MPI4PY(1) MPI for Python MPI4PY(1) NAME mpi4py - MPI for Python Author Lisandro Dalcin Contact dalcinl@gmail.com Date March 16, 2022 Abstract This document describes the MPI for Python package. MPI for Python pro- vides Python bindings for the Message Passing Interface (MPI) standard, allowing Python applications to exploit multiple processors on worksta- tions, clusters and supercomputers. This package builds on the MPI specification and provides an object oriented interface resembling the MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communication of any picklable Python object, as well as effi- cient communication of Python objects exposing the Python buffer inter- face (e.g. NumPy arrays and builtin bytes/array/memoryview objects). INTRODUCTION Over the last years, high performance computing has become an afford- able resource to many more researchers in the scientific community than ever before. The conjunction of quality open source software and com- modity hardware strongly influenced the now widespread popularity of Beowulf class clusters and cluster of workstations. Among many parallel computational models, message-passing has proven to be an effective one. This paradigm is specially suited for (but not limited to) distributed memory architectures and is used in today’s most demanding scientific and engineering application related to model- ing, simulation, design, and signal processing. However, portable mes- sage-passing parallel programming used to be a nightmare in the past because of the many incompatible options developers were faced to. Fortunately, this situation definitely changed after the MPI Forum re- leased its standard specification. High performance computing is traditionally associated with software development using compiled languages. However, in typical applications programs, only a small part of the code is time-critical enough to re- quire the efficiency of compiled languages. The rest of the code is generally related to memory management, error handling, input/output, and user interaction, and those are usually the most error prone and time-consuming lines of code to write and debug in the whole develop- ment process. Interpreted high-level languages can be really advanta- geous for this kind of tasks. For implementing general-purpose numerical computations, MATLAB [1] is the dominant interpreted programming language. In the open source side, Octave and Scilab are well known, freely distributed software packages providing compatibility with the MATLAB language. In this work, we present MPI for Python, a new package enabling applications to exploit multiple processors using standard MPI “look and feel” in Python scripts. [1] MATLAB is a registered trademark of The MathWorks, Inc. What is MPI? MPI, [mpi-using] [mpi-ref] the Message Passing Interface, is a stan- dardized and portable message-passing system designed to function on a wide variety of parallel computers. The standard defines the syntax and semantics of library routines and allows users to write portable pro- grams in the main scientific programming languages (Fortran, C, or C++). Since its release, the MPI specification [mpi-std1] [mpi-std2] has be- come the leading standard for message-passing libraries for parallel computers. Implementations are available from vendors of high-perfor- mance computers and from well known open source projects like MPICH [mpi-mpich] and Open MPI [mpi-openmpi]. What is Python? Python is a modern, easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective ap- proach to object-oriented programming with dynamic typing and dynamic binding. It supports modules and packages, which encourages program modularity and code reuse. Python’s elegant syntax, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed. It is easily extended with new functions and data types implemented in C or C++. Python is also suitable as an ex- tension language for customizable applications. Python is an ideal candidate for writing the higher-level parts of large-scale scientific applications [Hinsen97] and driving simulations in parallel architectures [Beazley97] like clusters of PC’s or SMP’s. Python codes are quickly developed, easily maintained, and can achieve a high degree of integration with other libraries written in compiled languages. Related Projects As this work started and evolved, some ideas were borrowed from well known MPI and Python related open source projects from the Internet. • OOMPI • It has no relation with Python, but is an excellent object oriented approach to MPI. • It is a C++ class library specification layered on top of the C bindings that encapsulates MPI into a functional class hierarchy. • It provides a flexible and intuitive interface by adding some ab- stractions, like Ports and Messages, which enrich and simplify the syntax. • Pypar • Its interface is rather minimal. There is no support for communica- tors or process topologies. • It does not require the Python interpreter to be modified or recom- piled, but does not permit interactive parallel runs. • General (picklable) Python objects of any type can be communicated. There is good support for numeric arrays, practically full MPI bandwidth can be achieved. • pyMPI • It rebuilds the Python interpreter providing a built-in module for message passing. It does permit interactive parallel runs, which are useful for learning and debugging. • It provides an interface suitable for basic parallel programing. There is not full support for defining new communicators or process topologies. • General (picklable) Python objects can be messaged between proces- sors. There is not support for numeric arrays. • Scientific Python • It provides a collection of Python modules that are useful for sci- entific computing. • There is an interface to MPI and BSP (Bulk Synchronous Parallel programming). • The interface is simple but incomplete and does not resemble the MPI specification. There is support for numeric arrays. Additionally, we would like to mention some available tools for scien- tific computing and software development with Python. • NumPy is a package that provides array manipulation and computational capabilities similar to those found in IDL, MATLAB, or Octave. Using NumPy, it is possible to write many efficient numerical data process- ing applications directly in Python without using any C, C++ or For- tran code. • SciPy is an open source library of scientific tools for Python, gath- ering a variety of high level science and engineering modules to- gether as a single package. It includes modules for graphics and plotting, optimization, integration, special functions, signal and image processing, genetic algorithms, ODE solvers, and others. • Cython is a language that makes writing C extensions for the Python language as easy as Python itself. The Cython language is very close to the Python language, but Cython additionally supports calling C functions and declaring C types on variables and class attributes. This allows the compiler to generate very efficient C code from Cython code. This makes Cython the ideal language for wrapping for external C libraries, and for fast C modules that speed up the execu- tion of Python code. • SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level programming languages like Perl, Tcl/Tk, Ruby and Python. Issuing header files to SWIG is the simplest approach to interfacing C/C++ libraries from a Python mod- ule. [mpi-std1] MPI Forum. MPI: A Message Passing Interface Standard. Interna- tional Journal of Supercomputer Applications, volume 8, number 3-4, pages 159-416, 1994. [mpi-std2] MPI Forum. MPI: A Message Passing Interface Standard. High Per- formance Computing Applications, volume 12, number 1-2, pages 1-299, 1998. [mpi-using] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: por- table parallel programming with the message-passing interface. MIT Press, 1994. [mpi-ref] Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI - The Complete Reference, volume 1, The MPI Core. MIT Press, 2nd. edition, 1998. [mpi-mpich] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the MPI message passing interface stan- dard. Parallel Computing, 22(6):789-828, September 1996. [mpi-openmpi] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kam- badur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementa- tion. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004. [Hinsen97] Konrad Hinsen. The Molecular Modelling Toolkit: a case study of a large scientific application in Python. In Proceedings of the 6th International Python Conference, pages 29-35, San Jose, Ca., Octo- ber 1997. [Beazley97] David M. Beazley and Peter S. Lomdahl. Feeding a large-scale physics application to Python. In Proceedings of the 6th Interna- tional Python Conference, pages 21-29, San Jose, Ca., October 1997. OVERVIEW MPI for Python provides an object oriented approach to message passing which grounds on the standard MPI-2 C++ bindings. The interface was de- signed with focus in translating MPI syntax and semantics of standard MPI-2 bindings for C++ to Python. Any user of the standard C/C++ MPI bindings should be able to use this module without need of learning a new interface. Communicating Python Objects and Array Data The Python standard library supports different mechanisms for data per- sistence. Many of them rely on disk storage, but pickling and marshal- ing can also work with memory buffers. The pickle modules provide user-extensible facilities to serialize gen- eral Python objects using ASCII or binary formats. The marshal module provides facilities to serialize built-in Python objects using a binary format specific to Python, but independent of machine architecture is- sues. MPI for Python can communicate any built-in or user-defined Python ob- ject taking advantage of the features provided by the pickle module. These facilities will be routinely used to build binary representations of objects to communicate (at sending processes), and restoring them back (at receiving processes). Although simple and general, the serialization approach (i.e., pickling and unpickling) previously discussed imposes important overheads in memory as well as processor usage, especially in the scenario of ob- jects with large memory footprints being communicated. Pickling general Python objects, ranging from primitive or container built-in types to user-defined classes, necessarily requires computer resources. Pro- cessing is also needed for dispatching the appropriate serialization method (that depends on the type of the object) and doing the actual packing. Additional memory is always needed, and if its total amount is not known a priori, many reallocations can occur. Indeed, in the case of large numeric arrays, this is certainly unacceptable and precludes communication of objects occupying half or more of the available memory resources. MPI for Python supports direct communication of any object exporting the single-segment buffer interface. This interface is a standard Python mechanism provided by some types (e.g., strings and numeric ar- rays), allowing access in the C side to a contiguous memory buffer (i.e., address and length) containing the relevant data. This feature, in conjunction with the capability of constructing user-defined MPI datatypes describing complicated memory layouts, enables the implemen- tation of many algorithms involving multidimensional numeric arrays (e.g., image processing, fast Fourier transforms, finite difference schemes on structured Cartesian grids) directly in Python, with negli- gible overhead, and almost as fast as compiled Fortran, C, or C++ codes. Communicators In MPI for Python, Comm is the base class of communicators. The Intra- comm and Intercomm classes are sublcasses of the Comm class. The Comm.Is_inter method (and Comm.Is_intra, provided for convenience but not part of the MPI specification) is defined for communicator objects and can be used to determine the particular communicator class. The two predefined intracommunicator instances are available: COMM_SELF and COMM_WORLD. From them, new communicators can be created as needed. The number of processes in a communicator and the calling process rank can be respectively obtained with methods Comm.Get_size and Comm.Get_rank. The associated process group can be retrieved from a communicator by calling the Comm.Get_group method, which returns an in- stance of the Group class. Set operations with Group objects like like Group.Union, Group.Intersection and Group.Difference are fully sup- ported, as well as the creation of new communicators from these groups using Comm.Create and Comm.Create_group. New communicator instances can be obtained with the Comm.Clone, Comm.Dup and Comm.Split methods, as well methods Intracomm.Create_in- tercomm and Intercomm.Merge. Virtual topologies (Cartcomm, Graphcomm and Distgraphcomm classes, which are specializations of the Intracomm class) are fully supported. New instances can be obtained from intracommunicator instances with factory methods Intracomm.Create_cart and Intracomm.Create_graph. Point-to-Point Communications Point to point communication is a fundamental capability of message passing systems. This mechanism enables the transmission of data be- tween a pair of processes, one side sending, the other receiving. MPI provides a set of send and receive functions allowing the communi- cation of typed