i.atcorr(1grass) GRASS GIS User's Manual i.atcorr(1grass) NAME i.atcorr - Performs atmospheric correction using the 6S algorithm. 6S - Second Simulation of Satellite Signal in the Solar Spectrum. KEYWORDS imagery, atmospheric correction, radiometric conversion, radiance, re- flectance, satellite SYNOPSIS i.atcorr i.atcorr --help i.atcorr [-irab] input=name [range=min,max] [elevation=name] [vis- ibility=name] parameters=name output=name [rescale=min,max] [--overwrite] [--help] [--verbose] [--quiet] [--ui] Flags: -i Output raster map as integer -r Input raster map converted to reflectance (default is radiance) -a Input from ETM+ image taken after July 1, 2000 -b Input from ETM+ image taken before July 1, 2000 --overwrite Allow output files to overwrite existing files --help Print usage summary --verbose Verbose module output --quiet Quiet module output --ui Force launching GUI dialog Parameters: input=name [required] Name of input raster map range=min,max Input range Default: 0,255 elevation=name Name of input elevation raster map (in m) visibility=name Name of input visibility raster map (in km) parameters=name [required] Name of input text file with 6S parameters output=name [required] Name for output raster map rescale=min,max Rescale output raster map Default: 0,255 DESCRIPTION i.atcorr performs atmospheric correction on the input raster map using the 6S algorithm (Second Simulation of Satellite Signal in the Solar Spectrum). A detailed algorithm description is available at the Land Surface Reflectance Science Computing Facility website. Important: Current region settings are ignored! The region is adjusted to cover the input raster map before the atmospheric correction is per- formed. The previous settings are restored afterwards. If the -r flag is used, the input raster map is treated as reflectance. Otherwise, the input raster map is treated as radiance values and it is converted to reflectance at the i.atcorr runtime. The output data are always reflectance. The satellite overpass time has to be specified in Greenwich Mean Time (GMT). An example of the 6S parameters could be: 8 - geometrical conditions=Landsat ETM+ 2 19 13.00 -47.410 -20.234 - month day hh.ddd longitude latitude ("hh.ddd" is in decimal hours GMT) 1 - atmospheric model=tropical 1 - aerosols model=continental 15 - visibility [km] (aerosol model concentration) -0.600 - mean target elevation above sea level [km] (here 600 m asl) -1000 - sensor height (here, sensor on board a satellite) 64 - 4th band of ETM+ Landsat 7 If the position is not available in longitude-latitude (WGS84), the m.proj conversion module can be used to reproject from a different ref- erence system. 6S CODE PARAMETER CHOICES A. Geometrical conditions Code Description Details 1 meteosat observation enter month,day,decimal hour (universal time-hh.ddd) n. of column,n. of line. (full scale 5000*2500) 2 goes east observation enter month,day,decimal hour (universal time-hh.ddd) n. of column,n. of line. (full scale 17000*12000)c 3 goes west observation enter month,day,decimal hour (universal time-hh.ddd) n. of column,n. of line. (full scale 17000*12000) 4 avhrr (PM noaa) enter month,day,decimal hour (universal time-hh.ddd) n. of column(1-2048),xlonan,hna give long.(xlonan) and overpass hour (hna) at the ascendant node at equator 5 avhrr (AM noaa) enter month,day,decimal hour (universal time-hh.ddd) n. of column(1-2048),xlonan,hna give long.