� Simplicial numeric types cannot be converted to a supernodal symbolic type. This would
simultaneously deallocate the simplicial pattern and numeric values and reallocate uninitial-
ized space for the supernodal pattern. This isn’t useful for the user, and not needed by
CHOLMOD’s own routines either.

� Only a symbolic factor (simplicial to supernodal) can be converted to a supernodal numeric
factor.

Some conversions are meant only to be used internally by other CHOLMOD routines, and
should not be performed by the end user. They allocate space whose contents are undefined:

� converting from simplicial symbolic to supernodal symbolic.

� converting any factor to supernodal numeric.

Supports all xtypes, except that there is no supernodal zomplex L.
The to xtype parameter is used only when converting from symbolic to numeric or numeric to

symbolic. It cannot be used to convert a numeric xtype (real, complex, or zomplex) to a different
numeric xtype. For that conversion, use cholmod factor xtype instead.

85

13.6 cholmod pack factor: pack the columns of a factor

int cholmod_pack_factor

(

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_pack_factor (cholmod_factor *, cholmod_common *) ;

Purpose: Pack the columns of a simplicial LDLT or LLT factorization. This can be followed
by a call to cholmod reallocate factor to reduce the size of L to the exact size required by the
factor, if desired. Alternatively, you can leave the size of L->i and L->x the same, to allow space
for future updates/rowadds. Each column is reduced in size so that it has at most Common->grow2
free space at the end of the column. Does nothing and returns silently if given any other type of
factor. Does not force the columns of L to be monotonic. It thus differs from

cholmod_change_factor (xtype, L->is_ll, FALSE, TRUE, TRUE, L, Common)

which packs the columns and ensures that they appear in monotonic order.

13.7 cholmod reallocate column: reallocate one column of a factor

int cholmod_reallocate_column

(

/* ---- input ---- */

size_t j, /* the column to reallocate */

size_t need, /* required size of column j */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_reallocate_column (size_t, size_t, cholmod_factor *,

cholmod_common *) ;

Purpose: Reallocates the space allotted to a single column of L.

86

13.8 cholmod factor to sparse: sparse matrix copy of a factor

cholmod_sparse *cholmod_factor_to_sparse

(

/* ---- in/out --- */

cholmod_factor *L, /* factor to copy, converted to symbolic on output */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_factor_to_sparse (cholmod_factor *,

cholmod_common *) ;

Purpose: Returns a column-oriented sparse matrix containing the pattern and values of a simpli-
cial or supernodal numerical factor, and then converts the factor into a simplicial symbolic factor.
If L is already packed, monotonic, and simplicial (which is the case when cholmod factorize uses
the simplicial Cholesky factorization algorithm) then this routine requires only a small amount of
time and memory, independent of n. It only operates on numeric factors (real, complex, or zom-
plex). It does not change L->xtype (the resulting sparse matrix has the same xtype as L). If this
routine fails, L is left unmodified.

13.9 cholmod copy factor: copy factor

cholmod_factor *cholmod_copy_factor

(

/* ---- input ---- */

cholmod_factor *L, /* factor to copy */

/* --------------- */

cholmod_common *Common

) ;

cholmod_factor *cholmod_l_copy_factor (cholmod_factor *, cholmod_common *) ;

Purpose: Returns an exact copy of a factor.

13.10 cholmod factor xtype: change factor xtype

int cholmod_factor_xtype

(

/* ---- input ---- */

int to_xtype, /* requested xtype (real, complex, or zomplex) */

/* ---- in/out --- */

cholmod_factor *L, /* factor to change */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_factor_xtype (int, cholmod_factor *, cholmod_common *) ;

87

Purpose: Changes the xtype of a factor, to pattern, real, complex, or zomplex. Changing from
complex or zomplex to real discards the imaginary part. You cannot change a supernodal factor
to the zomplex xtype.

88

14 Core Module: cholmod dense object

14.1 cholmod dense object: a dense matrix

typedef struct cholmod_dense_struct

{

size_t nrow ; /* the matrix is nrow-by-ncol */

size_t ncol ;

size_t nzmax ; /* maximum number of entries in the matrix */

size_t d ; /* leading dimension (d >= nrow must hold) */

void *x ; /* size nzmax or 2*nzmax, if present */

void *z ; /* size nzmax, if present */

int xtype ; /* pattern, real, complex, or zomplex */

int dtype ; /* x and z double or float */

} cholmod_dense ;

Purpose: Contains a dense matrix.

14.2 cholmod allocate dense: allocate dense matrix

cholmod_dense *cholmod_allocate_dense

(

/* ---- input ---- */

size_t nrow, /* # of rows of matrix */

size_t ncol, /* # of columns of matrix */

size_t d, /* leading dimension */

int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_allocate_dense (size_t, size_t, size_t, int,

cholmod_common *) ;

Purpose: Allocates a dense matrix.

14.3 cholmod free dense: free dense matrix

int cholmod_free_dense

(

/* ---- in/out --- */

cholmod_dense **X, /* dense matrix to deallocate, NULL on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_free_dense (cholmod_dense **, cholmod_common *) ;

Purpose: Frees a dense matrix.

89

14.4 cholmod ensure dense: ensure dense matrix has a given size and type

cholmod_dense *cholmod_ensure_dense

(

/* ---- input/output ---- */

cholmod_dense **XHandle, /* matrix handle to check */

/* ---- input ---- */

size_t nrow, /* # of rows of matrix */

size_t ncol, /* # of columns of matrix */

size_t d, /* leading dimension */

int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_ensure_dense (cholmod_dense **, size_t, size_t, size_t,

int, cholmod_common *) ;

Purpose: Ensures a dense matrix has a given size and type.

90

14.5 cholmod zeros: dense zero matrix

cholmod_dense *cholmod_zeros

(

/* ---- input ---- */

size_t nrow, /* # of rows of matrix */

size_t ncol, /* # of columns of matrix */

int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_zeros (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns an all-zero dense matrix.

14.6 cholmod ones: dense matrix, all ones

cholmod_dense *cholmod_ones

(

/* ---- input ---- */

size_t nrow, /* # of rows of matrix */

size_t ncol, /* # of columns of matrix */

int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_ones (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns a dense matrix with each entry equal to one.

14.7 cholmod eye: dense identity matrix

cholmod_dense *cholmod_eye

(

/* ---- input ---- */

size_t nrow, /* # of rows of matrix */

size_t ncol, /* # of columns of matrix */

int xtype, /* CHOLMOD_REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_eye (size_t, size_t, int, cholmod_common *) ;

Purpose: Returns a dense identity matrix.

91

14.8 cholmod sparse to dense: dense matrix copy of a sparse matrix

cholmod_dense *cholmod_sparse_to_dense

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to copy */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_sparse_to_dense (cholmod_sparse *,

cholmod_common *) ;

Purpose: Returns a dense copy of a sparse matrix.

14.9 cholmod dense to sparse: sparse matrix copy of a dense matrix

cholmod_sparse *cholmod_dense_to_sparse

(

/* ---- input ---- */

cholmod_dense *X, /* matrix to copy */

int values, /* TRUE if values to be copied, FALSE otherwise */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_dense_to_sparse (cholmod_dense *, int,

cholmod_common *) ;

Purpose: Returns a sparse copy of a dense matrix.

14.10 cholmod copy dense: copy dense matrix

cholmod_dense *cholmod_copy_dense

(

/* ---- input ---- */

cholmod_dense *X, /* matrix to copy */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_copy_dense (cholmod_dense *, cholmod_common *) ;

Purpose: Returns a copy of a dense matrix.

92

14.11 cholmod copy dense2: copy dense matrix (preallocated)

int cholmod_copy_dense2

(

/* ---- input ---- */

cholmod_dense *X, /* matrix to copy */

/* ---- output --- */

cholmod_dense *Y, /* copy of matrix X */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_copy_dense2 (cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Returns a copy of a dense matrix, placing the result in a preallocated matrix Y.

14.12 cholmod dense xtype: change dense matrix xtype

int cholmod_dense_xtype

(

/* ---- input ---- */

int to_xtype, /* requested xtype (real, complex,or zomplex) */

/* ---- in/out --- */

cholmod_dense *X, /* dense matrix to change */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_dense_xtype (int, cholmod_dense *, cholmod_common *) ;

Purpose: Changes the xtype of a dense matrix, to real, complex, or zomplex. Changing from
complex or zomplex to real discards the imaginary part.

93

15 Core Module: cholmod triplet object

15.1 cholmod triplet object: sparse matrix in triplet form

typedef struct cholmod_triplet_struct

{

size_t nrow ; /* the matrix is nrow-by-ncol */

size_t ncol ;

size_t nzmax ; /* maximum number of entries in the matrix */

size_t nnz ; /* number of nonzeros in the matrix */

void *i ; /* i [0..nzmax-1], the row indices */

void *j ; /* j [0..nzmax-1], the column indices */

void *x ; /* size nzmax or 2*nzmax, if present */

void *z ; /* size nzmax, if present */

int stype ; /* Describes what parts of the matrix are considered:

*

* 0: matrix is "unsymmetric": use both upper and lower triangular parts

* (the matrix may actually be symmetric in pattern and value, but

* both parts are explicitly stored and used). May be square or

* rectangular.

* >0: matrix is square and symmetric. Entries in the lower triangular

* part are transposed and added to the upper triangular part when

* the matrix is converted to cholmod_sparse form.

* <0: matrix is square and symmetric. Entries in the upper triangular

* part are transposed and added to the lower triangular part when

* the matrix is converted to cholmod_sparse form.

*

* Note that stype>0 and stype<0 are different for cholmod_sparse and

* cholmod_triplet. The reason is simple. You can permute a symmetric

* triplet matrix by simply replacing a row and column index with their

* new row and column indices, via an inverse permutation. Suppose

* P = L->Perm is your permutation, and Pinv is an array of size n.

* Suppose a symmetric matrix A is represent by a triplet matrix T, with

* entries only in the upper triangular part. Then the following code:

*

* Ti = T->i ;

* Tj = T->j ;

* for (k = 0 ; k < n ; k++) Pinv [P [k]] = k ;

* for (k = 0 ; k < nz ; k++) Ti [k] = Pinv [Ti [k]] ;

* for (k = 0 ; k < nz ; k++) Tj [k] = Pinv [Tj [k]] ;

*

* creates the triplet form of C=P*A*P’. However, if T initially

* contains just the upper triangular entries (T->stype = 1), after

* permutation it has entries in both the upper and lower triangular

* parts. These entries should be transposed when constructing the

* cholmod_sparse form of A, which is what cholmod_triplet_to_sparse

* does. Thus:

*

* C = cholmod_triplet_to_sparse (T, 0, &Common) ;

*

* will return the matrix C = P*A*P’.

*

* Since the triplet matrix T is so simple to generate, it’s quite easy

94

* to remove entries that you do not want, prior to converting T to the

* cholmod_sparse form. So if you include these entries in T, CHOLMOD

* assumes that there must be a reason (such as the one above). Thus,

* no entry in a triplet matrix is ever ignored.

*/

int itype ; /* CHOLMOD_LONG: i and j are SuiteSparse_long. Otherwise int */

int xtype ; /* pattern, real, complex, or zomplex */

int dtype ; /* x and z are double or float */

} cholmod_triplet ;

Purpose: Contains a sparse matrix in triplet form.

15.2 cholmod allocate triplet: allocate triplet matrix

cholmod_triplet *cholmod_allocate_triplet

(

/* ---- input ---- */

size_t nrow, /* # of rows of T */

size_t ncol, /* # of columns of T */

size_t nzmax, /* max # of nonzeros of T */

int stype, /* stype of T */

int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */

/* --------------- */

cholmod_common *Common

) ;

cholmod_triplet *cholmod_l_allocate_triplet (size_t, size_t, size_t, int, int,

cholmod_common *) ;

Purpose: Allocates a triplet matrix.

15.3 cholmod free triplet: free triplet matrix

int cholmod_free_triplet

(

/* ---- in/out --- */

cholmod_triplet **T, /* triplet matrix to deallocate, NULL on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_free_triplet (cholmod_triplet **, cholmod_common *) ;

Purpose: Frees a triplet matrix.

95

15.4 cholmod reallocate triplet: reallocate triplet matrix

int cholmod_reallocate_triplet

(

/* ---- input ---- */

size_t nznew, /* new # of entries in T */

/* ---- in/out --- */

cholmod_triplet *T, /* triplet matrix to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_reallocate_triplet (size_t, cholmod_triplet *, cholmod_common *) ;

Purpose: Reallocates a triplet matrix so that it can hold nznew entries.

15.5 cholmod sparse to triplet: triplet matrix copy of a sparse matrix

cholmod_triplet *cholmod_sparse_to_triplet

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to copy */

/* --------------- */

cholmod_common *Common

) ;

cholmod_triplet *cholmod_l_sparse_to_triplet (cholmod_sparse *,

cholmod_common *) ;

Purpose: Returns a triplet matrix copy of a sparse matrix.