data with an associated tag. The type information en- ables the conversion of data representation from one architecture to another in the case of heterogeneous computing environments; addition- ally, it allows the representation of non-contiguous data layouts and user-defined datatypes, thus avoiding the overhead of (otherwise un- avoidable) packing/unpacking operations. The tag information allows se- lectivity of messages at the receiving end. Blocking Communications MPI provides basic send and receive functions that are blocking. These functions block the caller until the data buffers involved in the com- munication can be safely reused by the application program. In MPI for Python, the Comm.Send, Comm.Recv and Comm.Sendrecv methods of communicator objects provide support for blocking point-to-point communications within Intracomm and Intercomm instances. These methods can communicate memory buffers. The variants Comm.send, Comm.recv and Comm.sendrecv can communicate general Python objects. Nonblocking Communications On many systems, performance can be significantly increased by overlap- ping communication and computation. This is particularly true on sys- tems where communication can be executed autonomously by an intelli- gent, dedicated communication controller. MPI provides nonblocking send and receive functions. They allow the possible overlap of communication and computation. Non-blocking commu- nication always come in two parts: posting functions, which begin the requested operation; and test-for-completion functions, which allow to discover whether the requested operation has completed. In MPI for Python, the Comm.Isend and Comm.Irecv methods initiate send and receive operations, respectively. These methods return a Request instance, uniquely identifying the started operation. Its completion can be managed using the Request.Test, Request.Wait and Request.Cancel methods. The management of Request objects and associated memory buf- fers involved in communication requires a careful, rather low-level co- ordination. Users must ensure that objects exposing their memory buf- fers are not accessed at the Python level while they are involved in nonblocking message-passing operations. Persistent Communications Often a communication with the same argument list is repeatedly exe- cuted within an inner loop. In such cases, communication can be further optimized by using persistent communication, a particular case of non- blocking communication allowing the reduction of the overhead between processes and communication controllers. Furthermore , this kind of op- timization can also alleviate the extra call overheads associated to interpreted, dynamic languages like Python. In MPI for Python, the Comm.Send_init and Comm.Recv_init methods create persistent requests for a send and receive operation, respectively. These methods return an instance of the Prequest class, a subclass of the Request class. The actual communication can be effectively started using the Prequest.Start method, and its completion can be managed as previously described. Collective Communications Collective communications allow the transmittal of data between multi- ple processes of a group simultaneously. The syntax and semantics of collective functions is consistent with point-to-point communication. Collective functions communicate typed data, but messages are not paired with an associated tag; selectivity of messages is implied in the calling order. Additionally, collective functions come in blocking versions only. The more commonly used collective communication operations are the fol- lowing. • Barrier synchronization across all group members. • Global communication functions • Broadcast data from one member to all members of a group. • Gather data from all members to one member of a group. • Scatter data from one member to all members of a group. • Global reduction operations such as sum, maximum, minimum, etc. In MPI for Python, the Comm.Bcast, Comm.Scatter, Comm.Gather, Comm.All- gather, Comm.Alltoall methods provide support for collective communica- tions of memory buffers. The lower-case variants Comm.bcast, Comm.scat- ter, Comm.gather, Comm.allgather and Comm.alltoall can communicate gen- eral Python objects. The vector variants (which can communicate dif- ferent amounts of data to each process) Comm.Scatterv, Comm.Gatherv, Comm.Allgatherv, Comm.Alltoallv and Comm.Alltoallw are also supported, they can only communicate objects exposing memory buffers. Global reducion operations on memory buffers are accessible through the Comm.Reduce, Comm.Reduce_scatter, Comm.Allreduce, Intracomm.Scan and Intracomm.Exscan methods. The lower-case variants Comm.reduce, Comm.allreduce, Intracomm.scan and Intracomm.exscan can communicate general Python objects; however, the actual required reduction computa- tions are performed sequentially at some process. All the predefined (i.e., SUM, PROD, MAX, etc.) reduction operations can be applied. Support for GPU-aware MPI Several MPI implementations, including Open MPI and MVAPICH, support passing GPU pointers to MPI calls to avoid explict data movement be- tween the host and the device. On the Python side, GPU arrays have been implemented by many libraries that need GPU computation, such as CuPy, Numba, PyTorch, and PyArrow. In order to increase library interoper- ability, two kinds of zero-copy data exchange protocols are defined and agreed upon: DLPack and CUDA Array Interface. For example, a CuPy array can be passed to a Numba CUDA-jit kernel. MPI for Python provides an experimental support for GPU-aware MPI. This feature requires: 1. mpi4py is built against a GPU-aware MPI library. 2. The Python GPU arrays are compliant with either of the protocols. See the tutorial section for further information. We note that • Whether or not a MPI call can work for GPU arrays depends on the un- derlying MPI implementation, not on mpi4py. • This support is currently experimental and subject to change in the future. Dynamic Process Management In the context of the MPI-1 specification, a parallel application is static; that is, no processes can be added to or deleted from a running application after it has been started. Fortunately, this limitation was addressed in MPI-2. The new specification added a process management model providing a basic interface between an application and external resources and process managers. This MPI-2 extension can be really useful, especially for sequential applications built on top of parallel modules, or parallel applications with a client/server model. The MPI-2 process model provides a mecha- nism to create new processes and establish communication between them and the existing MPI application. It also provides mechanisms to estab- lish communication between two existing MPI applications, even when one did not start the other. In MPI for Python, new independent process groups can be created by calling the Intracomm.Spawn method within an intracommunicator. This call returns a new intercommunicator (i.e., an Intercomm instance) at the parent process group. The child process group can retrieve the matching intercommunicator by calling the Comm.Get_parent class method. At each side, the new intercommunicator can be used to perform point to point and collective communications between the parent and child groups of processes. Alternatively, disjoint groups of processes can establish communication using a client/server approach. Any server application must first call the Open_port function to open a port and the Publish_name function to publish a provided service, and next call the Intracomm.Accept method. Any client applications can first find a published service by calling the Lookup_name function, which returns the port where a server can be contacted; and next call the Intracomm.Connect method. Both Intra- comm.Accept and Intracomm.Connect methods return an Intercomm instance. When connection between client/server processes is no longer needed, all of them must cooperatively call the Comm.Disconnect method. Addi- tionally, server applications should release resources by calling the Unpublish_name and Close_port functions. One-Sided Communications One-sided communications (also called Remote Memory Access, RMA) sup- plements the traditional two-sided, send/receive based MPI communica- tion model with a one-sided, put/get based interface. One-sided commu- nication that can take advantage of the capabilities of highly special- ized network hardware. Additionally, this extension lowers latency and software overhead in applications written using a shared-memory-like paradigm. The MPI specification revolves around the use of objects called win- dows; they intuitively specify regions of a process’s memory that have been made available for remote read and write operations. The pub- lished memory blocks can be accessed through three functions for put (remote send), get (remote write), and accumulate (remote update or re- duction) data items. A much larger number of functions support differ- ent synchronization styles; the semantics of these synchronization op- erations are fairly complex. In MPI for Python, one-sided operations are available by using in- stances of the Win class. New window objects are created by calling the Win.Create method at all processes within a communicator and specifying a memory buffer . When a window instance is no longer needed, the Win.Free method should be called. The three one-sided MPI operations for remote write, read and reduction are available through calling the methods Win.Put, Win.Get, and Win.Ac- cumulate respectively within a Win instance. These methods need an in- teger rank identifying the target process and an integer offset rela- tive the base address of the remote memory block being accessed. The one-sided operations read, write, and reduction are implicitly non- blocking, and must be synchronized by using two primary modes. Active target synchronization requires the origin process to call the Win.Start and Win.Complete methods at the origin process, and target process cooperates by calling the Win.Post and Win.Wait methods. There is also a collective variant provided by the Win.Fence method. Passive target synchronization is more lenient, only the origin process calls the Win.Lock and Win.Unlock methods. Locks are used to protect remote accesses to the locked remote window and to protect local load/store accesses to a locked local window. Parallel Input/Output The POSIX standard provides a model of a widely portable file system. However, the optimization needed for parallel input/output cannot be achieved with this generic interface. In order to ensure efficiency and scalability, the underlying parallel input/output system must provide a high-level interface supporting partitioning of file data among pro- cesses and a collective interface supporting complete transfers of global data structures between process memories and files. Addition- ally, further efficiencies can be gained via support for asynchronous input/output, strided accesses to data, and control over physical file layout on storage devices. This scenario motivated the inclusion in the MPI-2 standard of a custom interface in order to support more elabo- rated parallel input/output operations. The MPI specification for parallel input/output revolves around the use objects called files. As defined by MPI, files are not just contiguous byte streams. Instead, they are regarded as ordered collections of typed data items. MPI supports sequential or random access to any inte- gral set of these items. Furthermore, files are opened collectively by a group of processes. The common patterns for accessing a shared file (broadcast, scatter, gather, reduction) is expressed by using user-defined datatypes. Com- pared to the communication patterns of point-to-point and collective communications, this approach has the advantage of added flexibility and expressiveness. Data access operations (read and write) are defined for different kinds of positioning (using explicit offsets, individual file pointers, and shared file pointers), coordination (non-collective and collective), and synchronism (blocking, nonblocking, and split col- lective with begin/end phases). In MPI for Python, all MPI input/output operations are performed through instances of the File class. File handles are obtained by call- ing the File.Open method at all processes within a communicator and providing a file name and the intended access mode. After use, they must be closed by calling the File.Close method. Files even can be deleted by calling method File.Delete. After creation, files are typically associated with a per-process view. The view defines the current set of data visible and accessible from an open file as an ordered set of elementary datatypes. This data layout can be set and queried with the File.Set_view and File.Get_view methods respectively. Actual input/output operations are achieved by many methods combining read and write calls with different behavior regarding positioning, co- ordination, and synchronism. Summing up, MPI for Python provides the thirty (30) methods defined in MPI-2 for reading from or writing to files using explicit offsets or file pointers (individual or shared), in blocking or nonblocking and collective or noncollective versions. Environmental Management Initialization and Exit Module functions