(xlonan) and overpass hour (hna) at the ascendant node at equator 6 hrv (spot) enter month,day,hh.ddd,long.,lat. * 7 tm (landsat) enter month,day,hh.ddd,long.,lat. * 8 etm+ (landsat7) enter month,day,hh.ddd,long.,lat. * 9 liss (IRS 1C) enter month,day,hh.ddd,long.,lat. * 10 aster enter month,day,hh.ddd,long.,lat. * 11 avnir enter month,day,hh.ddd,long.,lat. * 12 ikonos enter month,day,hh.ddd,long.,lat. * 13 RapidEye enter month,day,hh.ddd,long.,lat. * 14 VGT1 (SPOT4) enter month,day,hh.ddd,long.,lat. * 15 VGT2 (SPOT5) enter month,day,hh.ddd,long.,lat. * 16 WorldView 2 enter month,day,hh.ddd,long.,lat. * 17 QuickBird enter month,day,hh.ddd,long.,lat. * 18 LandSat 8 enter month,day,hh.ddd,long.,lat. * 19 Geoeye 1 enter month,day,hh.ddd,long.,lat. * 20 Spot6 enter month,day,hh.ddd,long.,lat. * 21 Spot7 enter month,day,hh.ddd,long.,lat. * 22 Pleiades1A enter month,day,hh.ddd,long.,lat. * 23 Pleiades1B enter month,day,hh.ddd,long.,lat. * 24 Worldview3 enter month,day,hh.ddd,long.,lat. * 25 Sentinel-2A enter month,day,hh.ddd,long.,lat. * 26 Sentinel-2B enter month,day,hh.ddd,long.,lat. * 27 PlanetScope 0c 0d enter month,day,hh.ddd,long.,lat. * 28 PlanetScope 0e enter month,day,hh.ddd,long.,lat. * 29 PlanetScope 0f 10 enter month,day,hh.ddd,long.,lat. * 30 Worldview4 enter month,day,hh.ddd,long.,lat. * NOTE: for HRV, TM, ETM+, LISS and ASTER experiments, longitude and lat- itude are the coordinates of the scene center. Latitude must be > 0 for northern hemisphere and < 0 for southern. Longitude must be > 0 for eastern hemisphere and < 0 for western. B. Atmospheric model Code Meaning 0 no gaseous absorption 1 tropical 2 midlatitude summer 3 midlatitude winter 4 subarctic summer 5 subarctic winter 6 us standard 62 7 Define your own atmospheric model as a set of the following 5 parameters per each measurement: altitude [km] pressure [mb] temperature [k] h2o density [g/m3] o3 density [g/m3] For example: there is one radiosonde measurement for each altitude of 0-25km at a step of 1km, one measurment for each altitude of 25-50km at a step of 5km, and two single mea- surements for altitudes 70km and 100km. This makes 34 mea- surments. In that case, there are 34*5 values to input. 8 Define your own atmospheric model providing values of the water vapor and ozone content: uw [g/cm2] uo3 [cm-atm] The profile is taken from us62. C. Aerosols model Code Meaning Details 0 no aerosols 1 continental model 2 maritime model 3 urban model 4 shettle model for background desert aerosol 5 biomass burning 6 stratospheric model 7 define your own model Enter the volumic percentage of each component: c(1) = volu- mic % of dust-like c(2) = volumic % of water-soluble c(3) = volumic % of oceanic c(4) = volumic % of soot All values should be between 0 and 1. 8 define your own model Size distribution function: Multimodal Log Normal (up to 4 modes). 9 define your own model Size distribution function: Modified gamma. 10 define your own model Size distribution function: Junge Power-Law. 11 define your own model Sun-photometer measurements, 50 values max, entered as: r and d V / d (logr) where r is the radius [micron], V is the volume, d V / d (logr) [cm3/cm2/micron]. Followed by: nr and ni for each wavelength where nr and ni are respectively the real and imaginary part of the refractive index. D. Aerosol concentration model (visibility) If you have an estimate of the meteorological parameter visibility v, enter directly the value of v [km] (the aerosol optical depth (AOD) will be computed from a standard aerosol profile). If you have an estimate of aerosol optical depth, enter 0 for the visi- bility and in a following line enter the aerosol optical depth at 550nm (iaer means ’i’ for input and ’aer’ for aerosol), for example: 0 - visibility 0.112 - aerosol optical depth at 550 nm NOTE: if iaer is 0, enter -1 for visibility. NOTE: if a visibility map is provided, these parameters are ignored. E. Target altitude (xps), sensor platform (xpp) Target altitude (xps, in negative [km]): xps >= 0 means the target is at the sea level. otherwise xps expresses the altitude of the target (e.g., mean eleva- tion) in [km], given as negative value Sensor platform (xpp, in negative [km] or -1000): xpp = -1000 means that the sensor is on board a satellite. xpp = 0 means that the sensor is at the ground level. -100 < xpp < 0 defines the altitude of the sensor expressed in [km]; this altitude is given relative to the target altitude as negative value. For aircraft simulations only (xpp is neither equal to 0 nor equal to -1000): puw,po3 (water vapor content,ozone content between the aircraft and the surface) taerp (the aerosol optical thickness at 550nm between the aircraft and the surface) If these data are not available, enter negative values for all of them. puw,po3 will then be interpolated from the us62 standard profile ac- cording to the values at the ground level; taerp will be computed ac- cording to a 2 km exponential profile for aerosol. F. Sensor band There are two possibilities: either define your own spectral conditions (codes -2, -1, 0, or 1) or choose a code indicating the band of one of the pre-defined satellites. Define your own spectral conditions: Code Meaning -2 Enter wlinf, wlsup. The filter function will be equal to 1 over the whole band (as iwave=0) but step by step output will be printed. -1 Enter wl (monochr. cond, gaseous absorption is included). 0 Enter wlinf, wlsup. The filter function will be equal to 1 over the whole band. 1 Enter wlinf, wlsup and user’s filter function s (lambda) by step of 0.0025 micrometer. Pre-defined satellite bands: Code Band name (peak response) 2 meteosat vis band (0.350-1.110) 3 goes east band vis (0.490-0.900) 4 goes west band vis (0.490-0.900) 5 avhrr (noaa6) band 1 (0.550-0.750) 6 avhrr (noaa6) band 2 (0.690-1.120) 7 avhrr (noaa7) band 1 (0.500-0.800) 8 avhrr (noaa7) band 2 (0.640-1.170) 9 avhrr (noaa8) band 1 (0.540-1.010) 10 avhrr (noaa8) band 2 (0.680-1.120) 11 avhrr (noaa9) band 1 (0.530-0.810) 12 avhrr (noaa9) band 1 (0.680-1.170) 13 avhrr (noaa10) band 1 (0.530-0.780) 14 avhrr (noaa10) band 2 (0.600-1.190) 15 avhrr (noaa11) band 1 (0.540-0.820) 16 avhrr (noaa11) band 2 (0.600-1.120) 17 hrv1 (spot1) band 1 (0.470-0.650) 18 hrv1 (spot1) band 2 (0.600-0.720) 19 hrv1 (spot1) band 3 (0.730-0.930) 20 hrv1 (spot1) band pan (0.470-0.790) 21 hrv2 (spot1) band 1 (0.470-0.650) 22 hrv2 (spot1) band 2 (0.590-0.730) 23 hrv2 (spot1) band 3 (0.740-0.940) 24 hrv2 (spot1) band pan (0.470-0.790) 25 tm (landsat5) band 1 (0.430-0.560) 26 tm (landsat5) band 2 (0.500-0.650) 27 tm (landsat5) band 3 (0.580-0.740) 28 tm (landsat5) band 4 (0.730-0.950) 29 tm (landsat5) band 5 (1.5025-1.890) 30 tm (landsat5) band 7 (1.950-2.410) 31 mss (landsat5) band 1 (0.475-0.640) 32 mss (landsat5) band 2 (0.580-0.750) 33 mss (landsat5) band 3 (0.655-0.855) 34 mss (landsat5) band 4 (0.785-1.100) 35 MAS (ER2) band 1 (0.5025-0.5875) 36 MAS (ER2) band 2 (0.6075-0.7000) 37 MAS (ER2) band 3 (0.8300-0.9125) 38 MAS (ER2) band 4 (0.9000-0.9975) 39 MAS (ER2) band 5 (1.8200-1.9575) 40 MAS (ER2) band 6 (2.0950-2.1925) 41 MAS (ER2) band 7 (3.5800-3.8700) 42 MODIS band 1 (0.6100-0.6850) 43 MODIS band 2 (0.8200-0.9025) 44 MODIS band 3 (0.4500-0.4825) 45 MODIS band 4 (0.5400-0.5700) 46 MODIS band 5 (1.2150-1.2700) 47 MODIS band 6 (1.6000-1.6650) 48 MODIS band 7 (2.0575-2.1825) 49 avhrr (noaa12) band 1 (0.500-1.000) 50 avhrr (noaa12) band 2 (0.650-1.120) 51 avhrr (noaa14) band 1 (0.500-1.110) 52 avhrr (noaa14) band 2 (0.680-1.100) 53 POLDER band 1 (0.4125-0.4775) 54 POLDER band 2 (non polar) (0.4100-0.5225) 55 POLDER band 3 (non polar) (0.5325-0.5950) 56 POLDER band 4 P1 (0.6300-0.7025) 57 POLDER band 5 (non polar) (0.7450-0.7800) 58 POLDER band 6 (non polar) (0.7000-0.8300) 59 POLDER band 7 P1 (0.8100-0.9200) 60 POLDER band 8 (non polar) (0.8650-0.9400) 61 etm+ (landsat7) band 1 blue (435nm - 517nm) 62 etm+ (landsat7) band 2 green (508nm - 617nm) 63 etm+ (landsat7) band 3 red (625nm - 702nm) 64 etm+ (landsat7) band 4 NIR (753nm - 910nm) 65 etm+ (landsat7) band 5 SWIR (1520nm - 1785nm) 66 etm+ (landsat7) band 7 SWIR (2028nm - 2375nm) 67 etm+ (landsat7) band 8 PAN (505nm - 917nm) 68 liss (IRC 1C) band 2 (0.502-0.620) 69 liss (IRC 1C) band 3 (0.612-0.700) 70 liss (IRC 1C) band 4 (0.752-0.880) 71 liss (IRC 1C) band 5 (1.452-1.760) 72 aster band 1 (0.480-0.645) 73 aster band 2 (0.588-0.733) 74 aster band 3N (0.723-0.913) 75 aster band 4 (1.530-1.750) 76 aster band 5 (2.103-2.285) 77 aster band 6 (2.105-2.298) 78 aster band 7 (2.200-2.393) 79 aster band 8 (2.248-2.475) 80 aster band 9 (2.295-2.538) 81 avnir band 1 (408nm - 517nm) 82 avnir band 2 (503nm - 612nm) 83 avnir band 3 (583nm - 717nm) 84 avnir band 4 (735nm - 922nm) 85 Ikonos Green band (408nm - 642nm) 86 Ikonos Red band (448nm - 715nm) 87 Ikonos NIR band (575nm - 787nm) 88 RapidEye Blue band (440nm - 512nm) 89 RapidEye Green band (515nm - 592nm) 90 RapidEye Red band (628nm - 687nm) 91 RapidEye Red edge band (685nm - 735nm) 92 RapidEye NIR band (750nm - 860nm) 93 VGT1 (SPOT4) band 0 (420nm - 497nm) 94 VGT1 (SPOT4) band 2 (603nm - 747nm) 95 VGT1 (SPOT4) band 3 (740nm - 942nm) 96 VGT1 (SPOT4) MIR band (1540nm - 1777nm) 97 VGT2 (SPOT5) band 0 (423nm - 492nm) 98 VGT2 (SPOT5) band 2 (600nm - 737nm) 99 VGT2 (SPOT5) band 3 (745nm - 945nm) 100 VGT2 (SPOT5) MIR band (1523nm - 1757nm) 101 WorldView2 Panchromatic band (448nm - 812nm) 102 WorldView2 Coastal Blue band (395nm - 457nm) 103 WorldView2 Blue band (440nm - 517nm) 104 WorldView2 Green band (503nm - 587nm) 105 WorldView2 Yellow band (583nm - 632nm) 106 WorldView2 Red band (623nm - 695nm) 107 WorldView2 Red edge band (698nm - 750nm) 108 WorldView2 NIR1 band (760nm - 905nm) 109 WorldView2 NIR2 band (853nm - 1047nm) 110 QuickBird Panchromatic band (385nm - 1060nm) 111 QuickBird Blue band (420nm - 585nm) 112 QuickBird Green band (448nm - 682nm) 113 QuickBird Red band (560nm - 747nm) 114 QuickBird NIR1 band (650nm - 935nm) 115 Landsat 8 Coastal aerosol band (433nm - 455nm) 116 Landsat 8 Blue band (448nm - 515nm) 117 Landsat 8 Green band (525nm - 595nm) 118 Landsat 8 Red band (633nm - 677nm) 119 Landsat 8 Panchromatic band (498nm - 682nm) 120 Landsat 8 NIR band (845nm - 885nm) 121 Landsat 8 Cirrus band (1355nm - 1390nm) 122 Landsat 8 SWIR1 band (1540nm - 1672nm) 123 Landsat 8 SWIR2 band (2073nm - 2322nm) 124 GeoEye 1 Panchromatic band (448nm - 812nm) 125 GeoEye 1 Blue band (443nm - 525nm) 126 GeoEye 1 Green band (503nm - 587nm) 127 GeoEye 1 Red band (653nm - 697nm) 128 GeoEye 1 NIR band (770nm - 932nm) 129 Spot6 Blue band (440nm - 532nm) 130 Spot6 Green band (515nm - 600nm) 131 Spot6 Red band (610nm - 710nm) 132 Spot6 NIR band (738nm - 897nm) 133 Spot6 Pan band (438nm - 760nm) 134 Spot7 Blue band (445nm - 532nm) 135 Spot7 Green band (525nm - 607nm) 136 Spot7 Red band (610nm - 727nm) 137 Spot7 NIR band (745nm - 902nm) 138 Spot7 Pan band (443nm - 760nm) 139 Pleiades1A Blue band (433nm - 560nm) 140 Pleiades1A Green band (500nm - 617nm) 141 Pleiades1A Red band (590nm - 722nm) 142 Pleiades1A NIR band (740nm - 945nm) 143 Pleiades1A Pan band (460nm - 845nm) 144 Pleiades1B Blue band 438nm - 560nm) 145 Pleiades1B Green band (498nm - 615nm) 146 Pleiades1B Red band (608nm - 727nm) 147 Pleiades1B NIR band (750nm - 945nm) 148 Pleiades1B Pan band (460nm - 845nm) 149 Worldview3 Pan band (445nm - 812nm) 150 Worldview3 Coastal blue band (395nm - 455nm) 151 Worldview3 Blue band (443nm - 517nm) 152 Worldview3 Green band (508nm - 587nm) 153 Worldview3 Yellow band (580nm - 630nm) 154 Worldview3 Red band (625nm - 697nm) 155 Worldview3 Red edge band (698nm - 752nm) 156 Worldview3 NIR1 band (760nm - 902nm) 157 Worldview3 NIR2 band (855nm - 1042nm) 158 Worldview3 SWIR1 band (1178nm - 1242nm) 159 Worldview3 SWIR2 band (1545nm - 1600nm) 160 Worldview3 SWIR3 band (1633nm - 1687nm) 161 Worldview3 SWIR4 band (1698nm - 1762nm) 162 Worldview3 SWIR5 band (2133nm - 2195nm) 163 Worldview3 SWIR6 band (2170nm - 2235nm) 164 Worldview3 SWIR7 band (2225nm - 2295nm) 165 Worldview3 SWIR8 band (2283nm - 2377nm) 166 Sentinel2A Coastal blue band B1 (430nm - 455nm) 167 Sentinel2A Blue band B2 (440nm - 530nm) 168 Sentinel2A Green band B3 (540nm - 580nm) 169 Sentinel2A Red band B4 (648nm - 682nm) 170 Sentinel2A Red edge band B5 (695nm - 712nm) 171 Sentinel2A Red edge band B6 (733nm - 747nm) 172 Sentinel2A Red edge band B7 (770nm - 795nm) 173 Sentinel2A NIR band B8 (775nm - 905nm) 174 Sentinel2A Red edge band B8A (850nm - 880nm) 175 Sentinel2A Water vapour band B9 (933nm - 957nm) 176 Sentinel2A SWIR Cirrus band B10 (1355nm - 1392nm) 177 Sentinel2A SWIR band B11 (1558nm - 1667nm) 178 Sentinel2A SWIR band B12 (2088nm - 2315nm) 179 Sentinel2B Coastal blue band B1 (430nm - 455nm) 180 Sentinel2B Blue band B2 (440nm - 530nm) 181 Sentinel2B Green band B3 (538nm - 580nm) 182 Sentinel2B Red band B4 (648nm - 682nm) 183 Sentinel2B Red edge band B5 (695nm - 712nm) 184 Sentinel2B Red edge band B6 (730nm - 747nm) 185 Sentinel2B Red edge band B7 (768nm - 792nm) 186 Sentinel2B NIR band B8 (778nm - 905nm) 187 Sentinel2B Red edge band B8A (850nm - 877nm) 188 Sentinel2B Water vapour band B9 (930nm - 955nm) 189 Sentinel2B SWIR Cirrus band B10 (1358nm - 1397nm) 190 Sentinel2B SWIR band B11 (1555nm - 1667nm) 191 Sentinel2B SWIR band B12 (2075nm - 2300nm) 192 PlanetScope 0c 0d Blue band B1 (440nm - 570nm) 193 PlanetScope 0c 0d Green band B2 (450nm - 690nm) 194 PlanetScope 0c 0d Red band B3 (460nm - 700nm) 195 PlanetScope 0c 0d NIR band B4 (770nm - 880nm) 196 PlanetScope 0e Blue band B1 (430nm - 700nm) 197 PlanetScope 0e Green band B2 (450nm - 700nm) 198 PlanetScope 0e Red band B3 (460nm - 700nm) 199 PlanetScope 0e NIR band B4 (760nm - 880nm) 200 PlanetScope 0f 10 Blue band B1 (450nm - 680nm) 201 PlanetScope 0f 10 Green band B2 (450nm - 680nm) 202 PlanetScope 0f 10 Red band B3 (450nm - 680nm) 203 PlanetScope 0f 10 NIR band B4 (760nm - 870nm) 204 Worldview4 Pan band (424nm - 842nm) 205 Worldview4 Blue band (416nm - 567nm) 206 Worldview4 Green band (488nm - 626nm) 207 Worldview4 Red band (639nm - 711nm) 208 Worldview4 NIR1 band (732nm - 962nm) EXAMPLES Atmospheric correction of a Sentinel-2 band This example illustrates how to perform atmospheric correction of a Sentinel-2 scene in the North Carolina location. Let’s assume that the Sentinel-2 L1C scene S2A_OPER_PRD_MSIL1C_PDMC_20161029T092602_R054_V20161028T155402_20161028T155402 was downloaded and imported with region cropping (see r.import) into the PERMANENT mapset of the North Carolina location. The computational region was set to the extent of the elevation map in the North Carolina dataset. Now, we have 13 individual bands (B01-B12) that we want to ap- ply the atmospheric correction to. The following steps are applied to each band separately. Create the parameters file for i.atcorr In the first step we create a file containing the 6S parameters for a particular scene and band. To create a 6S file, we need to obtain the following information: • geometrical conditions, • moth, day, decimal hours in GMT, decimal longitude and latitude of measurement, • atmospheric model, • aerosol model, • visibility or aerosol optical depth, • mean target elevation above sea level, • sensor height and, • sensor band. 1 Geometrical conditions For Sentinel-2A, the geometrical conditions take the value 25 and for Sentinel-2B, the geometrical conditions value is 26 (See table A). Our scene comes from the Sentinel-2A mission (the file name begins with S2A_...). 