15.6 cholmod triplet to sparse: sparse matrix copy of a triplet matrix

cholmod_sparse *cholmod_triplet_to_sparse

(

/* ---- input ---- */

cholmod_triplet *T, /* matrix to copy */

size_t nzmax, /* allocate at least this much space in output matrix */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_triplet_to_sparse (cholmod_triplet *, size_t,

cholmod_common *) ;

Purpose: Returns a sparse matrix copy of a triplet matrix. If the triplet matrix is symmetric
with just the lower part present (T->stype < 0), then entries in the upper part are transposed
and placed in the lower part when converting to a sparse matrix. Similarly, if the triplet matrix
is symmetric with just the upper part present (T->stype > 0), then entries in the lower part are
transposed and placed in the upper part when converting to a sparse matrix. Any duplicate entries
are summed.

96

15.7 cholmod copy triplet: copy triplet matrix

cholmod_triplet *cholmod_copy_triplet

(

/* ---- input ---- */

cholmod_triplet *T, /* matrix to copy */

/* --------------- */

cholmod_common *Common

) ;

cholmod_triplet *cholmod_l_copy_triplet (cholmod_triplet *, cholmod_common *) ;

Purpose: Returns an exact copy of a triplet matrix.

15.8 cholmod triplet xtype: change triplet xtype

int cholmod_triplet_xtype

(

/* ---- input ---- */

int to_xtype, /* requested xtype (pattern, real, complex,or zomplex)*/

/* ---- in/out --- */

cholmod_triplet *T, /* triplet matrix to change */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_triplet_xtype (int, cholmod_triplet *, cholmod_common *) ;

Purpose: Changes the xtype of a dense matrix, to real, complex, or zomplex. Changing from
complex or zomplex to real discards the imaginary part.

97

16 Core Module: memory management

16.1 cholmod malloc: allocate memory

void *cholmod_malloc /* returns pointer to the newly malloc’d block */

(

/* ---- input ---- */

size_t n, /* number of items */

size_t size, /* size of each item */

/* --------------- */

cholmod_common *Common

) ;

void *cholmod_l_malloc (size_t, size_t, cholmod_common *) ;

Purpose: Allocates a block of memory of size n*size, using the SuiteSparse config.malloc func

function pointer (default is to use the ANSI C malloc routine). A value of n=0 is treated as n=1.
If not successful, NULL is returned and Common->status is set to CHOLMOD OUT OF MEMORY.

16.2 cholmod calloc: allocate and clear memory

void *cholmod_calloc /* returns pointer to the newly calloc’d block */

(

/* ---- input ---- */

size_t n, /* number of items */

size_t size, /* size of each item */

/* --------------- */

cholmod_common *Common

) ;

void *cholmod_l_calloc (size_t, size_t, cholmod_common *) ;

Purpose: Allocates a block of memory of size n*size, using the SuiteSparse config.calloc func

function pointer (default is to use the ANSI C calloc routine). A value of n=0 is treated as n=1.
If not successful, NULL is returned and Common->status is set to CHOLMOD OUT OF MEMORY.

98

16.3 cholmod free: free memory

void *cholmod_free /* always returns NULL */

(

/* ---- input ---- */

size_t n, /* number of items */

size_t size, /* size of each item */

/* ---- in/out --- */

void *p, /* block of memory to free */

/* --------------- */

cholmod_common *Common

) ;

void *cholmod_l_free (size_t, size_t, void *, cholmod_common *) ;

Purpose: Frees a block of memory of size n*size, using the SuiteSparse config.free func

function pointer (default is to use the ANSI C free routine). The size of the block (n and
size) is only required so that CHOLMOD can keep track of its current and peak memory us-
age. This is a useful statistic, and it can also help in tracking down memory leaks. After the call to
cholmod finish, the count of allocated blocks (Common->malloc count) should be zero, and the
count of bytes in use (Common->memory inuse) also should be zero. If you allocate a block with
one size and free it with another, the Common->memory inuse count will be wrong, but CHOLMOD
will not have a memory leak.

16.4 cholmod realloc: reallocate memory

void *cholmod_realloc /* returns pointer to reallocated block */

(

/* ---- input ---- */

size_t nnew, /* requested # of items in reallocated block */

size_t size, /* size of each item */

/* ---- in/out --- */

void *p, /* block of memory to realloc */

size_t *n, /* current size on input, nnew on output if successful*/

/* --------------- */

cholmod_common *Common

) ;

void *cholmod_l_realloc (size_t, size_t, void *, size_t *, cholmod_common *) ;

Purpose: Reallocates a block of memory whose current size n*size, and whose new size will be
nnew*size if successful, using the SuiteSparse config.calloc func function pointer (default is
to use the ANSI C realloc routine). If the reallocation is not successful, p is returned unchanged
and Common->status is set to CHOLMOD OUT OF MEMORY. The value of n is set to nnew if successful,
or left unchanged otherwise. A value of nnew=0 is treated as nnew=1.

99

16.5 cholmod realloc multiple: reallocate memory

int cholmod_realloc_multiple

(

/* ---- input ---- */

size_t nnew, /* requested # of items in reallocated blocks */

int nint, /* number of int/SuiteSparse_long blocks */

int xtype, /* CHOLMOD_PATTERN, _REAL, _COMPLEX, or _ZOMPLEX */

/* ---- in/out --- */

void **Iblock, /* int or SuiteSparse_long block */

void **Jblock, /* int or SuiteSparse_long block */

void **Xblock, /* complex, double, or float block */

void **Zblock, /* zomplex case only: double or float block */

size_t *n, /* current size of the I,J,X,Z blocks on input,

* nnew on output if successful */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_realloc_multiple (size_t, int, int, void **, void **, void **,

void **, size_t *, cholmod_common *) ;

Purpose: Reallocates multiple blocks of memory, all with the same number of items (but with
different item sizes). Either all reallocations succeed, or all are returned to their original size.

100

17 Core Module: version control

17.1 cholmod version: return current CHOLMOD version

int cholmod_version /* returns CHOLMOD_VERSION */

(

/* output, contents not defined on input. Not used if NULL.

version [0] = CHOLMOD_MAIN_VERSION

version [1] = CHOLMOD_SUB_VERSION

version [2] = CHOLMOD_SUBSUB_VERSION

*/

int version [3]

) ;

int cholmod_l_version (int version [3]) ;

Purpose: Returns the CHOLMOD version number, so that it can be tested at run time, even if the
caller does not have access to the CHOLMOD include files. For example, for a CHOLMOD version
3.2.1, the version array will contain 3, 2, and 1, in that order. This function appears in CHOLMOD
2.1.1 and later. You can check if the function exists with the CHOLMOD HAS VERSION FUNCTION

macro, so that the following code fragment works in any version of CHOLMOD:

#ifdef CHOLMOD_HAS_VERSION_FUNCTION

v = cholmod_version (NULL) ;

#else

v = CHOLMOD_VERSION ;

#endif

Note that cholmod version and cholmod l version have identical prototypes. Both use int’s.
Unlike all other CHOLMOD functions, this function does not take the Common object as an input
parameter, and it does not use any definitions from any include files. Thus, the caller can access
this function even if the caller does not include any CHOLMOD include files.

The above code fragment does require the #include "cholmod.h", of course, but cholmod version

can be called without it, if necessary.

101

18 Check Module routines

No CHOLMOD routines print anything, except for the cholmod print * routines in the Check

Module, and the cholmod error routine. The SuiteSparse config.printf function is a pointer
to printf by default; you can redirect the output of CHOLMOD by redefining this pointer. If the
function pointer is NULL, CHOLMOD does not print anything.

The Common->print parameter determines how much detail is printed. Each value of Common->print
listed below also prints the items listed for smaller values of Common->print:

� 0: print nothing; check the data structures and return TRUE or FALSE.

� 1: print error messages.

� 2: print warning messages.

� 3: print a one-line summary of the object.

� 4: print a short summary of the object (first and last few entries).

� 5: print the entire contents of the object.

Values less than zero are treated as zero, and values greater than five are treated as five.

18.1 cholmod check common: check Common object

int cholmod_check_common

(

cholmod_common *Common

) ;

int cholmod_l_check_common (cholmod_common *) ;

Purpose: Check if the Common object is valid.

18.2 cholmod print common: print Common object

int cholmod_print_common

(

/* ---- input ---- */

const char *name, /* printed name of Common object */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_common (const char *, cholmod_common *) ;

Purpose: Print the Common object and check if it is valid. This prints the CHOLMOD parameters
and statistics.

102

18.3 cholmod check sparse: check sparse matrix

int cholmod_check_sparse

(

/* ---- input ---- */

cholmod_sparse *A, /* sparse matrix to check */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_sparse (cholmod_sparse *, cholmod_common *) ;

Purpose: Check if a sparse matrix is valid.

18.4 cholmod print sparse: print sparse matrix

int cholmod_print_sparse

(

/* ---- input ---- */

cholmod_sparse *A, /* sparse matrix to print */

const char *name, /* printed name of sparse matrix */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_sparse (cholmod_sparse *, const char *, cholmod_common *) ;

Purpose: Print a sparse matrix and check if it is valid.

103

18.5 cholmod check dense: check dense matrix

int cholmod_check_dense

(

/* ---- input ---- */

cholmod_dense *X, /* dense matrix to check */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_dense (cholmod_dense *, cholmod_common *) ;

Purpose: Check if a dense matrix is valid.

18.6 cholmod print dense: print dense matrix

int cholmod_print_dense

(

/* ---- input ---- */

cholmod_dense *X, /* dense matrix to print */

const char *name, /* printed name of dense matrix */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_dense (cholmod_dense *, const char *, cholmod_common *) ;

Purpose: Print a dense matrix and check if it is valid.

104

18.7 cholmod check factor: check factor

int cholmod_check_factor

(

/* ---- input ---- */

cholmod_factor *L, /* factor to check */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_factor (cholmod_factor *, cholmod_common *) ;

Purpose: Check if a factor is valid.

18.8 cholmod print factor: print factor

int cholmod_print_factor

(

/* ---- input ---- */

cholmod_factor *L, /* factor to print */

const char *name, /* printed name of factor */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_factor (cholmod_factor *, const char *, cholmod_common *) ;

Purpose: Print a factor and check if it is valid.

105

18.9 cholmod check triplet: check triplet matrix

int cholmod_check_triplet

(

/* ---- input ---- */

cholmod_triplet *T, /* triplet matrix to check */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_triplet (cholmod_triplet *, cholmod_common *) ;

Purpose: Check if a triplet matrix is valid.

18.10 cholmod print triplet: print triplet matrix

int cholmod_print_triplet

(

/* ---- input ---- */

cholmod_triplet *T, /* triplet matrix to print */

const char *name, /* printed name of triplet matrix */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_triplet (cholmod_triplet *, const char *, cholmod_common *);

/* -- */

/* cholmod_check_subset: check a subset */

/* -- */

int cholmod_check_subset

(

/* ---- input ---- */

int *Set, /* Set [0:len-1] is a subset of 0:n-1. Duplicates OK */

SuiteSparse_long len, /* size of Set (an integer array) */

size_t n, /* 0:n-1 is valid range */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_subset (SuiteSparse_long *, SuiteSparse_long, size_t,

cholmod_common *) ;

Purpose: Print a triplet matrix and check if it is valid.

106

18.11 cholmod check subset: check subset

int cholmod_check_subset

(

/* ---- input ---- */

int *Set, /* Set [0:len-1] is a subset of 0:n-1. Duplicates OK */

SuiteSparse_long len, /* size of Set (an integer array) */

size_t n, /* 0:n-1 is valid range */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_subset (SuiteSparse_long *, SuiteSparse_long, size_t,

cholmod_common *) ;

Purpose: Check if a subset is valid.

18.12 cholmod print subset: print subset

int cholmod_print_subset

(

/* ---- input ---- */

int *Set, /* Set [0:len-1] is a subset of 0:n-1. Duplicates OK */

SuiteSparse_long len, /* size of Set (an integer array) */

size_t n, /* 0:n-1 is valid range */

const char *name, /* printed name of Set */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_subset (SuiteSparse_long *, SuiteSparse_long, size_t,

const char *, cholmod_common *) ;

Purpose: Print a subset and check if it is valid.

107

18.13 cholmod check perm: check permutation

int cholmod_check_perm

(

/* ---- input ---- */

int *Perm, /* Perm [0:len-1] is a permutation of subset of 0:n-1 */

size_t len, /* size of Perm (an integer array) */

size_t n, /* 0:n-1 is valid range */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_perm (SuiteSparse_long *, size_t, size_t, cholmod_common *);

/* -- */

/* cholmod_print_perm: print a permutation vector */

/* -- */

int cholmod_print_perm

(

/* ---- input ---- */

int *Perm, /* Perm [0:len-1] is a permutation of subset of 0:n-1 */

size_t len, /* size of Perm (an integer array) */

size_t n, /* 0:n-1 is valid range */

const char *name, /* printed name of Perm */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_perm (SuiteSparse_long *, size_t, size_t, const char *,

cholmod_common *) ;

Purpose: Check if a permutation is valid.

18.14 cholmod print perm: print permutation

int cholmod_print_perm

(

/* ---- input ---- */

int *Perm, /* Perm [0:len-1] is a permutation of subset of 0:n-1 */

size_t len, /* size of Perm (an integer array) */

size_t n, /* 0:n-1 is valid range */

const char *name, /* printed name of Perm */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_perm (SuiteSparse_long *, size_t, size_t, const char *,

cholmod_common *) ;

Purpose: Print a permutation and check if it is valid.