Init or Init_thread and Finalize provide MPI initial- ization and finalization respectively. Module functions Is_initialized and Is_finalized provide the respective tests for initialization and finalization. NOTE: MPI_Init() or MPI_Init_thread() is actually called when you import the MPI module from the mpi4py package, but only if MPI is not al- ready initialized. In such case, calling Init or Init_thread from Python is expected to generate an MPI error, and in turn an excep- tion will be raised. NOTE: MPI_Finalize() is registered (by using Python C/API function Py_AtExit()) for being automatically called when Python processes exit, but only if mpi4py actually initialized MPI. Therefore, there is no need to call Finalize from Python to ensure MPI finalization. Implementation Information • The MPI version number can be retrieved from module function Get_ver- sion. It returns a two-integer tuple (version, subversion). • The Get_processor_name function can be used to access the processor name. • The values of predefined attributes attached to the world communica- tor can be obtained by calling the Comm.Get_attr method within the COMM_WORLD instance. Timers MPI timer functionalities are available through the Wtime and Wtick functions. Error Handling In order facilitate handle sharing with other Python modules interfac- ing MPI-based parallel libraries, the predefined MPI error handlers ER- RORS_RETURN and ERRORS_ARE_FATAL can be assigned to and retrieved from communicators using methods Comm.Set_errhandler and Comm.Get_errhan- dler, and similarly for windows and files. When the predefined error handler ERRORS_RETURN is set, errors returned from MPI calls within Python code will raise an instance of the excep- tion class Exception, which is a subclass of the standard Python excep- tion python:RuntimeError. NOTE: After import, mpi4py overrides the default MPI rules governing in- heritance of error handlers. The ERRORS_RETURN error handler is set in the predefined COMM_SELF and COMM_WORLD communicators, as well as any new Comm, Win, or File instance created through mpi4py. If you ever pass such handles to C/C++/Fortran library code, it is recom- mended to set the ERRORS_ARE_FATAL error handler on them to ensure MPI errors do not pass silently. WARNING: Importing with from mpi4py.MPI import * will cause a name clashing with the standard Python python:Exception base class. TUTORIAL WARNING: Under construction. Contributions very welcome! TIP: Rolf Rabenseifner at HLRS developed a comprehensive MPI-3.1/4.0 course with slides and a large set of exercises including solutions. This material is available online for self-study. The slides and ex- ercises show the C, Fortran, and Python (mpi4py) interfaces. For performance reasons, most Python exercises use NumPy arrays and com- munication routines involving buffer-like objects. TIP: Victor Eijkhout at TACC authored the book Parallel Programming for Science and Engineering. This book is available online in PDF and HTML formats. The book covers parallel programming with MPI and OpenMP in C/C++ and Fortran, and MPI in Python using mpi4py. MPI for Python supports convenient, pickle-based communication of generic Python object as well as fast, near C-speed, direct array data communication of buffer-provider objects (e.g., NumPy arrays). • Communication of generic Python objects You have to use methods with all-lowercase names, like Comm.send, Comm.recv, Comm.bcast, Comm.scatter, Comm.gather . An object to be sent is passed as a parameter to the communication call, and the re- ceived object is simply the return value. The Comm.isend and Comm.irecv methods return Request instances; com- pletion of these methods can be managed using the Request.test and Request.wait methods. The Comm.recv and Comm.irecv methods may be passed a buffer object that can be repeatedly used to receive messages avoiding internal memory allocation. This buffer must be sufficiently large to accommo- date the transmitted messages; hence, any buffer passed to Comm.recv or Comm.irecv must be at least as long as the pickled data transmit- ted to the receiver. Collective calls like Comm.scatter, Comm.gather, Comm.allgather, Comm.alltoall expect a single value or a sequence of Comm.size ele- ments at the root or all process. They return a single value, a list of Comm.size elements, or None. NOTE: MPI for Python uses the highest protocol version available in the Python runtime (see the HIGHEST_PROTOCOL constant in the pickle module). The default protocol can be changed at import time by setting the MPI4PY_PICKLE_PROTOCOL environment variable, or at runtime by assigning a different value to the PROTOCOL attribute of the pickle object within the MPI module. • Communication of buffer-like objects You have to use method names starting with an upper-case letter, like Comm.Send, Comm.Recv, Comm.Bcast, Comm.Scatter, Comm.Gather. In general, buffer arguments to these calls must be explicitly speci- fied by using a 2/3-list/tuple like [data, MPI.DOUBLE], or [data, count, MPI.DOUBLE] (the former one uses the byte-size of data and the extent of the MPI datatype to define count). For vector collectives communication operations like Comm.Scatterv and Comm.Gatherv, buffer arguments are specified as [data, count, displ, datatype], where count and displ are sequences of integral values. Automatic MPI datatype discovery for NumPy/GPU arrays and PEP-3118 buffers is supported, but limited to basic C types (all C/C99-native signed/unsigned integral types and single/double precision real/com- plex floating types) and availability of matching datatypes in the underlying MPI implementation. In this case, the buffer-provider ob- ject can be passed directly as a buffer argument, the count and MPI datatype will be inferred. If mpi4py is built against a GPU-aware MPI implementation, GPU arrays can be passed to upper-case methods as long as they have either the __dlpack__ and __dlpack_device__ methods or the __cuda_array_inter- face__ attribute that are compliant with the respective standard specifications. Moreover, only C-contiguous or Fortran-contiguous GPU arrays are supported. It is important to note that GPU buffers must be fully ready before any MPI routines operate on them to avoid race conditions. This can be ensured by using the synchronization API of your array library. mpi4py does not have access to any GPU-specific functionality and thus cannot perform this operation automatically for users. Running Python scripts with MPI Most MPI programs can be run with the command mpiexec. In practice, running Python programs looks like: $ mpiexec -n 4 python script.py to run the program with 4 processors. Point-to-Point Communication • Python objects (pickle under the hood): from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: data = {'a': 7, 'b': 3.14} comm.send(data, dest=1, tag=11) elif rank == 1: data = comm.recv(source=0, tag=11) • Python objects with non-blocking communication: from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: data = {'a': 7, 'b': 3.14} req = comm.isend(data, dest=1, tag=11) req.wait() elif rank == 1: req = comm.irecv(source=0, tag=11) data = req.wait() • NumPy arrays (the fast way!): from mpi4py import MPI import numpy comm = MPI.COMM_WORLD rank = comm.Get_rank() # passing MPI datatypes explicitly if rank == 0: data = numpy.arange(1000, dtype='i') comm.Send([data, MPI.INT], dest=1, tag=77) elif rank == 1: data = numpy.empty(1000, dtype='i') comm.Recv([data, MPI.INT], source=0, tag=77) # automatic MPI datatype discovery if rank == 0: data = numpy.arange(100, dtype=numpy.float64) comm.Send(data, dest=1, tag=13) elif rank == 1: data = numpy.empty(100, dtype=numpy.float64) comm.Recv(data, source=0, tag=13) Collective Communication • Broadcasting a Python dictionary: from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: data = {'key1' : [7, 2.72, 2+3j], 'key2' : ( 'abc', 'xyz')} else: data = None data = comm.bcast(data, root=0) • Scattering Python objects: from mpi4py import MPI comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() if rank == 0: data = [(i+1)**2 for i in range(size)] else: data = None data = comm.scatter(data, root=0) assert data == (rank+1)**2 • Gathering Python objects: from mpi4py import MPI comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() data = (rank+1)**2 data = comm.gather(data, root=0) if rank == 0: for i in range(size): assert data[i] == (i+1)**2 else: assert data is None • Broadcasting a NumPy array: from mpi4py import MPI import numpy as np comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: data = np.arange(100, dtype='i') else: data = np.empty(100, dtype='i') comm.Bcast(data, root=0) for i in range(100): assert data[i] == i • Scattering NumPy arrays: from mpi4py import MPI import numpy as np comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() sendbuf = None if rank == 0: sendbuf = np.empty([size, 100], dtype='i') sendbuf.T[:,:] = range(size) recvbuf = np.empty(100, dtype='i') comm.Scatter(sendbuf, recvbuf, root=0) assert np.allclose(recvbuf, rank) • Gathering NumPy arrays: from mpi4py import MPI import numpy as np comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() sendbuf = np.zeros(100, dtype='i') + rank recvbuf = None if rank == 0: recvbuf = np.empty([size, 100], dtype='i') comm.Gather(sendbuf, recvbuf, root=0) if rank == 0: for i in range(size): assert np.allclose(recvbuf[i,:], i) • Parallel matrix-vector product: from mpi4py import MPI import numpy def matvec(comm, A, x): m = A.shape[0] # local rows p = comm.Get_size() xg = numpy.zeros(m*p, dtype='d') comm.Allgather([x, MPI.DOUBLE], [xg, MPI.DOUBLE]) y = numpy.dot(A, xg) return y MPI-IO • Collective I/O with NumPy arrays: from mpi4py import MPI import numpy as np amode = MPI.MODE_WRONLY|MPI.MODE_CREATE comm = MPI.COMM_WORLD fh = MPI.File.Open(comm, "./datafile.contig", amode) buffer = np.empty(10, dtype=np.int) buffer[:] = comm.Get_rank() offset = comm.Get_rank()*buffer.nbytes fh.Write_at_all(offset, buffer) fh.Close() • Non-contiguous Collective I/O with NumPy arrays and datatypes: from mpi4py import MPI import numpy as np comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() amode = MPI.MODE_WRONLY|MPI.MODE_CREATE fh = MPI.File.Open(comm, "./datafile.noncontig", amode) item_count = 10 buffer = np.empty(item_count, dtype='i') buffer[:] = rank filetype = MPI.INT.Create_vector(item_count, 1, size) filetype.Commit() displacement = MPI.INT.Get_size()*rank fh.Set_view(displacement, filetype=filetype) fh.Write_all(buffer) filetype.Free() fh.Close() Dynamic Process Management • Compute Pi - Master (or parent, or client) side: #!/usr/bin/env python from mpi4py import MPI import numpy import sys comm = MPI.COMM_SELF.Spawn(sys.executable, args=['cpi.py'], maxprocs=5) N = numpy.array(100, 'i') comm.Bcast([N, MPI.INT], root=MPI.ROOT) PI = numpy.array(0.0, 'd') comm.Reduce(None, [PI, MPI.DOUBLE], op=MPI.SUM, root=MPI.ROOT) print(PI) comm.Disconnect() • Compute Pi - Worker (or child, or server) side: #!/usr/bin/env python from mpi4py import MPI import numpy comm = MPI.Comm.Get_parent() size = comm.Get_size() rank = comm.Get_rank() N = numpy.array(0, dtype='i') comm.Bcast([N, MPI.INT], root=0) h = 1.0 / N; s = 0.0 for i in range(rank, N, size): x = h * (i + 0.5) s += 4.0 / (1.0 + x**2) PI = numpy.array(s * h, dtype='d') comm.Reduce([PI, MPI.DOUBLE], None, op=MPI.SUM, root=0) comm.Disconnect() CUDA-aware MPI + Python GPU arrays • Reduce-to-all CuPy arrays: from mpi4py import MPI import cupy as cp comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() sendbuf = cp.arange(10, dtype='i') recvbuf = cp.empty_like(sendbuf) assert hasattr(sendbuf, '__cuda_array_interface__') assert hasattr(recvbuf, '__cuda_array_interface__') cp.cuda.get_current_stream().synchronize() comm.Allreduce(sendbuf, recvbuf) assert cp.allclose(recvbuf, sendbuf*size) One-Sided Communications • Read from (write to) the entire RMA window: import numpy as np from mpi4py import MPI from mpi4py.util import dtlib comm = MPI.COMM_WORLD rank = comm.Get_rank() datatype = MPI.FLOAT np_dtype = dtlib.to_numpy_dtype(datatype) itemsize = datatype.Get_size() N = 10 win_size = N * itemsize if rank == 0 else 0 win = MPI.Win.Allocate(win_size, comm=comm) buf = np.empty(N, dtype=np_dtype) if rank == 0: buf.fill(42) win.Lock(rank=0) win.Put(buf, target_rank=0) win.Unlock(rank=0) comm.Barrier() else: comm.Barrier() win.Lock(rank=0) win.Get(buf, target_rank=0) win.Unlock(rank=0) assert np.all(buf == 42) • Accessing a part of the RMA window using the target argument, which is defined as (offset, count, datatype): import numpy as np from mpi4py import MPI from mpi4py.util import dtlib comm = MPI.COMM_WORLD rank = comm.Get_rank() datatype = MPI.FLOAT np_dtype = dtlib.to_numpy_dtype(datatype) itemsize = datatype.Get_size() N = comm.Get_size() + 1 win_size = N * itemsize if rank == 0 else 0 win = MPI.Win.Allocate( size=win_size, disp_unit=itemsize, comm=comm, ) if rank == 0: mem = np.frombuffer(win, dtype=np_dtype) mem[:] = np.arange(len(mem), dtype=np_dtype) comm.Barrier() buf = np.zeros(3, dtype=np_dtype) target = (rank, 2, datatype) win.Lock(rank=0) win.Get(buf, target_rank=0, target=target) win.Unlock(rank=0) assert np.all(buf == [rank, rank+1, 0]) Wrapping with SWIG • C source: /* file: helloworld.c */ void sayhello(MPI_Comm comm) { int size, rank; MPI_Comm_size(comm, &size); MPI_Comm_rank(comm, &rank); printf("Hello, World! " "I am process %d of %d.