2 Day, time, longitude and latitude of measurement Day and time of the measurement are hidden in the filename (i.e., the second datum in the file name with format YYYYMMDDTHHMMSS), and are also noted in the metadata file, which is included in the downloaded scene (file with .xml extension). Our sample scene was taken on October 28th (20161028) at 15:54:02 (155402). Note that the time has to be specified in decimal hours in Greenwich Mean Time (GMT). Luckily, the time in the scene name is in GMT and we can convert it to decimal hours as follows: 15 + 54/60 + 2/3600 = 15.901. Longitude and latitude refer to the centre of the computational region (which can be smaller than the scene), and must be in WGS84 decimal co- ordinates. To obtain the coordinates of the centre, we can run: g.region -bg The longitude and latitude of the centre are stored in ll_clon and ll_clat. In our case, ll_clon=-78.691 and ll_clat=35.749. 3 Atmospheric model We can choose between various atmospheric models as defined at the be- ginning of this manual. For North Carolina, we can choose 2 - midlati- tude summer. 4 Aerosol model We can also choose between various aerosol models as defined at the be- ginning of this manual. For North Carolina, we can choose 1 - continen- tal model. 5 Visibility or Aerosol Optical Depth For Sentinel-2 scenes, the visibility is not measured, and therefore we have to estimate the aerosol optical depth instead, e.g. from AERONET. With a bit of luck, you can find a station nearby your location, which measured the Aerosol Optical Depth at 500 nm at the same time as the scene was taken. In our case, on 28th October 2016, the EPA-Res_Trian- gle_Pk station measured AOD = 0.07 (approximately). 6 Mean target elevation above sea level Mean target elevation above sea level refers to the mean elevation of the computational region. You can estimate it from the digital eleva- tion model, e.g. by running: r.univar -g elevation The mean elevation is stored in mean. In our case, mean=110. In the 6S file it will be displayed in [-km], i.e., -0.110. 7 Sensor height Since the sensor is on board a satellite, the sensor height will be set to -1000. 8 Sensor band The overview of satellite bands can be found in table F (see above). For Sentinel-2A, the band numbers span from 166 to 178, and for Sen- tinel-2B, from 179 to 191. Finally, here is what the 6S file would look like for Band 02 of our scene. In order to use it in the i.atcorr module, we can save it in a text file, for example params_B02.txt. 25 10 28 15.901 -78.691 35.749 2 1 0 0.07 -0.110 -1000 167 Compute atmospheric correction In the next step we run i.atcorr for the selected band B02 of our Sen- tinel 2 scene. We have to specify the following parameters: • input = raster band to be processed, • parameters = path to 6S file created in the previous step (we could also enter the values directly), • output = name for the output corrected raster band, • range = from 1 to the QUANTIFICATION_VALUE stored in the meta- data file. It is 10000 for both Sentinel-2A and Sentinel-2B. • rescale = the output range of values for the corrected bands. This is up to the user to choose, for example: 0-255, 0-1, 1-10000. If the data is available, the following parameters can be specified as well: • elevation = raster of digital elevation model, • visibility = raster of visibility model. Finally, this is how the command would look like to apply atmospheric correction to