108

18.15 cholmod check parent: check elimination tree

int cholmod_check_parent

(

/* ---- input ---- */

int *Parent, /* Parent [0:n-1] is an elimination tree */

size_t n, /* size of Parent */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_check_parent (SuiteSparse_long *, size_t, cholmod_common *) ;

Purpose: Check if an elimination tree is valid.

18.16 cholmod print parent: print elimination tree

int cholmod_print_parent

(

/* ---- input ---- */

int *Parent, /* Parent [0:n-1] is an elimination tree */

size_t n, /* size of Parent */

const char *name, /* printed name of Parent */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_print_parent (SuiteSparse_long *, size_t, const char *,

cholmod_common *) ;

Purpose: Print an elimination tree and check if it is valid.

109

18.17 cholmod read triplet: read triplet matrix from file

cholmod_triplet *cholmod_read_triplet

(

/* ---- input ---- */

FILE *f, /* file to read from, must already be open */

/* --------------- */

cholmod_common *Common

) ;

cholmod_triplet *cholmod_l_read_triplet (FILE *, cholmod_common *) ;

Purpose: Read a sparse matrix in triplet form, using the the coord Matrix Market format
(http://www.nist.gov/MatrixMarket). Skew-symmetric and complex symmetric matrices are re-
turned with both upper and lower triangular parts present (an stype of zero). Real symmetric and
complex Hermitian matrices are returned with just their upper or lower triangular part, depend-
ing on their stype. The Matrix Market array data type for dense matrices is not supported (use
cholmod read dense for that case).

If the first line of the file starts with %%MatrixMarket, then it is interpreted as a file in Matrix
Market format. The header line is optional. If present, this line must have the following format:

%%MatrixMarket matrix coord type storage

where type is one of: real, complex, pattern, or integer, and storage is one of: general,
hermitian, symmetric, or skew-symmetric. In CHOLMOD, these roughly correspond to the
xtype (pattern, real, complex, or zomplex) and stype (unsymmetric, symmetric/upper, and sym-
metric/lower). The strings are case-insensitive. Only the first character (or the first two for
skew-symmetric) is significant. The coord token can be replaced with array in the Matrix Market
format, but this format not supported by cholmod read triplet. The integer type is converted
to real. The type is ignored; the actual type (real, complex, or pattern) is inferred from the number
of tokens in each line of the file (2: pattern, 3: real, 4: complex). This is compatible with the
Matrix Market format.

A storage of general implies an stype of zero (see below). A storage of symmetric and
hermitian imply an stype of -1. Skew-symmetric and complex symmetric matrices are returned
with an stype of 0. Blank lines, any other lines starting with “%” are treated as comments, and are
ignored.

The first non-comment line contains 3 or 4 integers:

nrow ncol nnz stype

where stype is optional (stype does not appear in the Matrix Market format). The matrix is nrow-
by-ncol. The following nnz lines (excluding comments) each contain a single entry. Duplicates are
permitted, and are summed in the output matrix.

If stype is present, it denotes the storage format for the matrix.

� stype = 0 denotes an unsymmetric matrix (same as Matrix Market general).

� stype = -1 denotes a symmetric or Hermitian matrix whose lower triangular entries are stored.
Entries may be present in the upper triangular part, but these are ignored (same as Matrix
Market symmetric for the real case, hermitian for the complex case).

110

� stype = 1 denotes a symmetric or Hermitian matrix whose upper triangular entries are stored.
Entries may be present in the lower triangular part, but these are ignored. This format is not
available in the Matrix Market format.

If neither the stype nor the Matrix Market header are present, then the stype is inferred from the
rest of the data. If the matrix is rectangular, or has entries in both the upper and lower triangular
parts, then it is assumed to be unsymmetric (stype=0). If only entries in the lower triangular part
are present, the matrix is assumed to have stype = -1. If only entries in the upper triangular part
are present, the matrix is assumed to have stype = 1.

Each nonzero consists of one line with 2, 3, or 4 entries. All lines must have the same number
of entries. The first two entries are the row and column indices of the nonzero. If 3 entries are
present, the 3rd entry is the numerical value, and the matrix is real. If 4 entries are present, the
3rd and 4th entries in the line are the real and imaginary parts of a complex value.

The matrix can be either 0-based or 1-based. It is first assumed to be one-based (compatible
with Matrix Market), with row indices in the range 1 to ncol and column indices in the range 1 to
nrow. If a row or column index of zero is found, the matrix is assumed to be zero-based (with row
indices in the range 0 to ncol-1 and column indices in the range 0 to nrow-1). This test correctly
determines that all Matrix Market matrices are in 1-based form.

For symmetric pattern-only matrices, the kth diagonal (if present) is set to one plus the degree
of the row k or column k (whichever is larger), and the off-diagonals are set to -1. A symmetric
pattern-only matrix with a zero-free diagonal is thus converted into a symmetric positive definite
matrix. All entries are set to one for an unsymmetric pattern-only matrix. This differs from the
MatrixMarket format (A = mmread (’file’) returns a binary pattern for A for symmetric pattern-
only matrices). To return a binary format for all pattern-only matrices, use A = mread(’file’,1).

Example matrices that follow this format can be found in the CHOLMOD/Demo/Matrix and
CHOLMOD/Tcov/Matrix directories. You can also try any of the matrices in the Matrix Market
collection at http://www.nist.gov/MatrixMarket.

18.18 cholmod read sparse: read sparse matrix from file

cholmod_sparse *cholmod_read_sparse

(

/* ---- input ---- */

FILE *f, /* file to read from, must already be open */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_read_sparse (FILE *, cholmod_common *) ;

Purpose: Read a sparse matrix in triplet form from a file (using cholmod read triplet) and con-
vert to a CHOLMOD sparse matrix. The Matrix Market format is used. If Common->prefer upper

is TRUE (the default case), a symmetric matrix is returned stored in upper-triangular form (A->stype
is 1). Otherwise, it is left in its original form, either upper or lower.

111

18.19 cholmod read dense: read dense matrix from file

cholmod_dense *cholmod_read_dense

(

/* ---- input ---- */

FILE *f, /* file to read from, must already be open */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_read_dense (FILE *, cholmod_common *) ;

Purpose: Read a dense matrix from a file, using the the array Matrix Market format
(http://www.nist.gov/MatrixMarket).

18.20 cholmod read matrix: read a matrix from file

void *cholmod_read_matrix

(

/* ---- input ---- */

FILE *f, /* file to read from, must already be open */

int prefer, /* If 0, a sparse matrix is always return as a

* cholmod_triplet form. It can have any stype

* (symmetric-lower, unsymmetric, or

* symmetric-upper).

* If 1, a sparse matrix is returned as an unsymmetric

* cholmod_sparse form (A->stype == 0), with both

* upper and lower triangular parts present.

* This is what the MATLAB mread mexFunction does,

* since MATLAB does not have an stype.

* If 2, a sparse matrix is returned with an stype of 0

* or 1 (unsymmetric, or symmetric with upper part

* stored).

* This argument has no effect for dense matrices.

*/

/* ---- output---- */

int *mtype, /* CHOLMOD_TRIPLET, CHOLMOD_SPARSE or CHOLMOD_DENSE */

/* --------------- */

cholmod_common *Common

) ;

void *cholmod_l_read_matrix (FILE *, int, int *, cholmod_common *) ;

Purpose: Read a sparse or dense matrix from a file, in Matrix Market format. Returns a void

pointer to either a cholmod triplet, cholmod sparse, or cholmod dense object.

112

18.21 cholmod write sparse: write a sparse matrix to a file

int cholmod_write_sparse

(

/* ---- input ---- */

FILE *f, /* file to write to, must already be open */

cholmod_sparse *A, /* matrix to print */

cholmod_sparse *Z, /* optional matrix with pattern of explicit zeros */

const char *comments, /* optional filename of comments to include */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_write_sparse (FILE *, cholmod_sparse *, cholmod_sparse *,

const char *c, cholmod_common *) ;

Purpose: Write a sparse matrix to a file in Matrix Market format. Optionally include comments,
and print explicit zero entries given by the pattern of the Z matrix. If not NULL, the Z matrix
must have the same dimensions and stype as A.

Returns the symmetry in which the matrix was printed (1 to 7) or -1 on failure. See the
cholmod symmetry function for a description of the return codes.

If A and Z are sorted on input, and either unsymmetric (stype = 0) or symmetric-lower (stype
¡ 0), and if A and Z do not overlap, then the triplets are sorted, first by column and then by row
index within each column, with no duplicate entries. If all the above holds except stype ¿ 0, then
the triplets are sorted by row first and then column.

18.22 cholmod write dense: write a dense matrix to a file

int cholmod_write_dense

(

/* ---- input ---- */

FILE *f, /* file to write to, must already be open */

cholmod_dense *X, /* matrix to print */

const char *comments, /* optional filename of comments to include */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_write_dense (FILE *, cholmod_dense *, const char *,

cholmod_common *) ;

Purpose: Write a dense matrix to a file in Matrix Market format. Optionally include comments.
Returns ¿ 0 if successful, -1 otherwise (1 if rectangular, 2 if square). A dense matrix is written in
”general” format; symmetric formats in the Matrix Market standard are not exploited.

113

19 Cholesky Module routines

19.1 cholmod analyze: symbolic factorization

cholmod_factor *cholmod_analyze

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to order and analyze */

/* --------------- */

cholmod_common *Common

) ;

cholmod_factor *cholmod_l_analyze (cholmod_sparse *, cholmod_common *) ;

Purpose: Orders and analyzes a matrix (either simplicial or supernodal), in preparation for
numerical factorization via cholmod factorize or via the “expert” routines cholmod rowfac and
cholmod super numeric.

In the symmetric case, A or A(p,p) is analyzed, where p is the fill-reducing ordering. In the
unsymmetric case, A*A’ or A(p,:)*A(p,:)’ is analyzed. The cholmod analyze p routine can be
given a user-provided permutation p (see below).

The default ordering strategy is to first try AMD. The ordering quality is analyzed, and if AMD
obtains an ordering where nnz(L) is greater than or equal to 5*nnz(tril(A)) (or 5*nnz(tril(A*A’))
if A is unsymmetric) and the floating-point operation count for the subsequent factorization is
greater than or equal to 500*nnz(L), then METIS is tried (if installed). For cholmod analyze p,
the user-provided ordering is also tried. This default behavior is obtained when Common->nmethods

is zero. In this case, methods 0, 1, and 2 in Common->method[...] are reset to user-provided, AMD,
and METIS, respectively. The ordering with the smallest nnz(L) is kept.

If Common->default nesdis is true (nonzero), then CHOLMOD’s nested dissection (NESDIS)
is used for the default strategy described above, in place of METIS.

Other ordering options can be requested. These include:

1. natural: A is not permuted to reduce fill-in.

2. user-provided: a permutation can be provided to cholmod analyze p.

3. AMD: approximate minimum degree (AMD for the symmetric case, COLAMD for the A*A’

case).

4. METIS: nested dissection with METIS NodeND

5. NESDIS: CHOLMOD’s nested dissection using METIS NodeComputeSeparator, followed by a
constrained minimum degree (CAMD or CSYMAMD for the symmetric case, CCOLAMD for
the A*A’ case). This is typically slower than METIS, but typically provides better orderings.

Multiple ordering options can be tried (up to 9 of them), and the best one is selected (the
one that gives the smallest number of nonzeros in the simplicial factor L). If one method fails,
cholmod analyze keeps going, and picks the best among the methods that succeeded. This routine
fails (and returns NULL) if either the initial memory allocation fails, all ordering methods fail, or
the supernodal analysis (if requested) fails. Change Common->nmethods to the number of methods
you wish to try. By default, the 9 methods available are:

114

1. user-provided permutation (only for cholmod analyze p).

2. AMD with default parameters.

3. METIS with default parameters.

4. NESDIS with default parameters: stopping the partitioning when the graph is of size nd small

= 200 or less, remove nodes with more than max (16, prune dense * sqrt (n)) nodes
where prune dense = 10, and follow partitioning with constrained minimum degree ordering
(CAMD for the symmetric case, CCOLAMD for the unsymmetric case).

5. natural ordering (with weighted postorder).

6. NESDIS, nd small = 20000, prune dense = 10.

7. NESDIS, nd small = 4, prune dense = 10, no constrained minimum degree.

8. NESDIS, nd small = 200, prune dense = 0.

9. COLAMD for A*A’ or AMD for A

You can modify these 9 methods and the number of methods tried by changing parameters in
the Common argument. If you know the best ordering for your matrix, set Common->nmethods to
1 and set Common->method[0].ordering to the requested ordering method. Parameters for each
method can also be modified (refer to the description of cholmod common for details).

Note that it is possible for METIS to terminate your program if it runs out of memory. This is
not the case for any CHOLMOD or minimum degree ordering routine (AMD, COLAMD, CAMD,
CCOLAMD, or CSYMAMD). Since NESDIS relies on METIS, it too can terminate your program.