\n", rank, size); } • SWIG interface file: // file: helloworld.i %module helloworld %{ #include <mpi.h> #include "helloworld.c" }% %include mpi4py/mpi4py.i %mpi4py_typemap(Comm, MPI_Comm); void sayhello(MPI_Comm comm); • Try it in the Python prompt: >>> from mpi4py import MPI >>> import helloworld >>> helloworld.sayhello(MPI.COMM_WORLD) Hello, World! I am process 0 of 1. Wrapping with F2Py • Fortran 90 source: ! file: helloworld.f90 subroutine sayhello(comm) use mpi implicit none integer :: comm, rank, size, ierr call MPI_Comm_size(comm, size, ierr) call MPI_Comm_rank(comm, rank, ierr) print *, 'Hello, World! I am process ',rank,' of ',size,'.' end subroutine sayhello • Compiling example using f2py $ f2py -c --f90exec=mpif90 helloworld.f90 -m helloworld • Try it in the Python prompt: >>> from mpi4py import MPI >>> import helloworld >>> fcomm = MPI.COMM_WORLD.py2f() >>> helloworld.sayhello(fcomm) Hello, World! I am process 0 of 1. MPI4PY This is the MPI for Python package. The Message Passing Interface (MPI) is a standardized and portable mes- sage-passing system designed to function on a wide variety of parallel computers. The MPI standard defines the syntax and semantics of library routines and allows users to write portable programs in the main scien- tific programming languages (Fortran, C, or C++). Since its release, the MPI specification has become the leading standard for message-pass- ing libraries for parallel computers. MPI for Python provides MPI bindings for the Python programming lan- guage, allowing any Python program to exploit multiple processors. This package build on the MPI specification and provides an object ori- ented interface which closely follows MPI-2 C++ bindings. Runtime configuration options mpi4py.rc This object has attributes exposing runtime configuration op- tions that become effective at import time of the MPI module. Attributes Summary ┌─────────────┬────────────────────────────┐ │initialize │ Automatic MPI initializa- │ │ │ tion at import │ ├─────────────┼────────────────────────────┤ │threads │ Request initialization │ │ │ with thread support │ ├─────────────┼────────────────────────────┤ │thread_level │ Level of thread support to │ │ │ request │ └─────────────┴────────────────────────────┘ │finalize │ Automatic MPI finalization │ │ │ at exit │ ├─────────────┼────────────────────────────┤ │fast_reduce │ Use tree-based reductions │ │ │ for objects │ ├─────────────┼────────────────────────────┤ │recv_mprobe │ Use matched probes to re- │ │ │ ceive objects │ ├─────────────┼────────────────────────────┤ │errors │ Error handling policy │ └─────────────┴────────────────────────────┘ Attributes Documentation mpi4py.rc.initialize Automatic MPI initialization at import. Type bool Default True SEE ALSO: MPI4PY_RC_INITIALIZE mpi4py.rc.threads Request initialization with thread support. Type bool Default True SEE ALSO: MPI4PY_RC_THREADS mpi4py.rc.thread_level Level of thread support to request. Type str Default "multiple" Choices "multiple", "serialized", "funneled", "single" SEE ALSO: MPI4PY_RC_THREAD_LEVEL mpi4py.rc.finalize Automatic MPI finalization at exit. Type None or bool Default None SEE ALSO: MPI4PY_RC_FINALIZE mpi4py.rc.fast_reduce Use tree-based reductions for objects. Type bool Default True SEE ALSO: MPI4PY_RC_FAST_REDUCE mpi4py.rc.recv_mprobe Use matched probes to receive objects. Type bool Default True SEE ALSO: MPI4PY_RC_RECV_MPROBE mpi4py.rc.errors Error handling policy. Type str Default "exception" Choices "exception", "default", "fatal" SEE ALSO: MPI4PY_RC_ERRORS Example MPI for Python features automatic initialization and finalization of the MPI execution environment. By using the mpi4py.rc object, MPI ini- tialization and finalization can be handled programatically: import mpi4py mpi4py.rc.initialize = False # do not initialize MPI automatically mpi4py.rc.finalize = False # do not finalize MPI automatically from mpi4py import MPI # import the 'MPI' module MPI.Init() # manual initialization of the MPI environment ... # your finest code here ... MPI.Finalize() # manual finalization of the MPI environment Environment variables The following environment variables override the corresponding at- tributes of the mpi4py.rc and MPI.pickle objects at import time of the MPI module. NOTE: For variables of boolean type, accepted values are 0 and 1 (inter- preted as False and True, respectively), and strings specifying a YAML boolean value (case-insensitive). MPI4PY_RC_INITIALIZE Type bool Default True Whether to automatically initialize MPI at import time of the mpi4py.MPI module. SEE ALSO: mpi4py.rc.initialize New in version 3.1.0. MPI4PY_RC_FINALIZE Type None | bool Default None Choices None, True, False Whether to automatically finalize MPI at exit time of the Python process. SEE ALSO: mpi4py.rc.finalize New in version 3.1.0. MPI4PY_RC_THREADS Type bool Default True Whether to initialize MPI with thread support. SEE ALSO: mpi4py.rc.threads New in version 3.1.0. MPI4PY_RC_THREAD_LEVEL Default "multiple" Choices "single", "funneled", "serialized", "multiple" The level of required thread support. SEE ALSO: mpi4py.rc.thread_level New in version 3.1.0. MPI4PY_RC_FAST_REDUCE Type bool Default True Whether to use tree-based reductions for objects. SEE ALSO: mpi4py.rc.fast_reduce New in version 3.1.0. MPI4PY_RC_RECV_MPROBE Type bool Default True Whether to use matched probes to receive objects. SEE ALSO: mpi4py.rc.recv_mprobe MPI4PY_RC_ERRORS Default "exception" Choices "exception", "default", "fatal" Controls default MPI error handling policy. SEE ALSO: mpi4py.rc.errors New in version 3.1.0. MPI4PY_PICKLE_PROTOCOL Type int Default pickle.HIGHEST_PROTOCOL Controls the default pickle protocol to use when communicating Python objects. SEE ALSO: PROTOCOL attribute of the MPI.pickle object within the MPI module. New in version 3.1.0. MPI4PY_PICKLE_THRESHOLD Type int Default 262144 Controls the default buffer size threshold for switching from in-band to out-of-band buffer handling when using pickle proto- col version 5 or higher. SEE ALSO: Module mpi4py.util.pkl5. New in version 3.1.2. Miscellaneous functions mpi4py.profile(name, *, path=None, logfile=None) Support for the MPI profiling interface. Parameters • name (str) – Name of the profiler library to load. • path (sequence of str, optional) – Additional paths to search for the profiler. • logfile (str, optional) – Filename prefix for dumping profiler output. Return type None mpi4py.get_config() Return a dictionary with information about MPI. Return type Dict[str, str] mpi4py.get_include() Return the directory in the package that contains header files. Extension modules that need to compile against mpi4py should use this function to locate the appropriate include directory. Using Python distutils (or perhaps NumPy distutils): import mpi4py Extension('extension_name', ... include_dirs=[..., mpi4py.get_include()]) Return type str MPI4PY.MPI Classes Ancillary ┌─────────────────────┬────────────────────────────┐ │Datatype([datatype]) │ Datatype object │ ├─────────────────────┼────────────────────────────┤ │Status([status]) │ Status object │ ├─────────────────────┼────────────────────────────┤ │Request([request]) │ Request handle │ ├─────────────────────┼────────────────────────────┤ │Prequest([request]) │ Persistent request handle │ ├─────────────────────┼────────────────────────────┤ │Grequest([request]) │ Generalized request handle │ ├─────────────────────┼────────────────────────────┤ │Op([op]) │ Operation object │ ├─────────────────────┼────────────────────────────┤ │Group([group]) │ Group of processes │ ├─────────────────────┼────────────────────────────┤ │Info([info]) │ Info object │ └─────────────────────┴────────────────────────────┘ Communication ┌──────────────────────┬────────────────────────────┐ │Comm([comm]) │ Communicator │ ├──────────────────────┼────────────────────────────┤ │Intracomm([comm]) │ Intracommunicator │ ├──────────────────────┼────────────────────────────┤ │Topocomm([comm]) │ Topology intracommunicator │ ├──────────────────────┼────────────────────────────┤ │Cartcomm([comm]) │ Cartesian topology intra- │ │ │ communicator │ ├──────────────────────┼────────────────────────────┤ │Graphcomm([comm]) │ General graph topology in- │ │ │ tracommunicator │ ├──────────────────────┼────────────────────────────┤ │Distgraphcomm([comm]) │ Distributed graph topology │ │ │ intracommunicator │ ├──────────────────────┼────────────────────────────┤ │Intercomm([comm]) │ Intercommunicator │ ├──────────────────────┼────────────────────────────┤ │Message([message]) │ Matched message handle │ └──────────────────────┴────────────────────────────┘ One-sided operations ┌───────────┬───────────────┐ │Win([win]) │ Window handle │ └───────────┴───────────────┘ Input/Output ┌─────────────┬─────────────┐ │File([file]) │ File handle │ └─────────────┴─────────────┘ Error handling ┌─────────────────────────┬─────────────────┐ │Errhandler([errhandler]) │ Error handler │ ├─────────────────────────┼─────────────────┤ │Exception([ierr]) │ Exception class │ └─────────────────────────┴─────────────────┘ Auxiliary ┌───────────────────────────┬────────────────────────────┐ │Pickle([dumps, loads, pro- │ Pickle/unpickle Python ob- │ │tocol]) │ jects │ ├───────────────────────────┼────────────────────────────┤ │memory(buf) │ Memory buffer │ └───────────────────────────┴────────────────────────────┘ Functions Version inquiry ┌──────────────────────┬────────────────────────────┐ │Get_version() │ Obtain the version number │ │ │ of the MPI standard sup- │ │ │ ported by the implementa- │ │ │ tion as a tuple (version, │ │ │ subversion) │ ├──────────────────────┼────────────────────────────┤ │Get_library_version() │ Obtain the version string │ │ │ of the MPI library │ └──────────────────────┴────────────────────────────┘ Initialization and finalization ┌────────────────────────┬────────────────────────────┐ │Init() │ Initialize the MPI execu- │ │ │ tion environment │ ├────────────────────────┼────────────────────────────┤ │Init_thread([required]) │ Initialize the MPI execu- │ │ │ tion environment │ ├────────────────────────┼────────────────────────────┤ │Finalize() │ Terminate the MPI execu- │ │ │ tion environment │ ├────────────────────────┼────────────────────────────┤ │Is_initialized() │ Indicates whether Init has │ │ │ been called │ ├────────────────────────┼────────────────────────────┤ │Is_finalized() │ Indicates whether Finalize │ │ │ has completed │ ├────────────────────────┼────────────────────────────┤ │Query_thread() │ Return the level of thread │ │ │ support provided by the │ │ │ MPI library │ ├────────────────────────┼────────────────────────────┤ │Is_thread_main() │ Indicate whether this │ │ │ thread called Init or │ │ │ Init_thread │ └────────────────────────┴────────────────────────────┘ Memory allocation ┌────────────────────────┬────────────────────────────┐ │Alloc_mem(size[, info]) │ Allocate memory for mes- │ │ │ sage passing and RMA │ ├────────────────────────┼────────────────────────────┤ │Free_mem(mem) │ Free memory allocated with │ │ │ Alloc_mem() │ └────────────────────────┴────────────────────────────┘ Address manipulation ┌────────────────────────┬────────────────────────────┐ │Get_address(location) │ Get the address of a loca- │ │ │ tion in memory │ ├────────────────────────┼────────────────────────────┤ │Aint_add(base, disp) │ Return the sum of base ad- │ │ │ dress and displacement │ ├────────────────────────┼────────────────────────────┤ │Aint_diff(addr1, addr2) │ Return the difference be- │ │ │ tween absolute addresses │ └────────────────────────┴────────────────────────────┘ Timer ┌────────┬────────────────────────────┐ │Wtick() │ Return the resolution of │ │ │ Wtime │ ├────────┼────────────────────────────┤ │Wtime() │ Return an elapsed time on │ │ │ the calling processor │ └────────┴────────────────────────────┘ Error handling ┌───────────────────────────┬────────────────────────────┐ │Get_error_class(errorcode) │ Convert an error code into │ │ │ an error class │ ├───────────────────────────┼────────────────────────────┤ │Get_error_string(error- │ Return the error string │ │code) │ for a given error class or │ │ │ error code │ ├───────────────────────────┼────────────────────────────┤ │Add_error_class() │ Add an error class to the │ │ │ known error classes │ ├───────────────────────────┼────────────────────────────┤ │Add_error_code(errorclass) │ Add an error code to an │ │ │ error class │ ├───────────────────────────┼────────────────────────────┤ │Add_error_string(error- │ Associate an error string │ │code, string) │ with an error class or er- │ │ │ rorcode │ └───────────────────────────┴────────────────────────────┘ Dynamic process management ┌───────────────────────────┬────────────────────────────┐ │Open_port([info]) │ Return an address that can │ │ │ be used to establish con- │ │ │ nections between groups of │ │ │ MPI processes │ ├───────────────────────────┼────────────────────────────┤ │Close_port(port_name) │ Close a port │ ├───────────────────────────┼────────────────────────────┤ │Publish_name(service_name, │ Publish a service name │ │port_name[, info]) │ │ ├───────────────────────────┼────────────────────────────┤ │Unpublish_name(ser- │ Unpublish a service name │ │vice_name, port_name[, │ │ │info]) │ │ └───────────────────────────┴────────────────────────────┘ │Lookup_name(service_name[, │ Lookup a port