band B02: i.atcorr input=B02 parameters=params_B02.txt output=B02.atcorr range=1,10000 rescale=0,255 elevation=elevation To apply atmospheric correction to the remaining bands, only the last line in the 6S parameters file (i.e., the sensor band) needs to be changed. The other parameters will remain the same. Figure: Sentinel-2A Band 02 with applied atmospheric correction (his- togram equalization grayscale color scheme) Atmospheric correction of a Landsat-7 band This example is also based on the North Carolina sample dataset (GMT -5 hours). First we set the computational region to the satellite map, e.g. band 4: g.region raster=lsat7_2002_40 -p It is important to verify the available metadata for the sun position which has to be defined for the atmospheric correction. An option is to check the satellite overpass time with sun position as reported in the metadata file (file copy; North Carolina sample dataset). In the case of the North Carolina sample dataset, these values have been stored for each channel and can be retrieved with: r.info lsat7_2002_40 In this case, we have: SUN_AZIMUTH = 120.8810347, SUN_ELEVATION = 64.7730999. If the sun position metadata are unavailable, we can also calculate them from the overpass time as follows (r.sunmask uses SOLPOS): r.sunmask -s elev=elevation out=dummy year=2002 month=5 day=24 hour=10 min=42 sec=7 timezone=-5 # .. reports: sun azimuth: 121.342461, sun angle above horz.(refraction corrected): 65.396652 If the overpass time is unknown, use the NASA LaRC Satellite Overpass Predictor. Convert digital numbers (DN) to radiance at top-of-atmosphere (TOA) For Landsat and ASTER, the conversion can be conveniently done with i.landsat.toar or i.aster.toar, respectively. In case of different satellites, the conversion of DN (digital number = pixel values) to radiance at top-of-atmosphere (TOA) can also be done manually, using e.g. the formula: # formula depends on satellite sensor, see respective metadata Lλ = ((LMAXλ - LMINλ)/(QCALMAX-QCALMIN)) * (QCAL-QCALMIN) + LMINλ where, • Lλ = Spectral Radiance at the sensor’s aperture in Watt/(meter squared * ster * µm), the apparent radiance as seen by the sat- ellite sensor; • QCAL = the quantized calibrated pixel value in DN; • LMINλ = the spectral radiance that is scaled to QCALMIN in watts/(meter squared * ster * µm); • LMAXλ = the spectral radiance that is scaled to QCALMAX in watts/(meter squared * ster * µm); • QCALMIN = the minimum quantized calibrated pixel value (corre- sponding to LMINλ) in DN; • QCALMAX = the maximum quantized calibrated pixel value (corre- sponding to LMAXλ) in DN=255. LMINλ and LMAXλ are the radiances related to the minimal and maximal DN value, and they are reported in the metadata file of each image. High gain or low gain is also reported in the metadata file of each satel- lite image. For Landsat ETM+, the minimal DN value (QCALMIN) is 1 (see Landsat handbook, chapter 11), and the maximal DN value (QCALMAX) is 255. QCAL is the DN value for every separate pixel in the Landsat im- age. We extract the coefficients and apply them in order to obtain the radi- ance map: CHAN=4 r.info lsat7_2002_${CHAN}0 -h | tr ’\n’ ’ ’ | sed ’s+ ++g’ | tr ’:’ ’\n’ | grep "LMIN_BAND${CHAN}\|LMAX_BAND${CHAN}" LMAX_BAND4=241.100,p016r035_7x20020524.met LMIN_BAND4=-5.100,p016r035_7x20020524.met QCALMAX_BAND4=255.0,p016r035_7x20020524.met QCALMIN_BAND4=1.0,p016r035_7x20020524.met Conversion to radiance (this calculation is done for band 4, for the other bands, the numbers will need to be replaced with their related values): r.mapcalc "lsat7_2002_40_rad = ((241.1 - (-5.1)) / (255.0 - 1.0)) * (lsat7_2002_40 - 1.0) + (-5.1)" Again, the r.mapcalc calculation is only needed when