The selected ordering is followed by a weighted postorder of the elimination tree by default (see
cholmod postorder for details), unless Common->postorder is set to FALSE. The postorder does
not change the number of nonzeros in L or the floating-point operation count. It does improve
performance, particularly for the supernodal factorization. If you truly want the natural ordering
with no postordering, you must set Common->postorder to FALSE.

The factor L is returned as simplicial symbolic if Common->supernodal is CHOLMOD SIMPLICIAL

(zero) or as supernodal symbolic if Common->supernodal is CHOLMOD SUPERNODAL (two). If
Common->supernodal is CHOLMOD AUTO (one), then L is simplicial if the flop count per nonzero in L

is less than Common->supernodal switch (default: 40), and supernodal otherwise. In both cases,
L->xtype is CHOLMOD PATTERN. A subsequent call to cholmod factorize will perform a simplicial
or supernodal factorization, depending on the type of L.

For the simplicial case, L contains the fill-reducing permutation (L->Perm) and the counts of
nonzeros in each column of L (L->ColCount). For the supernodal case, L also contains the nonzero
pattern of each supernode.

If a simplicial factorization is selected, it will be LDLT by default, since this is the kind
required by the Modify Module. CHOLMOD does not include a supernodal LDLT factorization,
so if a supernodal factorization is selected, it will be in the form LLT. The LDLT method can be
used to factorize positive definite matrices and indefinite matrices whose leading minors are well-
conditioned (2-by-2 pivoting is not supported). The LLT method is restricted to positive definite
matrices. To factorize a large indefinite matrix, set Common->supernodal to CHOLMOD SIMPLICIAL,

115

and the simplicial LDLT method will always be used. This will be significantly slower than a
supernodal LLT factorization, however.

Refer to cholmod transpose unsym for a description of f.

19.2 cholmod factorize: numeric factorization

int cholmod_factorize

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

/* ---- in/out --- */

cholmod_factor *L, /* resulting factorization */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_factorize (cholmod_sparse *, cholmod_factor *, cholmod_common *) ;

Purpose: Computes the numerical factorization of a symmetric matrix. The inputs to this routine
are a sparse matrix A and the symbolic factor L from cholmod analyze or a prior numerical factor L.
If A is symmetric, this routine factorizes A(p,p). where p is the fill-reducing permutation (L->Perm).
If A is unsymmetric, A(p,:)*A(p,:)’ is factorized. The nonzero pattern of the matrix A must be
the same as the matrix passed to cholmod analyze for the supernodal case. For the simplicial
case, it can be different, but it should be the same for best performance.

A simplicial factorization or supernodal factorization is chosen, based on the type of the factor
L. If L->is super is TRUE, a supernodal LLT factorization is computed. Otherwise, a simplicial
numeric factorization is computed, either LLT or LDLT, depending on Common->final ll (the
default for the simplicial case is to compute an LDLT factorization).

Once the factorization is complete, it can be left as is or optionally converted into any simplicial
numeric type, depending on the Common->final * parameters. If converted from a supernodal to
simplicial type, and Common->final resymbol is TRUE, then numerically zero entries in L due to
relaxed supernodal amalgamation are removed from the simplicial factor (they are always left in
the supernodal form of L). Entries that are numerically zero but present in the simplicial sym-
bolic pattern of L are left in place (the graph of L remains chordal). This is required for the
update/downdate/rowadd/rowdel routines to work properly.

If the matrix is not positive definite the routine returns TRUE, but Common->status is set to
CHOLMOD NOT POSDEF and L->minor is set to the column at which the failure occurred. Columns
L->minor to L->n-1 are set to zero.

Supports any xtype (pattern, real, complex, or zomplex), except that the input matrix A cannot
be pattern-only. If L is simplicial, its numeric xtype matches A on output. If L is supernodal, its
xtype is real if A is real, or complex if A is complex or zomplex. CHOLMOD does not provide
a supernodal zomplex factor, since it is incompatible with how complex numbers are stored in
LAPACK and the BLAS.

19.3 cholmod analyze p: symbolic factorization, given permutation

116

cholmod_factor *cholmod_analyze_p

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to order and analyze */

int *UserPerm, /* user-provided permutation, size A->nrow */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* --------------- */

cholmod_common *Common

) ;

cholmod_factor *cholmod_l_analyze_p (cholmod_sparse *, SuiteSparse_long *,

SuiteSparse_long *, size_t, cholmod_common *) ;

cholmod_factor *cholmod_analyze_p2

(

/* ---- input ---- */

int for_whom, /* FOR_SPQR (0): for SPQR but not GPU-accelerated

FOR_CHOLESKY (1): for Cholesky (GPU or not)

FOR_SPQRGPU (2): for SPQR with GPU acceleration */

cholmod_sparse *A, /* matrix to order and analyze */

int *UserPerm, /* user-provided permutation, size A->nrow */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* --------------- */

cholmod_common *Common

) ;

cholmod_factor *cholmod_l_analyze_p2 (int, cholmod_sparse *, SuiteSparse_long *,

SuiteSparse_long *, size_t, cholmod_common *) ;

Purpose: Identical to cholmod analyze, except that a user-provided permutation p can be
provided, and the set f for the unsymmetric case can be provided. The matrices A(:,f)*A(:,f)’
or A(p,f)*A(p,f)’ can be analyzed in the the unsymmetric case.

19.4 cholmod factorize p: numeric factorization, given permutation

int cholmod_factorize_p

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

double beta [2], /* factorize beta*I+A or beta*I+A’*A */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* ---- in/out --- */

cholmod_factor *L, /* resulting factorization */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_factorize_p (cholmod_sparse *, double *, SuiteSparse_long *,

size_t, cholmod_factor *, cholmod_common *) ;

117

Purpose: Identical to cholmod factorize, but with additional options. The set f can be
provided for the unsymmetric case; A(p,f)*A(p,f)’ is factorized. The term beta*I can be added
to the matrix before it is factorized, where beta is real. Only the real part, beta[0], is used.

19.5 cholmod solve: solve a linear system

cholmod_dense *cholmod_solve /* returns the solution X */

(

/* ---- input ---- */

int sys, /* system to solve */

cholmod_factor *L, /* factorization to use */

cholmod_dense *B, /* right-hand-side */

/* --------------- */

cholmod_common *Common

) ;

cholmod_dense *cholmod_l_solve (int, cholmod_factor *, cholmod_dense *,

cholmod_common *) ;

Purpose: Returns a solution X that solves one of the following systems:
system sys parameter system sys parameter
Ax = b 0: CHOLMOD A

LDLTx = b 1: CHOLMOD LDLt LTx = b 5: CHOLMOD Lt

LDx = b 2: CHOLMOD LD Dx = b 6: CHOLMOD D

DLTx = b 3: CHOLMOD DLt x = Pb 7: CHOLMOD P

Lx = b 4: CHOLMOD L x = PTb 8: CHOLMOD Pt

The factorization can be simplicial LDLT, simplicial LLT, or supernodal LLT. For an LLT

factorization, D is the identity matrix. Thus CHOLMOD LD and CHOLMOD L solve the same system if
an LLT factorization was performed, for example. This is one of the few routines in CHOLMOD for
which the xtype of the input arguments need not match. If both L and B are real, then X is returned
real. If either is complex or zomplex, X is returned as either complex or zomplex, depending on the
Common->prefer zomplex parameter (default is complex).

This routine does not check to see if the diagonal of L or D is zero, because sometimes a partial
solve can be done with an indefinite or singular matrix. If you wish to check in your own code, test
L->minor. If L->minor == L->n, then the matrix has no zero diagonal entries. If k = L->minor

< L->n, then L(k,k) is zero for an LLT factorization, or D(k,k) is zero for an LDLT factorization.
Iterative refinement is not performed, but this can be easily done with the MatrixOps Module.

See Demo/cholmod demo.c for an example.

19.6 cholmod spsolve: solve a linear system

cholmod_sparse *cholmod_spsolve

(

/* ---- input ---- */

int sys, /* system to solve */

cholmod_factor *L, /* factorization to use */

cholmod_sparse *B, /* right-hand-side */

/* --------------- */

118

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_spsolve (int, cholmod_factor *, cholmod_sparse *,

cholmod_common *) ;

Purpose: Identical to cholmod solve, except that B and X are sparse. This function converts B to
full format, solves the system, and then converts X back to sparse. If you want to solve with a sparse
B and get just a partial solution back in X (corresponding to the pattern of B), use cholmod solve2

below.

19.7 cholmod solve2: solve a linear system, reusing workspace

int cholmod_solve2 /* returns TRUE on success, FALSE on failure */

(

/* ---- input ---- */

int sys, /* system to solve */

cholmod_factor *L, /* factorization to use */

cholmod_dense *B, /* right-hand-side */

cholmod_sparse *Bset,

/* ---- output --- */

cholmod_dense **X_Handle, /* solution, allocated if need be */

cholmod_sparse **Xset_Handle,

/* ---- workspace */

cholmod_dense **Y_Handle, /* workspace, or NULL */

cholmod_dense **E_Handle, /* workspace, or NULL */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_solve2 (int, cholmod_factor *, cholmod_dense *, cholmod_sparse *,

cholmod_dense **, cholmod_sparse **, cholmod_dense **, cholmod_dense **,

cholmod_common *) ;

Purpose: Solve a linear system, optionally reusing workspace from a prior call to cholmod solve2.
The inputs to this function are the same as cholmod solve, with the addition of three param-

eters: X, Y, and E. The dense matrix X is the solution on output. On input, &X can point to a
NULL matrix, or be the wrong size. If that is the case, it is freed and allocated to be the proper
size. If X has the right size and type on input, then the allocation is skipped. In contrast, the
cholmod solve function always allocates its output X. This cholmod solve2 function allows you
to reuse the memory space of a prior X, thereby saving time.

The two workspace matrices Y and E can also be reused between calls. You must free X Y, and
E yourself, when your computations are done. Below is an example of usage. Note that X Y, and E

must be defined on input (either NULL, or valid dense matrices).

cholmod_dense *X = NULL, *Y = NULL, *E = NULL ;

...

cholmod_l_solve2 (sys, L, B1, NULL, &X, NULL, &Y, &E, Common) ;

cholmod_l_solve2 (sys, L, B2, NULL, &X, NULL, &Y, &E, Common) ;

119

cholmod_l_solve2 (sys, L, B3, NULL, &X, NULL, &Y, &E, Common) ;

cholmod_l_free_dense (&X, Common) ;

cholmod_l_free_dense (&Y, Common) ;

cholmod_l_free_dense (&E, Common) ;

The equivalent when using cholmod solve is:

cholmod_dense *X = NULL, *Y = NULL, *E = NULL ;

...

X = cholmod_l_solve (sys, L, B1, Common) ;

cholmod_l_free_dense (&X, Common) ;

X = cholmod_l_solve (sys, L, B2, Common) ;

cholmod_l_free_dense (&X, Common) ;

X = cholmod_l_solve (sys, L, B3, Common) ;

cholmod_l_free_dense (&X, Common) ;

Both methods work fine, but in the second method with cholmod solve, the internal workspaces
(Y and E) and the solution (X) are allocated and freed on each call.

The cholmod solve2 function can also solve for a subset of the solution vector X, if the
optional Bset parameter is non-NULL. The right-hand-side B must be a single column vector, and
its complexity (real, complex, zomplex) must match that of L. The vector B is dense, but it is
assumed to be zero except for row indices specified in Bset. The vector Bset must be a sparse
column vector, of dimension the same as B. Only the pattern of Bset is used. The solution X (a
dense column vector) is modified on output, but is defined only in the rows defined by the sparse
vector Xset. The entries in Bset are a subset of Xset (except if sys is CHOLMOD P or CHOLMOD Pt).

No memory allocations are done if the outputs and internal workspaces (X, Xset, Y, and E) have
been allocated by a prior call (or if allocated by the user). To let cholmod solve2 allocate these
outputs and workspaces for you, simply initialize them to NULL (as in the example above). Since
it is possible for this function to reallocate these 4 arrays, you should always re-acquire the pointers
to their internal data (X->x for example) after calling cholmod solve2), since they may change.
They normally will not change except in the first call to this function.

On the first call to cholmod solve2 when Bset is NULL, the factorization is converted from
supernodal to simplicial, if needed. The inverse permutation is also computed and stored in the
factorization object, L. This can take a modest amount of time. Subsequent calls to cholmod solve2

with a small Bset are very fast (both asymptotically and in practice).
You can find an example of how to use cholmod solve2 in the two demo programs, cholmod demo

and cholmod l demo.

19.8 cholmod etree: find elimination tree

int cholmod_etree

(

/* ---- input ---- */

cholmod_sparse *A,

/* ---- output --- */

int *Parent, /* size ncol. Parent [j] = p if p is the parent of j */

/* --------------- */

120

cholmod_common *Common

) ;

int cholmod_l_etree (cholmod_sparse *, SuiteSparse_long *, cholmod_common *) ;

Purpose: Computes the elimination tree of A or A’*A. In the symmetric case, the upper triangular
part of A is used. Entries not in this part of the matrix are ignored. Computing the etree of a
symmetric matrix from just its lower triangular entries is not supported. In the unsymmetric case,
all of A is used, and the etree of A’*A is computed. Refer to [20] for a discussion of the elimination
tree and its use in sparse Cholesky factorization.