name given a │ │info]) │ service name │ └───────────────────────────┴────────────────────────────┘ Miscellanea ┌───────────────────────────┬────────────────────────────┐ │Attach_buffer(buf) │ Attach a user-provided │ │ │ buffer for sending in │ │ │ buffered mode │ ├───────────────────────────┼────────────────────────────┤ │Detach_buffer() │ Remove an existing at- │ │ │ tached buffer │ ├───────────────────────────┼────────────────────────────┤ │Compute_dims(nnodes, dims) │ Return a balanced distri- │ │ │ bution of processes per │ │ │ coordinate direction │ ├───────────────────────────┼────────────────────────────┤ │Get_processor_name() │ Obtain the name of the │ │ │ calling processor │ ├───────────────────────────┼────────────────────────────┤ │Register_datarep(datarep, │ Register user-defined data │ │read_fn, write_fn, ...) │ representations │ ├───────────────────────────┼────────────────────────────┤ │Pcontrol(level) │ Control profiling │ └───────────────────────────┴────────────────────────────┘ Utilities ┌─────────────┬────────────────────────────┐ │get_vendor() │ Infomation about the un- │ │ │ derlying MPI implementa- │ │ │ tion │ └─────────────┴────────────────────────────┘ Attributes ┌───────────────────────────┬────────────────────────────┐ │UNDEFINED │ int UNDEFINED │ ├───────────────────────────┼────────────────────────────┤ │ANY_SOURCE │ int ANY_SOURCE │ ├───────────────────────────┼────────────────────────────┤ │ANY_TAG │ int ANY_TAG │ ├───────────────────────────┼────────────────────────────┤ │PROC_NULL │ int PROC_NULL │ ├───────────────────────────┼────────────────────────────┤ │ROOT │ int ROOT │ ├───────────────────────────┼────────────────────────────┤ │BOTTOM │ Bottom BOTTOM │ ├───────────────────────────┼────────────────────────────┤ │IN_PLACE │ InPlace IN_PLACE │ ├───────────────────────────┼────────────────────────────┤ │KEYVAL_INVALID │ int KEYVAL_INVALID │ ├───────────────────────────┼────────────────────────────┤ │TAG_UB │ int TAG_UB │ ├───────────────────────────┼────────────────────────────┤ │HOST │ int HOST │ ├───────────────────────────┼────────────────────────────┤ │IO │ int IO │ ├───────────────────────────┼────────────────────────────┤ │WTIME_IS_GLOBAL │ int WTIME_IS_GLOBAL │ ├───────────────────────────┼────────────────────────────┤ │UNIVERSE_SIZE │ int UNIVERSE_SIZE │ ├───────────────────────────┼────────────────────────────┤ │APPNUM │ int APPNUM │ ├───────────────────────────┼────────────────────────────┤ │LASTUSEDCODE │ int LASTUSEDCODE │ ├───────────────────────────┼────────────────────────────┤ │WIN_BASE │ int WIN_BASE │ └───────────────────────────┴────────────────────────────┘ │WIN_SIZE │ int WIN_SIZE │ ├───────────────────────────┼────────────────────────────┤ │WIN_DISP_UNIT │ int WIN_DISP_UNIT │ ├───────────────────────────┼────────────────────────────┤ │WIN_CREATE_FLAVOR │ int WIN_CREATE_FLAVOR │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR │ int WIN_FLAVOR │ ├───────────────────────────┼────────────────────────────┤ │WIN_MODEL │ int WIN_MODEL │ ├───────────────────────────┼────────────────────────────┤ │SUCCESS │ int SUCCESS │ ├───────────────────────────┼────────────────────────────┤ │ERR_LASTCODE │ int ERR_LASTCODE │ ├───────────────────────────┼────────────────────────────┤ │ERR_COMM │ int ERR_COMM │ ├───────────────────────────┼────────────────────────────┤ │ERR_GROUP │ int ERR_GROUP │ ├───────────────────────────┼────────────────────────────┤ │ERR_TYPE │ int ERR_TYPE │ ├───────────────────────────┼────────────────────────────┤ │ERR_REQUEST │ int ERR_REQUEST │ ├───────────────────────────┼────────────────────────────┤ │ERR_OP │ int ERR_OP │ ├───────────────────────────┼────────────────────────────┤ │ERR_BUFFER │ int ERR_BUFFER │ ├───────────────────────────┼────────────────────────────┤ │ERR_COUNT │ int ERR_COUNT │ ├───────────────────────────┼────────────────────────────┤ │ERR_TAG │ int ERR_TAG │ ├───────────────────────────┼────────────────────────────┤ │ERR_RANK │ int ERR_RANK │ ├───────────────────────────┼────────────────────────────┤ │ERR_ROOT │ int ERR_ROOT │ ├───────────────────────────┼────────────────────────────┤ │ERR_TRUNCATE │ int ERR_TRUNCATE │ ├───────────────────────────┼────────────────────────────┤ │ERR_IN_STATUS │ int ERR_IN_STATUS │ ├───────────────────────────┼────────────────────────────┤ │ERR_PENDING │ int ERR_PENDING │ ├───────────────────────────┼────────────────────────────┤ │ERR_TOPOLOGY │ int ERR_TOPOLOGY │ ├───────────────────────────┼────────────────────────────┤ │ERR_DIMS │ int ERR_DIMS │ ├───────────────────────────┼────────────────────────────┤ │ERR_ARG │ int ERR_ARG │ ├───────────────────────────┼────────────────────────────┤ │ERR_OTHER │ int ERR_OTHER │ ├───────────────────────────┼────────────────────────────┤ │ERR_UNKNOWN │ int ERR_UNKNOWN │ ├───────────────────────────┼────────────────────────────┤ │ERR_INTERN │ int ERR_INTERN │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO │ int ERR_INFO │ ├───────────────────────────┼────────────────────────────┤ │ERR_FILE │ int ERR_FILE │ ├───────────────────────────┼────────────────────────────┤ │ERR_WIN │ int ERR_WIN │ ├───────────────────────────┼────────────────────────────┤ │ERR_KEYVAL │ int ERR_KEYVAL │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO_KEY │ int ERR_INFO_KEY │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO_VALUE │ int ERR_INFO_VALUE │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO_NOKEY │ int ERR_INFO_NOKEY │ ├───────────────────────────┼────────────────────────────┤ │ERR_ACCESS │ int ERR_ACCESS │ ├───────────────────────────┼────────────────────────────┤ │ERR_AMODE │ int ERR_AMODE │ └───────────────────────────┴────────────────────────────┘ │ERR_BAD_FILE │ int ERR_BAD_FILE │ ├───────────────────────────┼────────────────────────────┤ │ERR_FILE_EXISTS │ int ERR_FILE_EXISTS │ ├───────────────────────────┼────────────────────────────┤ │ERR_FILE_IN_USE │ int ERR_FILE_IN_USE │ ├───────────────────────────┼────────────────────────────┤ │ERR_NO_SPACE │ int ERR_NO_SPACE │ ├───────────────────────────┼────────────────────────────┤ │ERR_NO_SUCH_FILE │ int ERR_NO_SUCH_FILE │ ├───────────────────────────┼────────────────────────────┤ │ERR_IO │ int ERR_IO │ ├───────────────────────────┼────────────────────────────┤ │ERR_READ_ONLY │ int ERR_READ_ONLY │ ├───────────────────────────┼────────────────────────────┤ │ERR_CONVERSION │ int ERR_CONVERSION │ ├───────────────────────────┼────────────────────────────┤ │ERR_DUP_DATAREP │ int ERR_DUP_DATAREP │ ├───────────────────────────┼────────────────────────────┤ │ERR_UNSUPPORTED_DATAREP │ int ERR_UNSUP- │ │ │ PORTED_DATAREP │ ├───────────────────────────┼────────────────────────────┤ │ERR_UNSUPPORTED_OPERATION │ int ERR_UNSUPPORTED_OPERA- │ │ │ TION │ ├───────────────────────────┼────────────────────────────┤ │ERR_NAME │ int ERR_NAME │ ├───────────────────────────┼────────────────────────────┤ │ERR_NO_MEM │ int ERR_NO_MEM │ ├───────────────────────────┼────────────────────────────┤ │ERR_NOT_SAME │ int ERR_NOT_SAME │ ├───────────────────────────┼────────────────────────────┤ │ERR_PORT │ int ERR_PORT │ ├───────────────────────────┼────────────────────────────┤ │ERR_QUOTA │ int ERR_QUOTA │ ├───────────────────────────┼────────────────────────────┤ │ERR_SERVICE │ int ERR_SERVICE │ ├───────────────────────────┼────────────────────────────┤ │ERR_SPAWN │ int ERR_SPAWN │ ├───────────────────────────┼────────────────────────────┤ │ERR_BASE │ int ERR_BASE │ ├───────────────────────────┼────────────────────────────┤ │ERR_SIZE │ int ERR_SIZE │ ├───────────────────────────┼────────────────────────────┤ │ERR_DISP │ int ERR_DISP │ ├───────────────────────────┼────────────────────────────┤ │ERR_ASSERT │ int ERR_ASSERT │ ├───────────────────────────┼────────────────────────────┤ │ERR_LOCKTYPE │ int ERR_LOCKTYPE │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_CONFLICT │ int ERR_RMA_CONFLICT │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_SYNC │ int ERR_RMA_SYNC │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_RANGE │ int ERR_RMA_RANGE │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_ATTACH │ int ERR_RMA_ATTACH │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_SHARED │ int ERR_RMA_SHARED │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_FLAVOR │ int ERR_RMA_FLAVOR │ ├───────────────────────────┼────────────────────────────┤ │ORDER_C │ int ORDER_C │ ├───────────────────────────┼────────────────────────────┤ │ORDER_F │ int ORDER_F │ ├───────────────────────────┼────────────────────────────┤ │ORDER_FORTRAN │ int ORDER_FORTRAN │ ├───────────────────────────┼────────────────────────────┤ │TYPECLASS_INTEGER │ int TYPECLASS_INTEGER │ ├───────────────────────────┼────────────────────────────┤ │TYPECLASS_REAL │ int TYPECLASS_REAL │ └───────────────────────────┴────────────────────────────┘ │TYPECLASS_COMPLEX │ int TYPECLASS_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_NONE │ int DISTRIBUTE_NONE │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_BLOCK │ int DISTRIBUTE_BLOCK │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_CYCLIC │ int DISTRIBUTE_CYCLIC │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_DFLT_DARG │ int DISTRIBUTE_DFLT_DARG │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_NAMED │ int COMBINER_NAMED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_DUP │ int COMBINER_DUP │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_CONTIGUOUS │ int COMBINER_CONTIGUOUS │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_VECTOR │ int COMBINER_VECTOR │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_HVECTOR │ int COMBINER_HVECTOR │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_INDEXED │ int COMBINER_INDEXED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_HINDEXED │ int COMBINER_HINDEXED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_INDEXED_BLOCK │ int COMBINER_INDEXED_BLOCK │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_HINDEXED_BLOCK │ int COMBINER_HIN- │ │ │ DEXED_BLOCK │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_STRUCT │ int COMBINER_STRUCT │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_SUBARRAY │ int COMBINER_SUBARRAY │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_DARRAY │ int COMBINER_DARRAY │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_RESIZED │ int COMBINER_RESIZED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_F90_REAL │ int COMBINER_F90_REAL │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_F90_COMPLEX │ int COMBINER_F90_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_F90_INTEGER │ int COMBINER_F90_INTEGER │ ├───────────────────────────┼────────────────────────────┤ │IDENT │ int IDENT │ ├───────────────────────────┼────────────────────────────┤ │CONGRUENT │ int CONGRUENT │ ├───────────────────────────┼────────────────────────────┤ │SIMILAR │ int SIMILAR │ ├───────────────────────────┼────────────────────────────┤ │UNEQUAL │ int UNEQUAL │ ├───────────────────────────┼────────────────────────────┤ │CART │ int CART │ ├───────────────────────────┼────────────────────────────┤ │GRAPH │ int GRAPH │ ├───────────────────────────┼────────────────────────────┤ │DIST_GRAPH │ int DIST_GRAPH │ ├───────────────────────────┼────────────────────────────┤ │UNWEIGHTED │ int UNWEIGHTED │ ├───────────────────────────┼────────────────────────────┤ │WEIGHTS_EMPTY │ int WEIGHTS_EMPTY │ ├───────────────────────────┼────────────────────────────┤ │COMM_TYPE_SHARED │ int COMM_TYPE_SHARED │ ├───────────────────────────┼────────────────────────────┤ │BSEND_OVERHEAD │ int BSEND_OVERHEAD │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR_CREATE │ int WIN_FLAVOR_CREATE │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR_ALLOCATE │ int WIN_FLAVOR_ALLOCATE │ └───────────────────────────┴────────────────────────────┘ │WIN_FLAVOR_DYNAMIC │ int WIN_FLAVOR_DYNAMIC │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR_SHARED │ int WIN_FLAVOR_SHARED │ ├───────────────────────────┼────────────────────────────┤ │WIN_SEPARATE │ int WIN_SEPARATE │ ├───────────────────────────┼────────────────────────────┤ │WIN_UNIFIED │ int WIN_UNIFIED │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOCHECK │ int MODE_NOCHECK │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOSTORE │ int MODE_NOSTORE │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOPUT │ int MODE_NOPUT │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOPRECEDE │ int MODE_NOPRECEDE │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOSUCCEED │ int MODE_NOSUCCEED │ ├───────────────────────────┼────────────────────────────┤ │LOCK_EXCLUSIVE │ int LOCK_EXCLUSIVE │ ├───────────────────────────┼────────────────────────────┤ │LOCK_SHARED │ int LOCK_SHARED │ ├───────────────────────────┼────────────────────────────┤ │MODE_RDONLY │ int MODE_RDONLY │ ├───────────────────────────┼────────────────────────────┤ │MODE_WRONLY │ int MODE_WRONLY │ ├───────────────────────────┼────────────────────────────┤ │MODE_RDWR │ int MODE_RDWR │ ├───────────────────────────┼────────────────────────────┤ │MODE_CREATE │ int MODE_CREATE │ ├───────────────────────────┼────────────────────────────┤ │MODE_EXCL │ int MODE_EXCL │ ├───────────────────────────┼────────────────────────────┤ │MODE_DELETE_ON_CLOSE │ int MODE_DELETE_ON_CLOSE │ ├───────────────────────────┼────────────────────────────┤ │MODE_UNIQUE_OPEN │ int MODE_UNIQUE_OPEN │ ├───────────────────────────┼────────────────────────────┤ │MODE_SEQUENTIAL │ int MODE_SEQUENTIAL │ ├───────────────────────────┼────────────────────────────┤ │MODE_APPEND │ int MODE_APPEND │ ├───────────────────────────┼────────────────────────────┤ │SEEK_SET │ int SEEK_SET │ ├───────────────────────────┼────────────────────────────┤ │SEEK_CUR │ int SEEK_CUR │ ├───────────────────────────┼────────────────────────────┤ │SEEK_END │ int SEEK_END │ ├───────────────────────────┼────────────────────────────┤ │DISPLACEMENT_CURRENT │ int DISPLACEMENT_CURRENT │ ├───────────────────────────┼────────────────────────────┤ │DISP_CUR │ int DISP_CUR │ ├───────────────────────────┼────────────────────────────┤ │THREAD_SINGLE │ int THREAD_SINGLE │ ├───────────────────────────┼────────────────────────────┤ │THREAD_FUNNELED │ int THREAD_FUNNELED │ ├───────────────────────────┼────────────────────────────┤ │THREAD_SERIALIZED │ int THREAD_SERIALIZED │ ├───────────────────────────┼────────────────────────────┤ │THREAD_MULTIPLE │ int THREAD_MULTIPLE │ ├───────────────────────────┼────────────────────────────┤ │VERSION │ int VERSION │ ├───────────────────────────┼────────────────────────────┤ │SUBVERSION │ int SUBVERSION │ ├───────────────────────────┼────────────────────────────┤ │MAX_PROCESSOR_NAME │ int MAX_PROCESSOR_NAME │ ├───────────────────────────┼────────────────────────────┤ │MAX_ERROR_STRING │ int MAX_ERROR_STRING │ ├───────────────────────────┼────────────────────────────┤ │MAX_PORT_NAME │ int MAX_PORT_NAME │ ├───────────────────────────┼────────────────────────────┤ │MAX_INFO_KEY │ int MAX_INFO_KEY │ └───────────────────────────┴────────────────────────────┘ │MAX_INFO_VAL │ int MAX_INFO_VAL │ ├───────────────────────────┼────────────────────────────┤ │MAX_OBJECT_NAME │ int MAX_OBJECT_NAME │ ├───────────────────────────┼────────────────────────────┤ │MAX_DATAREP_STRING │ int MAX_DATAREP_STRING │ ├───────────────────────────┼────────────────────────────┤ │MAX_LIBRARY_VERSION_STRING │ int MAX_LIBRARY_VER- │ │ │ SION_STRING │ ├───────────────────────────┼────────────────────────────┤ │DATATYPE_NULL │ Datatype DATATYPE_NULL │ ├───────────────────────────┼────────────────────────────┤ │UB │ Datatype UB │ ├───────────────────────────┼────────────────────────────┤ │LB │ Datatype LB │ ├───────────────────────────┼────────────────────────────┤ │PACKED │ Datatype PACKED │ ├───────────────────────────┼────────────────────────────┤ │BYTE │ Datatype BYTE │ ├───────────────────────────┼────────────────────────────┤ │AINT │ Datatype AINT │ ├───────────────────────────┼────────────────────────────┤ │OFFSET │ Datatype OFFSET │ ├───────────────────────────┼────────────────────────────┤ │COUNT │ Datatype COUNT │ ├───────────────────────────┼────────────────────────────┤ │CHAR │ Datatype CHAR │ ├───────────────────────────┼────────────────────────────┤ │WCHAR │ Datatype WCHAR │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_CHAR │ Datatype SIGNED_CHAR │ ├───────────────────────────┼────────────────────────────┤ │SHORT │ Datatype SHORT │ ├───────────────────────────┼────────────────────────────┤ │INT │ Datatype INT │ ├───────────────────────────┼────────────────────────────┤ │LONG │ Datatype LONG │ ├───────────────────────────┼────────────────────────────┤ │LONG_LONG │ Datatype LONG_LONG │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_CHAR │ Datatype UNSIGNED_CHAR │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_SHORT │ Datatype UNSIGNED_SHORT │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED │ Datatype UNSIGNED │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_LONG │ Datatype UNSIGNED_LONG │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_LONG_LONG │ Datatype UN- │ │ │ SIGNED_LONG_LONG │ ├───────────────────────────┼────────────────────────────┤ │FLOAT │ Datatype FLOAT │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE │ Datatype DOUBLE │ ├───────────────────────────┼────────────────────────────┤ │LONG_DOUBLE │ Datatype LONG_DOUBLE │ ├───────────────────────────┼────────────────────────────┤ │C_BOOL │ Datatype C_BOOL │ ├───────────────────────────┼────────────────────────────┤ │INT8_T │ Datatype INT8_T │ ├───────────────────────────┼────────────────────────────┤ │INT16_T │ Datatype INT16_T │ ├───────────────────────────┼────────────────────────────┤ │INT32_T │ Datatype INT32_T │ ├───────────────────────────┼────────────────────────────┤ │INT64_T │ Datatype INT64_T │ ├───────────────────────────┼────────────────────────────┤ │UINT8_T │ Datatype UINT8_T │ ├───────────────────────────┼────────────────────────────┤ │UINT16_T │ Datatype UINT16_T │ └───────────────────────────┴────────────────────────────┘ │UINT32_T │ Datatype UINT32_T │ ├───────────────────────────┼────────────────────────────┤ │UINT64_T │ Datatype UINT64_T │ ├───────────────────────────┼────────────────────────────┤ │C_COMPLEX │ Datatype C_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │C_FLOAT_COMPLEX │ Datatype C_FLOAT_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │C_DOUBLE_COMPLEX │ Datatype C_DOUBLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │C_LONG_DOUBLE_COMPLEX │ Datatype C_LONG_DOU- │ │ │ BLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │CXX_BOOL │ Datatype CXX_BOOL │ ├───────────────────────────┼────────────────────────────┤ │CXX_FLOAT_COMPLEX │ Datatype CXX_FLOAT_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │CXX_DOUBLE_COMPLEX │ Datatype CXX_DOUBLE_COM- │ │ │ PLEX │ ├───────────────────────────┼────────────────────────────┤ │CXX_LONG_DOUBLE_COMPLEX │ Datatype CXX_LONG_DOU- │ │ │ BLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │SHORT_INT │ Datatype SHORT_INT │ ├───────────────────────────┼────────────────────────────┤ │INT_INT │ Datatype INT_INT │ ├───────────────────────────┼────────────────────────────┤ │TWOINT │ Datatype TWOINT │ ├───────────────────────────┼────────────────────────────┤ │LONG_INT │ Datatype LONG_INT │ ├───────────────────────────┼────────────────────────────┤ │FLOAT_INT │ Datatype FLOAT_INT │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE_INT │ Datatype DOUBLE_INT │ ├───────────────────────────┼────────────────────────────┤ │LONG_DOUBLE_INT │ Datatype LONG_DOUBLE_INT │ ├───────────────────────────┼────────────────────────────┤ │CHARACTER │ Datatype CHARACTER │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL │ Datatype LOGICAL │ ├───────────────────────────┼────────────────────────────┤ │INTEGER │ Datatype INTEGER │ ├───────────────────────────┼────────────────────────────┤ │REAL │ Datatype REAL │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE_PRECISION │ Datatype DOUBLE_PRECISION │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX │ Datatype COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE_COMPLEX │ Datatype DOUBLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL1 │ Datatype LOGICAL1 │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL2 │ Datatype LOGICAL2 │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL4 │ Datatype LOGICAL4 │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL8 │ Datatype LOGICAL8 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER1 │ Datatype INTEGER1 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER2 │ Datatype INTEGER2 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER4 │ Datatype INTEGER4 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER8 │ Datatype INTEGER8 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER16 │ Datatype INTEGER16 │ └───────────────────────────┴────────────────────────────┘ │REAL2 │ Datatype REAL2 │ ├───────────────────────────┼────────────────────────────┤ │REAL4 │ Datatype REAL4 │ ├───────────────────────────┼────────────────────────────┤ │REAL8 │ Datatype REAL8 │ ├───────────────────────────┼────────────────────────────┤ │REAL16 │ Datatype REAL16 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX4 │ Datatype COMPLEX4 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX8 │ Datatype COMPLEX8 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX16 │ Datatype COMPLEX16 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX32 │ Datatype COMPLEX32 │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_INT │ Datatype UNSIGNED_INT │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_SHORT │ Datatype SIGNED_SHORT │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_INT │ Datatype SIGNED_INT │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_LONG │ Datatype SIGNED_LONG │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_LONG_LONG │ Datatype SIGNED_LONG_LONG │ ├───────────────────────────┼────────────────────────────┤ │BOOL │ Datatype BOOL │ ├───────────────────────────┼────────────────────────────┤ │SINT8_T │ Datatype SINT8_T │ ├───────────────────────────┼────────────────────────────┤ │SINT16_T │ Datatype SINT16_T │ ├───────────────────────────┼────────────────────────────┤ │SINT32_T │ Datatype SINT32_T │ ├───────────────────────────┼────────────────────────────┤ │SINT64_T │ Datatype SINT64_T │ ├───────────────────────────┼────────────────────────────┤ │F_BOOL │ Datatype F_BOOL │ ├───────────────────────────┼────────────────────────────┤ │F_INT │ Datatype F_INT │ ├───────────────────────────┼────────────────────────────┤ │F_FLOAT │ Datatype F_FLOAT │ ├───────────────────────────┼────────────────────────────┤ │F_DOUBLE │ Datatype F_DOUBLE │ ├───────────────────────────┼────────────────────────────┤ │F_COMPLEX │ Datatype F_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │F_FLOAT_COMPLEX │ Datatype F_FLOAT_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │F_DOUBLE_COMPLEX │ Datatype F_DOUBLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │REQUEST_NULL │ Request REQUEST_NULL │ ├───────────────────────────┼────────────────────────────┤ │MESSAGE_NULL │ Message MESSAGE_NULL │ ├───────────────────────────┼────────────────────────────┤ │MESSAGE_NO_PROC │ Message MESSAGE_NO_PROC │ ├───────────────────────────┼────────────────────────────┤ │OP_NULL │ Op OP_NULL │ ├───────────────────────────┼────────────────────────────┤ │MAX │ Op MAX │ ├───────────────────────────┼────────────────────────────┤ │MIN │ Op MIN │ ├───────────────────────────┼────────────────────────────┤ │SUM │ Op SUM │ ├───────────────────────────┼────────────────────────────┤ │PROD │ Op PROD │ ├───────────────────────────┼────────────────────────────┤ │LAND │ Op LAND │ ├───────────────────────────┼────────────────────────────┤ │BAND │ Op BAND │ └───────────────────────────┴────────────────────────────┘ │LOR │ Op LOR │ ├───────────────────────────┼────────────────────────────┤ │BOR │ Op BOR │ ├───────────────────────────┼────────────────────────────┤ │LXOR │ Op LXOR │ ├───────────────────────────┼────────────────────────────┤ │BXOR │ Op BXOR │ ├───────────────────────────┼────────────────────────────┤ │MAXLOC │ Op MAXLOC │ ├───────────────────────────┼────────────────────────────┤ │MINLOC │ Op MINLOC │ ├───────────────────────────┼────────────────────────────┤ │REPLACE │ Op REPLACE │ ├───────────────────────────┼────────────────────────────┤ │NO_OP │ Op NO_OP │ ├───────────────────────────┼────────────────────────────┤ │GROUP_NULL │ Group GROUP_NULL │ ├───────────────────────────┼────────────────────────────┤ │GROUP_EMPTY │ Group GROUP_EMPTY │ ├───────────────────────────┼────────────────────────────┤ │INFO_NULL │ Info INFO_NULL │ ├───────────────────────────┼────────────────────────────┤ │INFO_ENV │ Info INFO_ENV │ ├───────────────────────────┼────────────────────────────┤ │ERRHANDLER_NULL │ Errhandler ERRHANDLER_NULL │ ├───────────────────────────┼────────────────────────────┤ │ERRORS_RETURN │ Errhandler ERRORS_RETURN │ ├───────────────────────────┼────────────────────────────┤ │ERRORS_ARE_FATAL │ Errhandler ERRORS_ARE_FA- │ │ │ TAL │ ├───────────────────────────┼────────────────────────────┤ │COMM_NULL │ Comm COMM_NULL │ ├───────────────────────────┼────────────────────────────┤ │COMM_SELF │ Intracomm COMM_SELF │ ├───────────────────────────┼────────────────────────────┤ │COMM_WORLD │ Intracomm COMM_WORLD │ ├───────────────────────────┼────────────────────────────┤ │WIN_NULL │ Win WIN_NULL │ ├───────────────────────────┼────────────────────────────┤ │FILE_NULL │ File FILE_NULL │ ├───────────────────────────┼────────────────────────────┤ │pickle │ Pickle pickle │ └───────────────────────────┴────────────────────────────┘ MPI4PY.FUTURES New in version 3.0.0. This package provides a high-level interface for asynchronously execut- ing callables on a pool of worker processes using MPI for inter-process communication. concurrent.futures The mpi4py.futures package is based on concurrent.futures from the Python standard library. More precisely, mpi4py.futures provides the MPIPoolExecutor class as a concrete implementation of the abstract class Executor. The submit() interface schedules a callable to be exe- cuted asynchronously and returns a Future object representing the exe- cution of the callable. Future instances can be queried for the call result or exception. Sets of Future instances can be passed to the wait() and as_completed() functions. NOTE: The concurrent.futures package was introduced in Python 3.2. A backport targeting Python 2.7 is available on PyPI. The mpi4py.futures package uses concurrent.futures if available, either from the Python 3 standard library or the Python 2.7 backport if in- stalled. Otherwise, mpi4py.futures uses a bundled copy of core func- tionality backported from