working with sat- ellite data other than Landsat or ASTER. Create the parameters file for i.atcorr The underlying 6S model is parametrized through a control file, indi- cated with the parameters option. This is a text file defining geomet- rical and atmospherical conditions of the satellite overpass. Here we create a control file icnd_lsat4.txt for band 4 (NIR), based on meta- data. For the overpass time, we need to define decimal hours: 10:42:07 NC local time = 10.70 decimal hours (decimal minutes: 42 * 100 / 60) which is 15.70 GMT. 8 - geometrical conditions=Landsat ETM+ 5 24 15.70 -78.691 35.749 - month day hh.ddd longitude latitude ("hh.ddd" is in GMT decimal hours) 2 - atmospheric model=midlatitude summer 1 - aerosols model=continental 50 - visibility [km] (aerosol model concentration) -0.110 - mean target elevation above sea level [km] -1000 - sensor on board a satellite 64 - 4th band of ETM+ Landsat 7 Finally, run the atmospheric correction (-r for reflectance input map; -a for date > July 2000): i.atcorr -r -a lsat7_2002_40_rad elevation=elevation parameters=icnd_lsat4.txt output=lsat7_2002_40_atcorr Note that the altitude value from ’icnd_lsat4.txt’ file is read at the beginning to compute the initial transform. Therefore, it is necessary to provide a value that might be the mean value of the elevation model (r.univar elevation). For the atmospheric correction per se, the eleva- tion values from the raster map are used. Note that the process is computationally intensive. Note also, that i.atcorr reports solar elevation angle above horizon rather than solar zenith angle. REMAINING DOCUMENTATION ISSUES The influence and importance of the visibility value or map should be explained, also how to obtain an estimate for either visibility or aerosol optical depth at 550nm. SEE ALSO GRASS Wiki page about Atmospheric correction i.aster.toar, i.colors.enhance, i.landsat.toar, r.info, r.mapcalc, r.univar REFERENCES • Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Mor- crette, J.J., 1997, Second simulation of the satellite signal in the solar spectrum, 6S: An overview., IEEE Trans. Geosc. and Remote Sens. 35(3):675-686. • 6S Manual: PDF1, PDF2, and PDF3 • RapidEye sensors have been provided by RapidEye AG, Germany • Barsi, J.A., Markham, B.L. and Pedelty, J.A., 2011, The opera- tional land imager: spectral response and spectral uniformity., Proc. SPIE 8153, 81530G; doi:10.1117/12.895438 AUTHORS Original version of the program for GRASS 5: Christo Zietsman, 13422863(at)sun.ac.za Code clean-up and port to GRASS 6.3, 15.12.2006: Yann Chemin, ychemin(at)gmail.com Documentation clean-up + IRS LISS sensor addition 5/2009: Markus Neteler, FEM, Italy ASTER sensor addition 7/2009: Michael Perdue, Canada AVNIR, IKONOS sensors addition 7/2010: Daniel Victoria, Anne Ghisla RapidEye sensors addition 11/2010: Peter Löwe, Anne Ghisla VGT1 and VGT2 sensors addition from 6SV-1.1 sources, addition 07/2011: Alfredo Alessandrini, Anne Ghisla Added Landsat 8 from NASA sources, addition 05/2014: Nikolaos Ves Geoeye1 addition 7/2015: Marco Vizzari Worldview3 addition 8/2016: Markus Neteler, mundialis.de, Germany Sentinel-2A addition 12/2016: Markus Neteler, mundialis.de, Germany Sentinel-2B addition 1/2018: Stefan Blumentrath, Zofie Cimburova, Norwegian Institute for Nature Re- search, NINA, Oslo, Norway Worldview4 addition 12/2018: Markus Neteler, mundialis.de, Germany SOURCE CODE Available at: i.atcorr source code (history) Accessed: unknown Main index | Imagery index | Topics index | Keywords index | Graphical index | Full index © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual GRASS 7.8.7 i.atcorr(1grass)
Generated by dwww version 1.14 on Sun Dec 29 18:13:57 CET 2024.