19.9 cholmod rowcolcounts: nonzeros counts of a factor

int cholmod_rowcolcounts

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to analyze */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int *Parent, /* size nrow. Parent [i] = p if p is the parent of i */

int *Post, /* size nrow. Post [k] = i if i is the kth node in

* the postordered etree. */

/* ---- output --- */

int *RowCount, /* size nrow. RowCount [i] = # entries in the ith row of

* L, including the diagonal. */

int *ColCount, /* size nrow. ColCount [i] = # entries in the ith

* column of L, including the diagonal. */

int *First, /* size nrow. First [i] = k is the least postordering

* of any descendant of i. */

int *Level, /* size nrow. Level [i] is the length of the path from

* i to the root, with Level [root] = 0. */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowcolcounts (cholmod_sparse *, SuiteSparse_long *, size_t,

SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,

SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,

cholmod_common *) ;

Purpose: Compute the row and column counts of the Cholesky factor L of the matrix A

or A*A’. The etree and its postordering must already be computed (see cholmod etree and
cholmod postorder) and given as inputs to this routine. For the symmetric case (LLT = A),
A must be stored in symmetric/lower form (A->stype = -1). In the unsymmetric case, A*A’ or
A(:,f)*A(:,f)’ can be analyzed. The fundamental floating-point operation count is returned
in Common->fl (this excludes extra flops due to relaxed supernodal amalgamation). Refer to
cholmod transpose unsym for a description of f. The algorithm is described in [13, 15].

19.10 cholmod analyze ordering: analyze a permutation

121

int cholmod_analyze_ordering

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to analyze */

int ordering, /* ordering method used */

int *Perm, /* size n, fill-reducing permutation to analyze */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* ---- output --- */

int *Parent, /* size n, elimination tree */

int *Post, /* size n, postordering of elimination tree */

int *ColCount, /* size n, nnz in each column of L */

/* ---- workspace */

int *First, /* size nworkspace for cholmod_postorder */

int *Level, /* size n workspace for cholmod_postorder */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_analyze_ordering (cholmod_sparse *, int, SuiteSparse_long *,

SuiteSparse_long *, size_t, SuiteSparse_long *, SuiteSparse_long *,

SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,

cholmod_common *) ;

Purpose: Given a matrix A and its fill-reducing permutation, compute the elimination tree, its
(non-weighted) postordering, and the number of nonzeros in each column of L. Also computes the
flop count, the total nonzeros in L, and the nonzeros in tril(A) (Common->fl, Common->lnz, and
Common->anz). In the unsymmetric case, A(p,f)*A(p,f)’ is analyzed, and Common->anz is the
number of nonzero entries in the lower triangular part of the product, not in A itself.

Refer to cholmod transpose unsym for a description of f.
The column counts of L, flop count, and other statistics from cholmod rowcolcounts are not

computed if ColCount is NULL.

19.11 cholmod amd: interface to AMD

int cholmod_amd

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to order */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* ---- output --- */

int *Perm, /* size A->nrow, output permutation */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_amd (cholmod_sparse *, SuiteSparse_long *, size_t,

SuiteSparse_long *, cholmod_common *) ;

122

Purpose: CHOLMOD interface to the AMD ordering package. Orders A if the matrix is sym-
metric. On output, Perm [k] = i if row/column i of A is the kth row/column of P*A*P’. This
corresponds to A(p,p) in MATLAB notation. If A is unsymmetric, cholmod amd orders A*A’ or
A(:,f)*A(:,f)’. On output, Perm [k] = i if row/column i of A*A’ is the kth row/column
of P*A*A’*P’. This corresponds to A(p,:)*A(p,:)’ in MATLAB notation. If f is present,
A(p,f)*A(p,f)’ is the permuted matrix. Refer to cholmod transpose unsym for a description
of f.

Computes the flop count for a subsequent LLT factorization, the number of nonzeros in L, and
the number of nonzeros in the matrix ordered (A, A*A’ or A(:,f)*A(:,f)’). These statistics are
returned in Common->fl, Common->lnz, and Common->anz, respectively.

19.12 cholmod colamd: interface to COLAMD

int cholmod_colamd

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to order */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int postorder, /* if TRUE, follow with a coletree postorder */

/* ---- output --- */

int *Perm, /* size A->nrow, output permutation */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_colamd (cholmod_sparse *, SuiteSparse_long *, size_t, int,

SuiteSparse_long *, cholmod_common *) ;

Purpose: CHOLMOD interface to the COLAMD ordering package. Finds a permutation p

such that the Cholesky factorization of P*A*A’*P’ is sparser than A*A’, using COLAMD. If the
postorder input parameter is TRUE, the column elimination tree is found and postordered, and the
COLAMD ordering is then combined with its postordering (COLAMD itself does not perform this
postordering). A must be unsymmetric (A->stype = 0).

19.13 cholmod rowfac: row-oriented Cholesky factorization

int cholmod_rowfac

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */

double beta [2], /* factorize beta*I+A or beta*I+A’*A */

size_t kstart, /* first row to factorize */

size_t kend, /* last row to factorize is kend-1 */

/* ---- in/out --- */

cholmod_factor *L,

/* --------------- */

cholmod_common *Common

123

) ;

int cholmod_l_rowfac (cholmod_sparse *, cholmod_sparse *, double *, size_t,

size_t, cholmod_factor *, cholmod_common *) ;

int cholmod_rowfac_mask

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */

double beta [2], /* factorize beta*I+A or beta*I+A’*A */

size_t kstart, /* first row to factorize */

size_t kend, /* last row to factorize is kend-1 */

int *mask, /* if mask[i] >= 0, then set row i to zero */

int *RLinkUp, /* link list of rows to compute */

/* ---- in/out --- */

cholmod_factor *L,

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowfac_mask (cholmod_sparse *, cholmod_sparse *, double *, size_t,

size_t, SuiteSparse_long *, SuiteSparse_long *, cholmod_factor *,

cholmod_common *) ;

int cholmod_rowfac_mask2

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */

double beta [2], /* factorize beta*I+A or beta*I+A’*A */

size_t kstart, /* first row to factorize */

size_t kend, /* last row to factorize is kend-1 */

int *mask, /* if mask[i] >= maskmark, then set row i to zero */

int maskmark,

int *RLinkUp, /* link list of rows to compute */

/* ---- in/out --- */

cholmod_factor *L,

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowfac_mask2 (cholmod_sparse *, cholmod_sparse *, double *,

size_t, size_t, SuiteSparse_long *, SuiteSparse_long, SuiteSparse_long *,

cholmod_factor *, cholmod_common *) ;

Purpose: Full or incremental numerical LDLT or LLT factorization (simplicial, not supernodal).
cholmod factorize is the “easy” wrapper for this code, but it does not provide access to incre-
mental factorization. The algorithm is the row-oriented, up-looking method described in [5]. See
also [19]. No 2-by-2 pivoting (or any other pivoting) is performed.

cholmod rowfac computes the full or incremental LDLT or LLT factorization of A+beta*I
(where A is symmetric) or A*F+beta*I (where A and F are unsymmetric and only the upper trian-
gular part of A*F+beta*I is used). It computes L (and D, for LDLT) one row at a time. The input
scalar beta is real; only the real part (beta[0]) is used.

L can be a simplicial symbolic or numeric (L->is super must be FALSE). A symbolic factor is

124

converted immediately into a numeric factor containing the identity matrix.
For a full factorization, use kstart = 0 and kend = nrow. The existing nonzero entries (nu-

merical values in L->x and L->z for the zomplex case, and indices in L->i) are overwritten.
To compute an incremental factorization, select kstart and kend as the range of rows of L you

wish to compute. Rows kstart to kend-1 of L will be computed. A correct factorization will be
computed only if all descendants of all nodes kstart to kend-1 in the elimination tree have been
factorized by a prior call to this routine, and if rows kstart to kend-1 have not been factorized.
This condition is not checked on input.

In the symmetric case, A must be stored in upper form (A->stype is greater than zero). The
matrix F is not accessed and may be NULL. Only columns kstart to kend-1 of A are accessed.

In the unsymmetric case, the typical case is F=A’. Alternatively, if F=A(:,f)’, then this rou-
tine factorizes the matrix S = beta*I + A(:,f)*A(:,f)’. The product A*F is assumed to be
symmetric; only the upper triangular part of A*F is used. F must be of size A->ncol by A->nrow.

19.14 cholmod rowfac mask: row-oriented Cholesky factorization

int cholmod_rowfac_mask

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */

double beta [2], /* factorize beta*I+A or beta*I+A’*A */

size_t kstart, /* first row to factorize */

size_t kend, /* last row to factorize is kend-1 */

int *mask, /* if mask[i] >= 0, then set row i to zero */

int *RLinkUp, /* link list of rows to compute */

/* ---- in/out --- */

cholmod_factor *L,

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowfac_mask (cholmod_sparse *, cholmod_sparse *, double *, size_t,

size_t, SuiteSparse_long *, SuiteSparse_long *, cholmod_factor *,

cholmod_common *) ;

int cholmod_rowfac_mask2

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */

double beta [2], /* factorize beta*I+A or beta*I+A’*A */

size_t kstart, /* first row to factorize */

size_t kend, /* last row to factorize is kend-1 */

int *mask, /* if mask[i] >= maskmark, then set row i to zero */

int maskmark,

int *RLinkUp, /* link list of rows to compute */

/* ---- in/out --- */

cholmod_factor *L,

/* --------------- */

cholmod_common *Common

) ;

125

int cholmod_l_rowfac_mask2 (cholmod_sparse *, cholmod_sparse *, double *,

size_t, size_t, SuiteSparse_long *, SuiteSparse_long, SuiteSparse_long *,

cholmod_factor *, cholmod_common *) ;

Purpose: For use in LPDASA only.

19.15 cholmod row subtree: pattern of row of a factor

int cholmod_row_subtree

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to analyze */

cholmod_sparse *F, /* used for A*A’ case only. F=A’ or A(:,fset)’ */

size_t k, /* row k of L */

int *Parent, /* elimination tree */

/* ---- output --- */

cholmod_sparse *R, /* pattern of L(k,:), n-by-1 with R->nzmax >= n */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_row_subtree (cholmod_sparse *, cholmod_sparse *, size_t,

SuiteSparse_long *, cholmod_sparse *, cholmod_common *) ;

Purpose: Compute the nonzero pattern of the solution to the lower triangular system

L(0:k-1,0:k-1) * x = A (0:k-1,k)

if A is symmetric, or

L(0:k-1,0:k-1) * x = A (0:k-1,:) * A (:,k)’

if A is unsymmetric. This gives the nonzero pattern of row k of L (excluding the diagonal). The
pattern is returned postordered, according to the subtree of the elimination tree rooted at node k.

The symmetric case requires A to be in symmetric-upper form.
The result is returned in R, a pre-allocated sparse matrix of size nrow-by-1, with R->nzmax >=

nrow. R is assumed to be packed (Rnz [0] is not updated); the number of entries in R is given by
Rp [0].

19.16 cholmod row lsubtree: pattern of row of a factor

int cholmod_row_lsubtree

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to analyze */

int *Fi, size_t fnz, /* nonzero pattern of kth row of A’, not required

* for the symmetric case. Need not be sorted. */

size_t k, /* row k of L */

cholmod_factor *L, /* the factor L from which parent(i) is derived */

/* ---- output --- */

126

cholmod_sparse *R, /* pattern of L(k,:), n-by-1 with R->nzmax >= n */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_row_lsubtree (cholmod_sparse *, SuiteSparse_long *, size_t,

size_t, cholmod_factor *, cholmod_sparse *, cholmod_common *) ;

Purpose: Identical to cholmod row subtree, except the elimination tree is found from L itself,
not Parent. Also, F=A’ is not provided; the nonzero pattern of the kth column of F is given by Fi

and fnz instead.

19.17 cholmod resymbol: re-do symbolic factorization

int cholmod_resymbol

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to analyze */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int pack, /* if TRUE, pack the columns of L */

/* ---- in/out --- */

cholmod_factor *L, /* factorization, entries pruned on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_resymbol (cholmod_sparse *, SuiteSparse_long *, size_t, int,

cholmod_factor *, cholmod_common *) ;

Purpose: Recompute the symbolic pattern of L. Entries not in the symbolic pattern of the
factorization of A(p,p) or F*F’, where F=A(p,f) or F=A(:,f), are dropped, where p = L->Perm

is used to permute the input matrix A.
Refer to cholmod transpose unsym for a description of f.
If an entry in L is kept, its numerical value does not change.
This routine is used after a supernodal factorization is converted into a simplicial one, to remove

zero entries that were added due to relaxed supernode amalgamation. It can also be used after a
series of downdates to remove entries that would no longer be present if the matrix were factorized
from scratch. A downdate (cholmod updown) does not remove any entries from L.