Python 3.5 to work with Python 2.7. SEE ALSO: Module concurrent.futures Documentation of the concurrent.futures standard module. MPIPoolExecutor The MPIPoolExecutor class uses a pool of MPI processes to execute calls asynchronously. By performing computations in separate processes, it allows to side-step the global interpreter lock but also means that only picklable objects can be executed and returned. The __main__ mod- ule must be importable by worker processes, thus MPIPoolExecutor in- stances may not work in the interactive interpreter. MPIPoolExecutor takes advantage of the dynamic process management fea- tures introduced in the MPI-2 standard. In particular, the MPI.Intra- comm.Spawn method of MPI.COMM_SELF is used in the master (or parent) process to spawn new worker (or child) processes running a Python in- terpreter. The master process uses a separate thread (one for each MPIPoolExecutor instance) to communicate back and forth with the work- ers. The worker processes serve the execution of tasks in the main (and only) thread until they are signaled for completion. NOTE: The worker processes must import the main script in order to un- pickle any callable defined in the __main__ module and submitted from the master process. Furthermore, the callables may need access to other global variables. At the worker processes, mpi4py.futures executes the main script code (using the runpy module) under the __worker__ namespace to define the __main__ module. The __main__ and __worker__ modules are added to sys.modules (both at the master and worker processes) to ensure proper pickling and unpickling. WARNING: During the initial import phase at the workers, the main script can- not create and use new MPIPoolExecutor instances. Otherwise, each worker would attempt to spawn a new pool of workers, leading to in- finite recursion. mpi4py.futures detects such recursive attempts to spawn new workers and aborts the MPI execution environment. As the main script code is run under the __worker__ namespace, the easiest way to avoid spawn recursion is using the idiom if __name__ == '__main__': ... in the main script. class mpi4py.futures.MPIPoolExecutor(max_workers=None, initial- izer=None, initargs=(), **kwargs) An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, its value is determined from the MPI4PY_FUTURES_MAX_WORKERS environment variable if set, or the MPI universe size if set, otherwise a single worker process is spawned. If max_workers is lower than or equal to 0, then a ValueError will be raised. initializer is an optional callable that is called at the start of each worker process before executing any tasks; initargs is a tuple of arguments passed to the initializer. If initializer raises an exception, all pending tasks and any attempt to submit new tasks to the pool will raise a BrokenExecutor exception. Other parameters: • python_exe: Path to the Python interpreter executable used to spawn worker processes, otherwise sys.executable is used. • python_args: list or iterable with additional command line flags to pass to the Python executable. Command line flags de- termined from inspection of sys.flags, sys.warnoptions and sys._xoptions in are passed unconditionally. • mpi_info: dict or iterable yielding (key, value) pairs. These (key, value) pairs are passed (through an MPI.Info object) to the MPI.Intracomm.Spawn call used to spawn worker processes. This mechanism allows telling the MPI runtime system where and how to start the processes. Check the documentation of the backend MPI implementation about the set of keys it interprets and the corresponding format for values. • globals: dict or iterable yielding (name, value) pairs to ini- tialize the main module namespace in worker processes. • main: If set to False, do not import the __main__ module in worker processes. Setting main to False prevents worker pro- cesses from accessing definitions in the parent __main__ name- space. • path: list or iterable with paths to append to sys.path in worker processes to extend the module search path. • wdir: Path to set the current working directory in worker pro- cesses using os.chdir(). The initial working directory is set by the MPI implementation. Quality MPI implementations should honor a wdir info key passed through mpi_info, although such feature is not mandatory. • env: dict or iterable yielding (name, value) pairs with envi- ronment variables to update os.environ in worker processes. The initial environment is set by the MPI implementation. MPI implementations may allow setting the initial environment through mpi_info, however such feature is not required nor recommended by the MPI standard. submit(func, *args, **kwargs) Schedule the callable, func, to be executed as func(*args, **kwargs) and returns a Future object repre- senting the execution of the callable. executor = MPIPoolExecutor(max_workers=1) future = executor.submit(pow, 321, 1234) print(future.result()) map(func, *iterables, timeout=None, chunksize=1, **kwargs) Equivalent to map(func, *iterables) except func is exe- cuted asynchronously and several calls to func may be made concurrently, out-of-order, in separate processes. The returned iterator raises a TimeoutError if __next__() is called and the result isn’t available after timeout seconds from the original call to map(). timeout can be an int or a float. If timeout is not specified or None, there is no limit to the wait time. If a call raises an exception, then that exception will be raised when its value is retrieved from the iterator. This method chops iterables into a number of chunks which it submits to the pool as separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a posi- tive integer. For very long iterables, using a large value for chunksize can significantly improve performance compared to the default size of one. By default, the re- turned iterator yields results in-order, waiting for suc- cessive tasks to complete . This behavior can be changed by passing the keyword argument unordered as True, then the result iterator will yield a result as soon as any of the tasks complete. executor = MPIPoolExecutor(max_workers=3) for result in executor.map(pow, [2]*32, range(32)): print(result) starmap(func, iterable, timeout=None, chunksize=1, **kwargs) Equivalent to itertools.starmap(func, iterable). Used in- stead of map() when argument parameters are already grouped in tuples from a single iterable (the data has been “pre-zipped”). map(func, *iterable) is equivalent to starmap(func, zip(*iterable)). executor = MPIPoolExecutor(max_workers=3) iterable = ((2, n) for n in range(32)) for result in executor.starmap(pow, iterable): print(result) shutdown(wait=True, cancel_futures=False) Signal the executor that it should free any resources that it is using when the currently pending futures are done executing. Calls to submit() and map() made after shutdown() will raise RuntimeError. If wait is True then this method will not return until all the pending futures are done executing and the re- sources associated with the executor have been freed. If wait is False then this method will return immediately and the resources associated with the executor will be freed when all pending futures are done executing. Re- gardless of the value of wait, the entire Python program will not exit until all pending futures are done execut- ing. If cancel_futures is True, this method will cancel all pending futures that the executor has not started run- ning. Any futures that are completed or running won’t be cancelled, regardless of the value of cancel_futures. You can avoid having to call this method explicitly if you use the with statement, which will shutdown the ex- ecutor instance (waiting as if shutdown() were called with wait set to True). import time with MPIPoolExecutor(max_workers=1) as executor: future = executor.submit(time.sleep, 2) assert future.done() bootup(wait=True) Signal the executor that it should allocate eagerly any required resources (in particular, MPI worker processes). If wait is True, then bootup() will not return until the executor resources are ready to process submissions. Re- sources are automatically allocated in the first call to submit(), thus calling bootup() explicitly is seldom needed. MPI4PY_FUTURES_MAX_WORKERS If the max_workers parameter to MPIPoolExecutor is None or not given, the MPI4PY_FUTURES_MAX_WORKERS environment variable pro- vides fallback value for the maximum number of MPI worker pro- cesses to spawn. NOTE: As the master process uses a separate thread to perform MPI communi- cation with the workers, the backend MPI implementation should pro- vide support for MPI.THREAD_MULTIPLE. However, some popular MPI im- plementations do not support yet concurrent MPI calls from multiple threads. Additionally, users may decide to initialize MPI with a lower level of thread support. If the level of thread support in the backend MPI is less than MPI.THREAD_MULTIPLE, mpi4py.futures will use a global lock to serialize MPI calls. If the level of thread support is less than MPI.THREAD_SERIALIZED, mpi4py.futures will emit a RuntimeWarning. WARNING: If the level of thread support in the backend MPI is less than MPI.THREAD_SERIALIZED (i.e, it is either MPI.THREAD_SINGLE or MPI.THREAD_FUNNELED), in theory mpi4py.futures cannot be used. Rather than raising an exception, mpi4py.futures emits a warning and takes a “cross-fingers” attitude to continue execution in the hope that serializing MPI calls with a global lock will actually work. MPICommExecutor Legacy MPI-1 implementations (as well as some vendor MPI-2 implementa- tions) do not support the dynamic process management features intro- duced in the MPI-2 standard. Additionally, job schedulers and batch systems in supercomputing facilities may pose additional complications to applications using the MPI_Comm_spawn() routine. With these issues in mind, mpi4py.futures supports an additonal, more traditional, SPMD-like usage pattern requiring MPI-1 calls only. Python applications are started the usual way, e.g., using the mpiexec com- mand. Python code should make a collective call to the MPICommExecutor context manager to partition the set of MPI processes within a MPI com- municator in one master processes and many workers processes. The mas- ter process gets access to an MPIPoolExecutor instance to submit tasks. Meanwhile, the worker process follow a different execution path and team-up to execute the tasks submitted from the master. Besides alleviating the lack of dynamic process managment features in legacy MPI-1 or partial MPI-2 implementations, the MPICommExecutor con- text manager may be useful in classic MPI-based Python applications willing to take advantage of the simple, task-based, master/worker ap- proach available in the mpi4py.futures package. class mpi4py.futures.MPICommExecutor(comm=None, root=0) Context manager for MPIPoolExecutor. This context manager splits a MPI (intra)communicator comm (defaults to MPI.COMM_WORLD if not provided or None) in two disjoint sets: a single master process (with rank root in comm) and the remaining worker pro- cesses. These sets are then connected through an intercommunica- tor. The target of the with statement is assigned either an MPIPoolExecutor instance (at the master) or None (at the work- ers). from mpi4py import MPI from mpi4py.futures import MPICommExecutor with MPICommExecutor(MPI.COMM_WORLD, root=0) as executor: if executor is not None: future = executor.submit(abs, -42) assert future.result() == 42 answer = set(executor.map(abs, [-42, 42])) assert answer == {42} WARNING: If MPICommExecutor is passed a communicator of size one (e.g., MPI.COMM_SELF), then the executor instace assigned to the target of the with statement will execute all submitted tasks in a single worker thread, thus ensuring that task execution still progress asynchronously. However, the GIL will prevent the main and worker threads from running concurrently in multicore processors. Moreover, the thread context switching may harm noticeably the performance of CPU-bound tasks. In case of I/O-bound tasks, the GIL is not usually an issue, however, as a single worker thread is used, it progress one task at a time. We advice against using MPICommExecutor with communicators of size one and suggest refactoring your code to use instead a ThreadPoolExecutor. Command line Recalling the issues related to the lack of support for dynamic process managment features in MPI implementations, mpi4py.futures supports an alternative usage pattern where Python code (either from scripts, mod- ules, or zip files) is run under command line control of the mpi4py.futures package by passing -m mpi4py.futures to the python exe- cutable. The mpi4py.futures invocation should be passed a pyfile path to a script (or a zipfile/directory containing a __main__.py file). Additionally, mpi4py.futures accepts -m mod to execute a module named mod, -c cmd to execute a command string cmd, or even - to read commands from standard input (sys.stdin). Summarizing, mpi4py.futures can be invoked in the following ways: • $ mpiexec -n numprocs python -m mpi4py.futures pyfile [arg] ... • $ mpiexec -n numprocs python -m mpi4py.futures -m mod [arg] ... • $ mpiexec -n numprocs python -m mpi4py.futures -c cmd [arg] ... • $ mpiexec -n numprocs python -m mpi4py.futures - [arg] ... Before starting the main script execution, mpi4py.futures splits MPI.COMM_WORLD in one