dwww Home | Manual pages | Find package

i.pca(1grass)               GRASS GIS User's Manual              i.pca(1grass)

NAME
       i.pca  - Principal components analysis (PCA) for image processing.

KEYWORDS
       imagery, transformation, PCA, principal components analysis

SYNOPSIS
       i.pca
       i.pca --help
       i.pca  [-nf]  input=name[,name,...]  output=basename  [rescale=min,max]
       [percent=integer]    [--overwrite]   [--help]   [--verbose]   [--quiet]
       [--ui]

   Flags:
       -n
           Normalize (center and scale) input maps
           Default: center only

       -f
           Output will be filtered input bands
           Apply inverse PCA after PCA

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name[,name,...] [required]
           Name of two or more input raster maps or imagery group

       output=basename [required]
           Name for output basename raster map(s)
           A numerical suffix will be added for each component map

       rescale=min,max
           Rescaling range for output maps
           For no rescaling use 0,0
           Default: 0,255

       percent=integer
           Cumulative percent importance for filtering
           Options: 50-99
           Default: 99

DESCRIPTION
       i.pca is an image processing program based on the algorithm provided by
       Vali (1990), that processes n (n >= 2) input raster map layers and pro-
       duces n output raster map layers containing the principal components of
       the input data in decreasing order of variance ("contrast").  The  out-
       put  raster map layers are assigned names with .1, .2, ... .n suffixes.
       The numbers used as suffix correspond to percent importance with .1 be-
       ing the scores of the principal component with the highest importance.

       The  current  geographic  region  definition  and MASK settings are re-
       spected when reading the input raster map layers. When the rescale  op-
       tion is used, the output files are rescaled to fit the min,max range.

       The  order  of  the input bands does not matter for the output maps (PC
       scores), but does matter for the vectors (loadings), since each loading
       refers to a specific input band.

       If the output is not rescaled (rescale=0,0, the output raster maps will
       be of type DCELL, otherwise the output raster  maps  will  be  of  type
       CELL.

       By  default,  the values of the input raster maps are centered for each
       map separately with x - mean. With -n, the input raster maps  are  nor-
       malized  for each map separately with (x - mean) / stddev.  Normalizing
       is highly recommended when the input raster maps have different  units,
       e.g. represent different environmental parameters.

       The  -f  flag,  together with the percent option, can be used to remove
       noise from input bands. Input bands will be recalculated from a  subset
       of  the  principal components (inverse PCA).  The subset is selected by
       using only the most important (highest eigenvalue) principal components
       which  explain  together percent percent variance observed in the input
       bands.

NOTES
       Richards (1986) gives a good example of the  application  of  principal
       components  analysis  (PCA)  to  a  time  series of LANDSAT images of a
       burned region in Australia.

       Eigenvalue and eigenvector information is stored in  the  output  maps’
       history files. View with r.info.

EXAMPLE
       PCA  calculation  using  Landsat7  imagery in the North Carolina sample
       dataset:
       g.region raster=lsat7_2002_10 -p
       i.pca in=lsat7_2002_10,lsat7_2002_20,lsat7_2002_30,lsat7_2002_40,lsat7_2002_50,lsat7_2002_70 \
           out=lsat7_2002_pca
       r.info -h lsat7_2002_pca.1
          Eigen values, (vectors), and [percent importance]:
          PC1   4334.35 ( 0.2824, 0.3342, 0.5092,-0.0087, 0.5264, 0.5217) [83.04%]
          PC2    588.31 ( 0.2541, 0.1885, 0.2923,-0.7428,-0.5110,-0.0403) [11.27%]
          PC3    239.22 ( 0.3801, 0.3819, 0.2681, 0.6238,-0.4000,-0.2980) [ 4.58%]
          PC4     32.85 ( 0.1752,-0.0191,-0.4053, 0.1593,-0.4435, 0.7632) [ 0.63%]
          PC5     20.73 (-0.6170,-0.2514, 0.6059, 0.1734,-0.3235, 0.2330) [ 0.40%]
          PC6      4.08 (-0.5475, 0.8021,-0.2282,-0.0607,-0.0208, 0.0252) [ 0.08%]
       d.mon wx0
       d.rast lsat7_2002_pca.1
       # ...
       d.rast lsat7_2002_pca.6
       In this example, the first two PCAs (PCA1  and  PCA2)  already  explain
       94.31% of the variance in the six input channels.

       Resulting PCA maps calculated from the Landsat7 imagery (NC, USA)

SEE ALSO
       Richards, John A., Remote Sensing Digital Image Analysis, Springer-Ver-
       lag, 1986.

       Vali, Ali R., Personal communication, Space Research Center, University
       of Texas, Austin, 1990.

        i.cca, g.gui.iclass, i.fft, i.ifft, m.eigensystem, r.covar, r.mapcalc

        Principal Components Analysis article (GRASS Wiki)

AUTHORS
       David Satnik, GIS Laboratory

       Major modifications for GRASS 4.1 were made by
       Olga Waupotitsch and Michael Shapiro, U.S.Army Construction Engineering
       Research Laboratory

       Rewritten for GRASS 6.x and major modifications by
       Brad Douglas

SOURCE CODE
       Available at: i.pca source code (history)

       Accessed: unknown

       Main index | Imagery index | Topics index | Keywords index |  Graphical
       index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual

GRASS 7.8.7                                                      i.pca(1grass)

Generated by dwww version 1.14 on Sun Dec 29 18:11:09 CET 2024.