19.18 cholmod resymbol noperm: re-do symbolic factorization

int cholmod_resymbol_noperm

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to analyze */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int pack, /* if TRUE, pack the columns of L */

127

/* ---- in/out --- */

cholmod_factor *L, /* factorization, entries pruned on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_resymbol_noperm (cholmod_sparse *, SuiteSparse_long *, size_t, int,

cholmod_factor *, cholmod_common *) ;

Purpose: Identical to cholmod resymbol, except that the fill-reducing ordering L->Perm is not
used.

19.19 cholmod postorder: tree postorder

SuiteSparse_long cholmod_postorder /* return # of nodes postordered */

(

/* ---- input ---- */

int *Parent, /* size n. Parent [j] = p if p is the parent of j */

size_t n,

int *Weight_p, /* size n, optional. Weight [j] is weight of node j */

/* ---- output --- */

int *Post, /* size n. Post [k] = j is kth in postordered tree */

/* --------------- */

cholmod_common *Common

) ;

SuiteSparse_long cholmod_l_postorder (SuiteSparse_long *, size_t,

SuiteSparse_long *, SuiteSparse_long *, cholmod_common *) ;

Purpose: Postorder a tree. The tree is either an elimination tree (the output from cholmod etree)
or a component tree (from cholmod nested dissection).

An elimination tree is a complete tree of n nodes with Parent [j] > j or Parent [j] = -1 if
j is a root. On output Post [0..n-1] is a complete permutation vector; Post [k] = j if node j

is the kth node in the postordered elimination tree, where k is in the range 0 to n-1.
A component tree is a subset of 0:n-1. Parent [j] = -2 if node j is not in the component

tree. Parent [j] = -1 if j is a root of the component tree, and Parent [j] is in the range 0 to
n-1 if j is in the component tree but not a root. On output, Post [k] is defined only for nodes in
the component tree. Post [k] = j if node j is the kth node in the postordered component tree,
where k is in the range 0 to the number of components minus 1. Node j is ignored and not included
in the postorder if Parent [j] < -1. As a result, cholmod check parent (Parent, ...) and
cholmod check perm (Post, ...) fail if used for a component tree and its postordering.

An optional node weight can be given. When starting a postorder at node j, the children of
j are ordered in decreasing order of their weight. If no weights are given (Weight is NULL) then
children are ordered in decreasing order of their node number. The weight of a node must be in
the range 0 to n-1. Weights outside that range are silently converted to that range (weights < 0
are treated as zero, and weights ≥ n are treated as n-1).

128

19.20 cholmod rcond: reciprocal condition number

double cholmod_rcond /* return min(diag(L)) / max(diag(L)) */

(

/* ---- input ---- */

cholmod_factor *L,

/* --------------- */

cholmod_common *Common

) ;

double cholmod_l_rcond (cholmod_factor *, cholmod_common *) ;

Purpose: Returns a rough estimate of the reciprocal of the condition number: the minimum entry
on the diagonal of L (or absolute entry of D for an LDLT factorization) divided by the maximum
entry. L can be real, complex, or zomplex. Returns -1 on error, 0 if the matrix is singular or has a
zero or NaN entry on the diagonal of L, 1 if the matrix is 0-by-0, or min(diag(L))/max(diag(L))
otherwise. Never returns NaN; if L has a NaN on the diagonal it returns zero instead.

129

20 Modify Module routines

20.1 cholmod updown: update/downdate

int cholmod_updown

(

/* ---- input ---- */

int update, /* TRUE for update, FALSE for downdate */

cholmod_sparse *C, /* the incoming sparse update */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_updown (int, cholmod_sparse *, cholmod_factor *,

cholmod_common *) ;

Purpose: Updates/downdates the LDLT factorization (symbolic, then numeric), by computing
a new factorization of

LDL
T
= LDLT ±CCT

where L denotes the new factor. C must be sorted. It can be either packed or unpacked. As in
all CHOLMOD routines, the columns of L are sorted on input, and also on output. If L does not
contain a simplicial numeric LDLT factorization, it is converted into one. Thus, a supernodal LLT

factorization can be passed to cholmod updown. A symbolic L is converted into a numeric identity
matrix. If the initial conversion fails, the factor is returned unchanged.

If memory runs out during the update, the factor is returned as a simplicial symbolic factor.
That is, everything is freed except for the fill-reducing ordering and its corresponding column counts
(typically computed by cholmod analyze).

Note that the fill-reducing permutation L->Perm is not used. The row indices of C refer to the
rows of L, not A. If your original system is LDLT = PAPT (where P = L->Perm), and you want
to compute the LDLT factorization of A+CCT, then you must permute C first. That is, if

PAPT = LDLT

is the initial factorization, then

P(A+CCT)PT = PAPT +PCCTPT = LDLT + (PC)(PC)T = LDLT +CC
T

where C = PC.
You can use the cholmod submatrix routine in the MatrixOps Module to permute C, with:

Cnew = cholmod_submatrix (C, L->Perm, L->n, NULL, -1, TRUE, TRUE, Common) ;

Note that the sorted input parameter to cholmod submatrixmust be TRUE, because cholmod updown

requires C with sorted columns. Only real matrices are supported. The algorithms are described
in [8, 9].

130

20.2 cholmod updown solve: update/downdate

int cholmod_updown_solve

(

/* ---- input ---- */

int update, /* TRUE for update, FALSE for downdate */

cholmod_sparse *C, /* the incoming sparse update */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_updown_solve (int, cholmod_sparse *, cholmod_factor *,

cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Identical to cholmod updown, except the system Lx = b is also updated/downdated.
The new system is Lx = b + ∆b. The old solution x is overwritten with x. Note that as in the
update/downdate of L itself, the fill- reducing permutation L->Perm is not used. The vectors x and
b are in the permuted ordering, not your original ordering. This routine does not handle multiple
right-hand-sides.

20.3 cholmod updown mark: update/downdate

int cholmod_updown_mark

(

/* ---- input ---- */

int update, /* TRUE for update, FALSE for downdate */

cholmod_sparse *C, /* the incoming sparse update */

int *colmark, /* int array of size n. See cholmod_updown.c */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_updown_mark (int, cholmod_sparse *, SuiteSparse_long *,

cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Identical to cholmod updown solve, except that only part of L is used in the update of
the solution to Lx = b. For more details, see the source code file CHOLMOD/Modify/cholmod updown.c.
This routine is meant for use in the LPDASA linear program solver only, by Hager and Davis.

20.4 cholmod updown mask: update/downdate

131

int cholmod_updown_mask

(

/* ---- input ---- */

int update, /* TRUE for update, FALSE for downdate */

cholmod_sparse *C, /* the incoming sparse update */

int *colmark, /* int array of size n. See cholmod_updown.c */

int *mask, /* size n */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_updown_mask (int, cholmod_sparse *, SuiteSparse_long *,

SuiteSparse_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *,

cholmod_common *) ;

int cholmod_updown_mask2

(

/* ---- input ---- */

int update, /* TRUE for update, FALSE for downdate */

cholmod_sparse *C, /* the incoming sparse update */

int *colmark, /* int array of size n. See cholmod_updown.c */

int *mask, /* size n */

int maskmark,

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_updown_mask2 (int, cholmod_sparse *, SuiteSparse_long *,

SuiteSparse_long *, SuiteSparse_long, cholmod_factor *, cholmod_dense *,

cholmod_dense *, cholmod_common *) ;

Purpose: For use in LPDASA only.

20.5 cholmod rowadd: add row to factor

int cholmod_rowadd

(

/* ---- input ---- */

size_t k, /* row/column index to add */

cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowadd (size_t, cholmod_sparse *, cholmod_factor *,

132

cholmod_common *) ;

Purpose: Adds a row and column to an LDLT factorization. The kth row and column of L
must be equal to the kth row and column of the identity matrix on input. Only real matrices are
supported. The algorithm is described in [10].

20.6 cholmod rowadd solve: add row to factor

int cholmod_rowadd_solve

(

/* ---- input ---- */

size_t k, /* row/column index to add */

cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */

double bk [2], /* kth entry of the right-hand-side b */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowadd_solve (size_t, cholmod_sparse *, double *,

cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Identical to cholmod rowadd, except the system Lx = b is also updated/downdated,
just like cholmod updown solve.

20.7 cholmod rowdel: delete row from factor

int cholmod_rowdel

(

/* ---- input ---- */

size_t k, /* row/column index to delete */

cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowdel (size_t, cholmod_sparse *, cholmod_factor *,

cholmod_common *) ;

Purpose: Deletes a row and column from an LDLT factorization. The kth row and column of
L is equal to the kth row and column of the identity matrix on output. Only real matrices are
supported.

133

20.8 cholmod rowdel solve: delete row from factor

int cholmod_rowdel_solve

(

/* ---- input ---- */

size_t k, /* row/column index to delete */

cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */

double yk [2], /* kth entry in the solution to A*y=b */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowdel_solve (size_t, cholmod_sparse *, double *,

cholmod_factor *, cholmod_dense *, cholmod_dense *, cholmod_common *) ;

Purpose: Identical to cholmod rowdel, except the system Lx = b is also updated/downdated,
just like cholmod updown solve. When row/column k of A is deleted from the system Ay = b,
this can induce a change to x, in addition to changes arising when L and b are modified. If this is
the case, the kth entry of y is required as input (yk). The algorithm is described in [10].

20.9 cholmod rowadd mark: add row to factor

int cholmod_rowadd_mark

(

/* ---- input ---- */

size_t k, /* row/column index to add */

cholmod_sparse *R, /* row/column of matrix to factorize (n-by-1) */

double bk [2], /* kth entry of the right hand side, b */

int *colmark, /* int array of size n. See cholmod_updown.c */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowadd_mark (size_t, cholmod_sparse *, double *,

SuiteSparse_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *,

cholmod_common *) ;

Purpose: Identical to cholmod rowadd solve, except that only part of L is used in the update of
the solution to Lx = b. For more details, see the source code file CHOLMOD/Modify/cholmod rowadd.c.
This routine is meant for use in the LPDASA linear program solver only.

134

20.10 cholmod rowdel mark: delete row from factor

int cholmod_rowdel_mark

(

/* ---- input ---- */

size_t k, /* row/column index to delete */

cholmod_sparse *R, /* NULL, or the nonzero pattern of kth row of L */

double yk [2], /* kth entry in the solution to A*y=b */

int *colmark, /* int array of size n. See cholmod_updown.c */

/* ---- in/out --- */

cholmod_factor *L, /* factor to modify */

cholmod_dense *X, /* solution to Lx=b (size n-by-1) */

cholmod_dense *DeltaB, /* change in b, zero on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_rowdel_mark (size_t, cholmod_sparse *, double *,

SuiteSparse_long *, cholmod_factor *, cholmod_dense *, cholmod_dense *,

cholmod_common *) ;

Purpose: Identical to cholmod rowadd solve, except that only part of L is used in the update of
the solution to Lx = b. For more details, see the source code file CHOLMOD/Modify/cholmod rowdel.c.
This routine is meant for use in the LPDASA linear program solver only.

135

21 MatrixOps Module routines

21.1 cholmod drop: drop small entries

int cholmod_drop

(

/* ---- input ---- */

double tol, /* keep entries with absolute value > tol */

/* ---- in/out --- */

cholmod_sparse *A, /* matrix to drop entries from */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_drop (double, cholmod_sparse *, cholmod_common *) ;

Purpose: Drop small entries from A, and entries in the ignored part of A if A is symmetric. No
CHOLMOD routine drops small numerical entries from a matrix, except for this one. NaN’s and
Inf’s are kept.

Supports pattern and real matrices; complex and zomplex matrices are not supported.

21.2 cholmod norm dense: dense matrix norm

double cholmod_norm_dense

(

/* ---- input ---- */

cholmod_dense *X, /* matrix to compute the norm of */

int norm, /* type of norm: 0: inf. norm, 1: 1-norm, 2: 2-norm */

/* --------------- */

cholmod_common *Common

) ;

double cholmod_l_norm_dense (cholmod_dense *, int, cholmod_common *) ;

Purpose: Returns the infinity-norm, 1-norm, or 2-norm of a dense matrix. Can compute the
2-norm only for a dense column vector. All xtypes are supported.

21.3 cholmod norm sparse: sparse matrix norm

double cholmod_norm_sparse

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to compute the norm of */

int norm, /* type of norm: 0: inf. norm, 1: 1-norm */

/* --------------- */

cholmod_common *Common

) ;

double cholmod_l_norm_sparse (cholmod_sparse *, int, cholmod_common *) ;

Purpose: Returns the infinity-norm or 1-norm of a sparse matrix. All xtypes are supported.

136

21.4 cholmod scale: scale sparse matrix

#define CHOLMOD_SCALAR 0 /* A = s*A */

#define CHOLMOD_ROW 1 /* A = diag(s)*A */

#define CHOLMOD_COL 2 /* A = A*diag(s) */

#define CHOLMOD_SYM 3 /* A = diag(s)*A*diag(s) */

int cholmod_scale

(

/* ---- input ---- */

cholmod_dense *S, /* scale factors (scalar or vector) */

int scale, /* type of scaling to compute */

/* ---- in/out --- */

cholmod_sparse *A, /* matrix to scale */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_scale (cholmod_dense *, int, cholmod_sparse *, cholmod_common *) ;

Purpose: Scales a matrix: A = diag(s)*A, A*diag(s), s*A, or diag(s)*A*diag(s).
A can be of any type (packed/unpacked, upper/lower/unsymmetric). The symmetry of A is

ignored; all entries in the matrix are modified.
If A is m-by-n unsymmetric but scaled symmetrically, the result is

A = diag (s (1:m)) * A * diag (s (1:n))

Row or column scaling of a symmetric matrix still results in a symmetric matrix, since entries
are still ignored by other routines. For example, when row-scaling a symmetric matrix where just
the upper triangular part is stored (and lower triangular entries ignored) A = diag(s)*triu(A) is
performed, where the result A is also symmetric-upper. This has the effect of modifying the implicit
lower triangular part. In MATLAB notation:

U = diag(s)*triu(A) ;

L = tril (U’,-1)

A = L + U ;

The scale parameter determines the kind of scaling to perform and the size of S:
scale operation size of S

CHOLMOD SCALAR s[0]*A 1
CHOLMOD ROW diag(s)*A nrow-by-1 or 1-by-nrow
CHOLMOD COL A*diag(s) ncol-by-1 or 1-by-ncol
CHOLMOD SYM diag(s)*A*diag(s) max(nrow,ncol)-by-1, or 1-by-max(nrow,ncol)

Only real matrices are supported.

137

21.5 cholmod sdmult: sparse-times-dense matrix

int cholmod_sdmult

(

/* ---- input ---- */

cholmod_sparse *A, /* sparse matrix to multiply */

int transpose, /* use A if 0, or A’ otherwise */

double alpha [2], /* scale factor for A */

double beta [2], /* scale factor for Y */

cholmod_dense *X, /* dense matrix to multiply */

/* ---- in/out --- */

cholmod_dense *Y, /* resulting dense matrix */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_sdmult (cholmod_sparse *, int, double *, double *,

cholmod_dense *, cholmod_dense *Y, cholmod_common *) ;

Purpose: Sparse matrix times dense matrix: Y = alpha*(A*X) + beta*Y or Y = alpha*(A’*X)

+ beta*Y, where A is sparse and X and Y are dense. When using A, X has A->ncol rows and Y has
A->nrow rows. When using A’, X has A->nrow rows and Y has A->ncol rows. If transpose = 0,
then A is used; otherwise, A’ is used (the complex conjugate transpose). The transpose parameter
is ignored if the matrix is symmetric or Hermitian. (the array transpose A.’ is not supported).
Supports real, complex, and zomplex matrices, but the xtypes of A, X, and Y must all match.

21.6 cholmod ssmult: sparse-times-sparse matrix

cholmod_sparse *cholmod_ssmult

(

/* ---- input ---- */

cholmod_sparse *A, /* left matrix to multiply */

cholmod_sparse *B, /* right matrix to multiply */

int stype, /* requested stype of C */

int values, /* TRUE: do numerical values, FALSE: pattern only */

int sorted, /* if TRUE then return C with sorted columns */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_ssmult (cholmod_sparse *, cholmod_sparse *, int, int,

int, cholmod_common *) ;

Purpose: Computes C = A*B; multiplying two sparse matrices. C is returned as packed, and
either unsorted or sorted, depending on the sorted input parameter. If C is returned sorted, then
either C = (B’*A’)’ or C = (A*B)’’ is computed, depending on the number of nonzeros in A, B,
and C. The stype of C is determined by the stype parameter. Only pattern and real matrices are
supported. Complex and zomplex matrices are supported only when the numerical values are not
computed (values is FALSE).

138

21.7 cholmod submatrix: sparse submatrix

cholmod_sparse *cholmod_submatrix

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to subreference */

int *rset, /* set of row indices, duplicates OK */

SuiteSparse_long rsize, /* size of r; rsize < 0 denotes ":" */

int *cset, /* set of column indices, duplicates OK */

SuiteSparse_long csize, /* size of c; csize < 0 denotes ":" */

int values, /* if TRUE compute the numerical values of C */

int sorted, /* if TRUE then return C with sorted columns */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_submatrix (cholmod_sparse *, SuiteSparse_long *,

SuiteSparse_long, SuiteSparse_long *, SuiteSparse_long, int, int,

cholmod_common *) ;

Purpose: Returns C = A (rset,cset), where C becomes length(rset)-by-length(cset) in
dimension. rset and cset can have duplicate entries. A must be unsymmetric. C unsymmetric and
is packed. If sorted is TRUE on input, or rset is sorted and A is sorted, then C is sorted; otherwise
C is unsorted.

If rset is NULL, it means “[]” in MATLAB notation, the empty set. The number of rows
in the result C will be zero if rset is NULL. Likewise if cset means the empty set; the number of
columns in the result C will be zero if cset is NULL. If rsize or csize is negative, it denotes “:”
in MATLAB notation. Thus, if both rsize and csize are negative C = A(:,:) = A is returned.

For permuting a matrix, this routine is an alternative to cholmod ptranspose (which permutes
and transposes a matrix and can work on symmetric matrices).

The time taken by this routine is O(A->nrow) if the Common workspace needs to be initialized,
plus O(C->nrow + C->ncol + nnz (A (:,cset))). Thus, if C is small and the workspace is not
initialized, the time can be dominated by the call to cholmod allocate work. However, once the
workspace is allocated, subsequent calls take less time.

Only pattern and real matrices are supported. Complex and zomplex matrices are supported
only when values is FALSE.

139

21.8 cholmod horzcat: horizontal concatenation

cholmod_sparse *cholmod_horzcat

(

/* ---- input ---- */

cholmod_sparse *A, /* left matrix to concatenate */

cholmod_sparse *B, /* right matrix to concatenate */

int values, /* if TRUE compute the numerical values of C */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_horzcat (cholmod_sparse *, cholmod_sparse *, int,

cholmod_common *) ;

Purpose: Horizontal concatenation, returns C = [A,B] in MATLAB notation. A and B can have
any stype. C is returned unsymmetric and packed. A and B must have the same number of rows. C
is sorted if both A and B are sorted. A and B must have the same numeric xtype, unless values is
FALSE. A and B cannot be complex or zomplex, unless values is FALSE.

21.9 cholmod vertcat: vertical concatenation

cholmod_sparse *cholmod_vertcat

(

/* ---- input ---- */

cholmod_sparse *A, /* left matrix to concatenate */

cholmod_sparse *B, /* right matrix to concatenate */

int values, /* if TRUE compute the numerical values of C */

/* --------------- */

cholmod_common *Common

) ;

cholmod_sparse *cholmod_l_vertcat (cholmod_sparse *, cholmod_sparse *, int,

cholmod_common *) ;

Purpose: Vertical concatenation, returns C = [A;B] in MATLAB notation. A and B can have
any stype. C is returned unsymmetric and packed. A and B must have the same number of columns.
C is sorted if both A and B are sorted. A and B must have the same numeric xtype, unless values
is FALSE. A and B cannot be complex or zomplex, unless values is FALSE.

140

21.10 cholmod symmetry: compute the symmetry of a matrix

int cholmod_symmetry

(

/* ---- input ---- */

cholmod_sparse *A,

int option,

/* ---- output ---- */

int *xmatched,

int *pmatched,

int *nzoffdiag,

int *nzdiag,

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_symmetry (cholmod_sparse *, int, SuiteSparse_long *,

SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,

cholmod_common *) ;

Purpose:
Determines if a sparse matrix is rectangular, unsymmetric, symmetric, skew-symmetric, or

Hermitian. It does so by looking at its numerical values of both upper and lower triangular parts
of a CHOLMOD ”unsymmetric” matrix, where A-¿stype == 0. The transpose of A is NOT
constructed.

If not unsymmetric, it also determines if the matrix has a diagonal whose entries are all real
and positive (and thus a candidate for sparse Cholesky if A-¿stype is changed to a nonzero value).

Note that a Matrix Market ”general” matrix is either rectangular or unsymmetric.
The row indices in the column of each matrix MUST be sorted for this function to work properly

(A-¿sorted must be TRUE). This routine returns EMPTY if A-¿stype is not zero, or if A-¿sorted
is FALSE. The exception to this rule is if A is rectangular.

If option == 0, then this routine returns immediately when it finds a non-positive diagonal
entry (or one with nonzero imaginary part). If the matrix is not a candidate for sparse Cholesky,
it returns the value CHOLMOD MM UNSYMMETRIC, even if the matrix might in fact be symmetric or
Hermitian.

This routine is useful inside the MATLAB backslash, which must look at an arbitrary matrix
(A-¿stype == 0) and determine if it is a candidate for sparse Cholesky. In that case, option should
be 0.

This routine is also useful when writing a MATLAB matrix to a file in Rutherford/Boeing or
Matrix Market format. Those formats require a determination as to the symmetry of the matrix,
and thus this routine should not return upon encountering the first non-positive diagonal. In this
case, option should be 1.

If option is 2, this function can be used to compute the numerical and pattern symmetry, where
0 is a completely unsymmetric matrix, and 1 is a perfectly symmetric matrix. This option is used
when computing the following statistics for the matrices in the UF Sparse Matrix Collection.

numerical symmetry: number of matched off-diagonal nonzeros over the total number of off-
diagonal entries. A real entry aij , i ̸= j, is matched if aji = aij , but this is only counted if both aji

141

and aij are nonzero. This does not depend on Z. (If A is complex, then the above test is modified;
aij is matched if conj(aji) = aij .

Then numeric symmetry = xmatched / nzoffdiag, or 1 if nzoffdiag = 0.
pattern symmetry: number of matched offdiagonal entries over the total number of offdiagonal

entries. An entry aij , i ̸= j, is matched if aji is also an entry.
Then pattern symmetry = pmatched / nzoffdiag, or 1 if nzoffdiag = 0.
The symmetry of a matrix with no offdiagonal entries is equal to 1.
A workspace of size ncol integers is allocated; EMPTY is returned if this allocation fails.
Summary of return values:
EMPTY (-1) out of memory, stype not zero, A not sorted
CHOLMOD MM RECTANGULAR 1 A is rectangular
CHOLMOD MM UNSYMMETRIC 2 A is unsymmetric
CHOLMOD MM SYMMETRIC 3 A is symmetric, but with non-pos. diagonal
CHOLMOD MM HERMITIAN 4 A is Hermitian, but with non-pos. diagonal
CHOLMOD MM SKEW SYMMETRIC 5 A is skew symmetric
CHOLMOD MM SYMMETRIC POSDIAG 6 A is symmetric with positive diagonal
CHOLMOD MM HERMITIAN POSDIAG 7 A is Hermitian with positive diagonal

See also the spsym mexFunction, which is a MATLAB interface for this code.
If the matrix is a candidate for sparse Cholesky, it will return a result

CHOLMOD MM SYMMETRIC POSDIAG if real, or CHOLMOD MM HERMITIAN POSDIAG if complex. Otherwise,
it will return a value less than this. This is true regardless of the value of the option parameter.

142

22 Supernodal Module routines

22.1 cholmod super symbolic: supernodal symbolic factorization

int cholmod_super_symbolic

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to analyze */

cholmod_sparse *F, /* F = A’ or A(:,f)’ */

int *Parent, /* elimination tree */

/* ---- in/out --- */

cholmod_factor *L, /* simplicial symbolic on input,

* supernodal symbolic on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_super_symbolic (cholmod_sparse *, cholmod_sparse *,

SuiteSparse_long *, cholmod_factor *, cholmod_common *) ;

int cholmod_super_symbolic2

(

/* ---- input ---- */

int for_whom, /* FOR_SPQR (0): for SPQR but not GPU-accelerated

FOR_CHOLESKY (1): for Cholesky (GPU or not)

FOR_SPQRGPU (2): for SPQR with GPU acceleration */

cholmod_sparse *A, /* matrix to analyze */

cholmod_sparse *F, /* F = A’ or A(:,f)’ */

int *Parent, /* elimination tree */

/* ---- in/out --- */

cholmod_factor *L, /* simplicial symbolic on input,

* supernodal symbolic on output */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_super_symbolic2 (int, cholmod_sparse *, cholmod_sparse *,

SuiteSparse_long *, cholmod_factor *, cholmod_common *) ;

Purpose: Supernodal symbolic analysis of the LLT factorization of A, A*A’, or A(:,f)*A(:,f)’.
This routine must be preceded by a simplicial symbolic analysis (cholmod rowcolcounts). See
Cholesky/cholmod analyze.c for an example of how to use this routine. The user need not call
this directly; cholmod analyze is a “simple” wrapper for this routine. A can be symmetric (upper),
or unsymmetric. The symmetric/lower form is not supported. In the unsymmetric case F is the
normally transpose of A. Alternatively, if F=A(:,f)’ then F*F’ is analyzed. Requires Parent and
L->ColCount to be defined on input; these are the simplicial Parent and ColCount arrays as
computed by cholmod rowcolcounts. Does not use L->Perm; the input matrices A and F must
already be properly permuted. Allocates and computes the supernodal pattern of L (L->super,
L->pi, L->px, and L->s). Does not allocate the real part (L->x).

143

22.2 cholmod super numeric: supernodal numeric factorization

int cholmod_super_numeric

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to factorize */

cholmod_sparse *F, /* F = A’ or A(:,f)’ */

double beta [2], /* beta*I is added to diagonal of matrix to factorize */

/* ---- in/out --- */

cholmod_factor *L, /* factorization */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_super_numeric (cholmod_sparse *, cholmod_sparse *, double *,

cholmod_factor *, cholmod_common *) ;

Purpose: Computes the numerical Cholesky factorization of A+beta*I or A*F+beta*I. Only the
lower triangular part of A+beta*I or A*F+beta*I is accessed. The matrices A and F must already be
permuted according to the fill-reduction permutation L->Perm. cholmod factorize is an ”easy”
wrapper for this code which applies that permutation. The input scalar beta is real; only the real
part (beta[0] is used.

Symmetric case: A is a symmetric (lower) matrix. F is not accessed and may be NULL. With a
fill-reducing permutation, A(p,p) should be passed for A, where is p is L->Perm.

Unsymmetric case: A is unsymmetric, and F must be present. Normally, F=A’. With a fill-
reducing permutation, A(p,f) and A(p,f)’ should be passed as the parameters A and F, respec-
tively, where f is a list of the subset of the columns of A.

The input factorization Lmust be supernodal (L->is super is TRUE). It can either be symbolic or
numeric. In the first case, L has been analyzed by cholmod analyze or cholmod super symbolic,
but the matrix has not yet been numerically factorized. The numerical values are allocated here and
the factorization is computed. In the second case, a prior matrix has been analyzed and numerically
factorized, and a new matrix is being factorized. The numerical values of L are replaced with the
new numerical factorization.

L->is ll is ignored on input, and set to TRUE on output. This routine always computes an
LLT factorization. Supernodal LDLT factorization is not supported.

If the matrix is not positive definite the routine returns TRUE, but sets Common->status to
CHOLMOD NOT POSDEF and L->minor is set to the column at which the failure occurred. Columns
L->minor to L->n-1 are set to zero.

If L is supernodal symbolic on input, it is converted to a supernodal numeric factor on output,
with an xtype of real if A is real, or complex if A is complex or zomplex. If L is supernodal numeric
on input, its xtype must match A (except that L can be complex and A zomplex). The xtype of A
and F must match.

144

22.3 cholmod super lsolve: supernodal forward solve

int cholmod_super_lsolve

(

/* ---- input ---- */

cholmod_factor *L, /* factor to use for the forward solve */

/* ---- output ---- */

cholmod_dense *X, /* b on input, solution to Lx=b on output */

/* ---- workspace */

cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_super_lsolve (cholmod_factor *, cholmod_dense *, cholmod_dense *,

cholmod_common *) ;

Purpose: Solve Lx = b for a supernodal factorization. This routine does not apply the permuta-
tion L->Perm. See cholmod solve for a more general interface that performs that operation. Only
real and complex xtypes are supported. L, X, and E must have the same xtype.

22.4 cholmod super ltsolve: supernodal backsolve

int cholmod_super_ltsolve

(

/* ---- input ---- */

cholmod_factor *L, /* factor to use for the backsolve */

/* ---- output ---- */

cholmod_dense *X, /* b on input, solution to L’x=b on output */

/* ---- workspace */

cholmod_dense *E, /* workspace of size nrhs*(L->maxesize) */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_super_ltsolve (cholmod_factor *, cholmod_dense *, cholmod_dense *,

cholmod_common *) ;

Purpose: Solve LTx = b for a supernodal factorization. This routine does not apply the per-
mutation L->Perm. See cholmod solve for a more general interface that performs that operation.
Only real and complex xtypes are supported. L, X, and E must have the same xtype.

145

23 Partition Module routines

23.1 cholmod nested dissection: nested dissection ordering

SuiteSparse_long cholmod_nested_dissection /* returns # of components */

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to order */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

/* ---- output --- */

int *Perm, /* size A->nrow, output permutation */

int *CParent, /* size A->nrow. On output, CParent [c] is the parent

* of component c, or EMPTY if c is a root, and where

* c is in the range 0 to # of components minus 1 */

int *Cmember, /* size A->nrow. Cmember [j] = c if node j of A is

* in component c */

/* --------------- */

cholmod_common *Common

) ;

SuiteSparse_long cholmod_l_nested_dissection (cholmod_sparse *,

SuiteSparse_long *, size_t, SuiteSparse_long *, SuiteSparse_long *,

SuiteSparse_long *, cholmod_common *) ;

Purpose: CHOLMOD’s nested dissection algorithm: using its own compression and connected-
components algorithms, an external graph partitioner (METIS), and a constrained minimum degree
ordering algorithm (CAMD, CCOLAMD, or CSYMAMD). Typically gives better orderings than
METIS NodeND (about 5% to 10% fewer nonzeros in L).

This method uses a node bisector, applied recursively (but using a non-recursive implemen-
tation). Once the graph is partitioned, it calls a constrained minimum degree code (CAMD or
CSYMAMD for A+A’, and CCOLAMD for A*A’) to order all the nodes in the graph - but obeying
the constraints determined by the separators. This routine is similar to METIS NodeND, except for
how it treats the leaf nodes. METIS NodeND orders the leaves of the separator tree with MMD, ignor-
ing the rest of the matrix when ordering a single leaf. This routine orders the whole matrix with
CAMD, CSYMAMD, or CCOLAMD, all at once, when the graph partitioning is done.

146

23.2 cholmod metis: interface to METIS nested dissection

int cholmod_metis

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to order */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int postorder, /* if TRUE, follow with etree or coletree postorder */

/* ---- output --- */

int *Perm, /* size A->nrow, output permutation */

/* --------------- */

cholmod_common *Common

) ;

int cholmod_l_metis (cholmod_sparse *, SuiteSparse_long *, size_t, int,

SuiteSparse_long *, cholmod_common *) ;

Purpose: CHOLMOD wrapper for the METIS NodeND ordering routine. Creates A+A’, A*A’ or
A(:,f)*A(:,f)’ and then calls METIS NodeND on the resulting graph. This routine is comparable
to cholmod nested dissection, except that it calls METIS NodeND directly, and it does not return
the separator tree.

147

23.3 cholmod camd: interface to CAMD

Purpose: CHOLMOD interface to the CAMD ordering routine. Finds a permutation p such
that the Cholesky factorization of A(p,p) is sparser than A. If A is unsymmetric, A*A’ is ordered.
If Cmember[i]=c then node i is in set c. All nodes in set 0 are ordered first, followed by all nodes
in set 1, and so on.

148

23.4 cholmod ccolamd: interface to CCOLAMD

Purpose: CHOLMOD interface to the CCOLAMD ordering routine. Finds a permutation p such
that the Cholesky factorization of A(p,:)*A(p,:)’ is sparser than A*A’. The column elimination
is found and postordered, and the CCOLAMD ordering is then combined with its postordering. A
must be unsymmetric. If Cmember[i]=c then node i is in set c. All nodes in set 0 are ordered first,
followed by all nodes in set 1, and so on.

23.5 cholmod csymamd: interface to CSYMAMD

Purpose: CHOLMOD interface to the CSYMAMD ordering routine. Finds a permutation p

such that the Cholesky factorization of A(p,p) is sparser than A. The elimination tree is found
and postordered, and the CSYMAMD ordering is then combined with its postordering. If A is
unsymmetric, A+A’ is ordered (A must be square). If Cmember[i]=c then node i is in set c. All
nodes in set 0 are ordered first, followed by all nodes in set 1, and so on.

149

23.6 cholmod bisect: graph bisector

SuiteSparse_long cholmod_bisect /* returns # of nodes in separator */

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to bisect */

int *fset, /* subset of 0:(A->ncol)-1 */

size_t fsize, /* size of fset */

int compress, /* if TRUE, compress the graph first */

/* ---- output --- */

int *Partition, /* size A->nrow. Node i is in the left graph if

* Partition [i] = 0, the right graph if 1, and in the

* separator if 2. */

/* --------------- */

cholmod_common *Common

) ;

SuiteSparse_long cholmod_l_bisect (cholmod_sparse *, SuiteSparse_long *,

size_t, int, SuiteSparse_long *, cholmod_common *) ;

Purpose: Finds a node bisector of A, A*A’, A(:,f)*A(:,f)’: a set of nodes that partitions the
graph into two parts. Compresses the graph first, ensures the graph is symmetric with no diagonal
entries, and then calls METIS.

23.7 cholmod metis bisector: interface to METIS node bisector

SuiteSparse_long cholmod_metis_bisector /* returns separator size */

(

/* ---- input ---- */

cholmod_sparse *A, /* matrix to bisect */

int *Anw, /* size A->nrow, node weights, can be NULL, */

/* which means the graph is unweighted. */

int *Aew, /* size nz, edge weights (silently ignored). */

/* This option was available with METIS 4, but not */

/* in METIS 5. This argument is now unused, but */

/* it remains for backward compatibilty, so as not */

/* to change the API for cholmod_metis_bisector. */

/* ---- output --- */

int *Partition, /* size A->nrow */

/* --------------- */

cholmod_common *Common

) ;

SuiteSparse_long cholmod_l_metis_bisector (cholmod_sparse *,

SuiteSparse_long *, SuiteSparse_long *, SuiteSparse_long *,

cholmod_common *) ;

Purpose: Finds a set of nodes that bisects the graph of A or A*A’ (a direct interface to
METIS NodeComputeSeparator).

The input matrix A must be square, symmetric (with both upper and lower parts present) and
with no diagonal entries. These conditions are not checked. Use cholmod bisect to check these
conditions.

150

23.8 cholmod collapse septree: prune a separator tree

SuiteSparse_long cholmod_collapse_septree

(

/* ---- input ---- */

size_t n, /* # of nodes in the graph */

size_t ncomponents, /* # of nodes in the separator tree (must be <= n) */

double nd_oksep, /* collapse if #sep >= nd_oksep * #nodes in subtree */

size_t nd_small, /* collapse if #nodes in subtree < nd_small */

/* ---- in/out --- */

int *CParent, /* size ncomponents; from cholmod_nested_dissection */

int *Cmember, /* size n; from cholmod_nested_dissection */

/* --------------- */

cholmod_common *Common

) ;

SuiteSparse_long cholmod_l_collapse_septree (size_t, size_t, double, size_t,

SuiteSparse_long *, SuiteSparse_long *, cholmod_common *) ;

Purpose: Prunes a separator tree obtained from cholmod nested dissection.

151

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algo-
rithm. SIAM J. Matrix Anal. Applic., 17(4):886–905, 1996.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30(3):381–388, 2004.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenny, and D. Sorensen. LAPACK Users’ Guide, 3rd ed. SIAM,
1999.

[4] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 8xx: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw.,
submitted in 2006.

[5] T. A. Davis. Algorithm 849: A concise sparse Cholesky algorithm. ACM Trans. Math. Softw.,
31(4):587–591, 2005.

[6] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836: COLAMD, a column
approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):377–380,
2004.

[7] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30(3):353–376, 2004.

[8] T. A. Davis and W. W. Hager. Modifying a sparse Cholesky factorization. SIAM J. Matrix
Anal. Applic., 20(3):606–627, 1999.

[9] T. A. Davis and W. W. Hager. Multiple-rank modifications of a sparse Cholesky factorization.
SIAM J. Matrix Anal. Applic., 22(4):997–1013, 2001.

[10] T. A. Davis and W. W. Hager. Row modifications of a sparse Cholesky factorization. SIAM
J. Matrix Anal. Applic., 26(3):621–639, 2005.

[11] T. A. Davis and W. W. Hager. Dynamic supernodes in sparse Cholesky update/downdate and
triangular solves. ACM Trans. Math. Softw., submitted in 2006.

[12] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level-3 basic linear algebra
subprograms. ACM Trans. Math. Softw., 16(1):1–17, 1990.

[13] J. R. Gilbert, X. S. Li, E. G. Ng, and B. W. Peyton. Computing row and column counts for
sparse QR and LU factorization. BIT, 41(4):693–710, 2001.

[14] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and imple-
mentation. SIAM J. Matrix Anal. Applic., 13(1):333–356, 1992.

[15] J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to compute row and column
counts for sparse Cholesky factorization. SIAM J. Matrix Anal. Applic., 15(4):1075–1091,
1994.

152

[16] N. I. M. Gould, Y. Hu, and J. A. Scott. Complete results from a numerical evaluation of sparse
direct solvers for the solution of large sparse, symmetric linear systems of equations. Technical
Report Internal report 2005-1 (revision 1), CCLRC, Rutherford Appleton Laboratory, 2005.

[17] N. I. M. Gould, Y. Hu, and J. A. Scott. A numerical evaluation of sparse direct solvers for the
solution of large sparse, symmetric linear systems of equations. ACM Trans. Math. Softw., to
appear.

[18] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[19] J. W. H. Liu. A compact row storage scheme for Cholesky factors using elimination trees.
ACM Trans. Math. Softw., 12(2):127–148, 1986.

[20] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal.
Applic., 11(1):134–172, 1990.

[21] E. Ng and B. Peyton. Block sparse Cholesky algorithms on advanced uniprocessor computers.
SIAM J. Sci. Comput., 14:1034–1056, 1993.

153