master (the process with rank 0 in MPI.COMM_WORLD) and numprocs - 1 workers and connects them through an MPI intercommunicator. Afterwards, the master process proceeds with the execution of the user script code, which eventually creates MPIPoolExecutor instances to submit tasks. Meanwhile, the worker pro- cesses follow a different execution path to serve the master. Upon successful termination of the main script at the master, the entire MPI execution environment exists gracefully. In case of any unhandled ex- ception in the main script, the master process calls MPI.COMM_WORLD.Abort(1) to prevent deadlocks and force termination of entire MPI execution environment. WARNING: Running scripts under command line control of mpi4py.futures is quite similar to executing a single-process application that spawn additional workers as required. However, there is a very important difference users should be aware of. All MPIPoolExecutor instances created at the master will share the pool of workers. Tasks submit- ted at the master from many different executors will be scheduled for execution in random order as soon as a worker is idle. Any ex- ecutor can easily starve all the workers (e.g., by calling MPIPoolExecutor.map() with long iterables). If that ever happens, submissions from other executors will not be serviced until free workers are available. SEE ALSO: python:using-on-cmdline Documentation on Python command line interface. Examples The following julia.py script computes the Julia set and dumps an image to disk in binary PGM format. The code starts by importing MPIPoolExecutor from the mpi4py.futures package. Next, some global con- stants and functions implement the computation of the Julia set. The computations are protected with the standard if __name__ == '__main__':... idiom. The image is computed by whole scanlines sub- mitting all these tasks at once using the map method. The result itera- tor yields scanlines in-order as the tasks complete. Finally, each scanline is dumped to disk. julia.py from mpi4py.futures import MPIPoolExecutor x0, x1, w = -2.0, +2.0, 640*2 y0, y1, h = -1.5, +1.5, 480*2 dx = (x1 - x0) / w dy = (y1 - y0) / h c = complex(0, 0.65) def julia(x, y): z = complex(x, y) n = 255 while abs(z) < 3 and n > 1: z = z**2 + c n -= 1 return n def julia_line(k): line = bytearray(w) y = y1 - k * dy for j in range(w): x = x0 + j * dx line[j] = julia(x, y) return line if __name__ == '__main__': with MPIPoolExecutor() as executor: image = executor.map(julia_line, range(h)) with open('julia.pgm', 'wb') as f: f.write(b'P5 %d %d %d\n' % (w, h, 255)) for line in image: f.write(line) The recommended way to execute the script is by using the mpiexec com- mand specifying one MPI process (master) and (optional but recommended) the desired MPI universe size, which determines the number of addi- tional dynamically spawned processes (workers). The MPI universe size is provided either by a batch system or set by the user via com- mand-line arguments to mpiexec or environment variables. Below we pro- vide examples for MPICH and Open MPI implementations [1]. In all of these examples, the mpiexec command launches a single master process running the Python interpreter and executing the main script. When re- quired, mpi4py.futures spawns the pool of 16 worker processes. The mas- ter submits tasks to the workers and waits for the results. The workers receive incoming tasks, execute them, and send back the results to the master. When using MPICH implementation or its derivatives based on the Hydra process manager, users can set the MPI universe size via the -usize ar- gument to mpiexec: $ mpiexec -n 1 -usize 17 python julia.py or, alternatively, by setting the MPIEXEC_UNIVERSE_SIZE environment variable: $ MPIEXEC_UNIVERSE_SIZE=17 mpiexec -n 1 python julia.py In the Open MPI implementation, the MPI universe size can be set via the -host argument to mpiexec: $ mpiexec -n 1 -host <hostname>:17 python julia.py Another way to specify the number of workers is to use the mpi4py.futures-specific environment variable MPI4PY_FUTURES_MAX_WORKERS: $ MPI4PY_FUTURES_MAX_WORKERS=16 mpiexec -n 1 python julia.py Note that in this case, the MPI universe size is ignored. Alternatively, users may decide to execute the script in a more tradi- tional way, that is, all the MPI processes are started at once. The user script is run under command-line control of mpi4py.futures passing the -m flag to the python executable: $ mpiexec -n 17 python -m mpi4py.futures julia.py As explained previously, the 17 processes are partitioned in one master and 16 workers. The master process executes the main script while the workers execute the tasks submitted by the master. [1] When using an MPI implementation other than MPICH or Open MPI, please check the documentation of the implementation and/or batch system for the ways to specify the desired MPI universe size. GIL See global interpreter lock. MPI4PY.UTIL New in version 3.1.0. The mpi4py.util package collects miscellaneous utilities within the in- tersection of Python and MPI. mpi4py.util.pkl5 New in version 3.1.0. pickle protocol 5 (see PEP 574) introduced support for out-of-band buf- fers, allowing for more efficient handling of certain object types with large memory footprints. MPI for Python uses the traditional in-band handling of buffers. This approach is appropriate for communicating non-buffer Python objects, or buffer-like objects with small memory footprints. For point-to-point communication, in-band buffer handling allows for the communication of a pickled stream with a single MPI message, at the expense of addi- tional CPU and memory overhead in the pickling and unpickling steps. The mpi4py.util.pkl5 module provides communicator wrapper classes reim- plementing pickle-based point-to-point communication methods using pickle protocol 5. Handling out-of-band buffers necessarily involve multiple MPI messages, thus increasing latency and hurting performance in case of small size data. However, in case of large size data, the zero-copy savings of out-of-band buffer handling more than offset the extra latency costs. Additionally, these wrapper methods overcome the infamous 2 GiB message count limit (MPI-1 to MPI-3). NOTE: Support for pickle protocol 5 is available in the pickle module within the Python standard library since Python 3.8. Previous Python 3 releases can use the pickle5 backport, which is available on PyPI and can be installed with: python -m pip install pickle5 class mpi4py.util.pkl5.Request(request=None) Request. Custom request class for nonblocking communications. NOTE: Request is not a subclass of mpi4py.MPI.Request Parameters request (Iterable[MPI.Request]) – Return type Request Free() Free a communication request. Return type None cancel() Cancel a communication request. Return type None get_status(status=None) Non-destructive test for the completion of a request. Parameters status (Optional[Status]) – Return type bool test(status=None) Test for the completion of a request. Parameters status (Optional[Status]) – Return type Tuple[bool, Optional[Any]] wait(status=None) Wait for a request to complete. Parameters status (Optional[Status]) – Return type Any classmethod testall(requests, statuses=None) Test for the completion of all requests. Classmethod classmethod waitall(requests, statuses=None) Wait for all requests to complete. Classmethod class mpi4py.util.pkl5.Message(message=None) Message. Custom message class for matching probes. NOTE: Message is not a subclass of mpi4py.MPI.Message Parameters message (Iterable[MPI.Message]) – Return type Message recv(status=None) Blocking receive of matched message. Parameters status (Optional[Status]) – Return type Any irecv() Nonblocking receive of matched message. Return type Request classmethod probe(comm, source=ANY_SOURCE, tag=ANY_TAG, sta- tus=None) Blocking test for a matched message. Classmethod classmethod iprobe(comm, source=ANY_SOURCE, tag=ANY_TAG, sta- tus=None) Nonblocking test for a matched message. Classmethod class mpi4py.util.pkl5.Comm Communicator. Base communicator wrapper class. send(obj, dest, tag=0) Blocking send in standard mode. Parameters • obj (Any) – • dest (int) – • tag (int) – Return type None bsend(obj, dest, tag=0) Blocking send in buffered mode. Parameters • obj (Any) – • dest (int) – • tag (int) – Return type None ssend(obj, dest, tag=0) Blocking send in synchronous mode. Parameters • obj (Any) – • dest (int) – • tag (int) – Return type None isend(obj, dest, tag=0) Nonblocking send in standard mode. Parameters • obj (Any) – • dest (int) – • tag (int) – Return type Request ibsend(obj, dest, tag=0) Nonblocking send in buffered mode. Parameters • obj (Any) – • dest (int) – • tag (int) – Return type Request issend(obj, dest, tag=0) Nonblocking send in synchronous mode. Parameters • obj (Any) – • dest (int) – • tag (int) – Return type Request recv(buf=None, source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking receive. Parameters • buf (Optional[Buffer]) – • source (int) – • tag (int) – • status (Optional[Status]) – Return type Any irecv(buf=None, source=ANY_SOURCE, tag=ANY_TAG) Nonblocking receive. WARNING: This method cannot be supported reliably and raises RuntimeError. Parameters • buf (Optional[Buffer]) – • source (int) – • tag (int) – Return type Request sendrecv(sendobj, dest, sendtag=0, recvbuf=None, source=ANY_SOURCE, recvtag=ANY_TAG, status=None) Send and receive. Parameters • sendobj (Any) – • dest (int) – • sendtag (int) – • recvbuf (Optional[Buffer]) – • source (int) – • recvtag (int) – • status (Optional[Status]) – Return type Any mprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking test for a matched message. Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Message improbe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Nonblocking test for a matched message. Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Optional[Message] bcast(obj, root=0) Broadcast. Parameters • obj (Any) – • root (int) – Return type Any class mpi4py.util.pkl5.Intracomm Intracommunicator. Intracommunicator wrapper class. class mpi4py.util.pkl5.Intercomm Intercommunicator. Intercommunicator wrapper class. Examples test-pkl5-1.py import numpy as np from mpi4py import MPI from mpi4py.util import pkl5 comm = pkl5.Intracomm(MPI.COMM_WORLD) # comm wrapper size = comm.Get_size() rank = comm.Get_rank() dst = (rank + 1) % size src = (rank - 1) % size sobj = np.full(1024**3, rank, dtype='i4') # > 4 GiB sreq = comm.isend(sobj, dst, tag=42) robj = comm.recv (None, src, tag=42) sreq.Free() assert np.min(robj) == src assert np.max(robj) == src test-pkl5-2.py import numpy as np from mpi4py import MPI from mpi4py.util import pkl5 comm = pkl5.Intracomm(MPI.COMM_WORLD) # comm wrapper size = comm.Get_size() rank = comm.Get_rank() dst = (rank + 1) % size src = (rank - 1) % size sobj = np.full(1024**3, rank, dtype='i4') # > 4 GiB sreq = comm.isend(sobj, dst, tag=42) status = MPI.Status() rmsg = comm.mprobe(status=status) assert status.Get_source() == src assert status.Get_tag() == 42 rreq = rmsg.irecv() robj = rreq.wait() sreq.Free() assert np.max(robj) == src assert np.min(robj) == src mpi4py.util.dtlib New in version 3.1.0. The mpi4py.util.dtlib module provides converter routines between NumPy and MPI datatypes. mpi4py.util.dtlib.from_numpy_dtype(dtype) Convert NumPy datatype to MPI datatype. Parameters dtype (numpy.typing.DTypeLike) – NumPy dtype-like object. Return type Datatype mpi4py.util.dtlib.to_numpy_dtype(datatype) Convert MPI datatype to NumPy datatype. Parameters datatype (Datatype) – MPI datatype. Return type numpy.dtype MPI4PY.RUN New in version 3.0.0. At import time, mpi4py initializes the MPI execution environment call- ing MPI_Init_thread() and installs an exit hook to automatically call MPI_Finalize() just before the Python process terminates. Additionally, mpi4py overrides the default ERRORS_ARE_FATAL error handler in favor of ERRORS_RETURN, which allows translating MPI errors in Python excep- tions. These departures from standard MPI behavior may be controver- sial, but are quite convenient within the highly dynamic Python pro- gramming environment. Third-party code using mpi4py can just from mpi4py import MPI and perform MPI calls without the tedious initializa- tion/finalization handling. MPI errors, once translated automatically to Python exceptions, can be dealt with the common try…except…finally clauses; unhandled MPI exceptions will print a traceback which helps in locating problems in source code. Unfortunately, the interplay of automatic MPI finalization and unhan- dled exceptions may lead to deadlocks. In unattended runs, these dead- locks will drain the battery of your laptop, or burn precious alloca- tion hours in your supercomputing facility. Consider the following snippet of Python code. Assume this code is stored in a standard Python script file and run with mpiexec in two or more processes. from mpi4py import MPI assert MPI.COMM_WORLD.Get_size() > 1 rank = MPI.COMM_WORLD.Get_rank() if rank == 0: 1/0 MPI.COMM_WORLD.send(None, dest=1, tag=42) elif rank == 1: MPI.COMM_WORLD.recv(source=0, tag=42) Process 0 raises ZeroDivisionError exception before performing a send call to process 1. As the exception is not handled, the Python inter- preter running in process 0 will proceed to exit with non-zero status. However, as mpi4py installed a finalizer hook to call MPI_Finalize() before exit, process 0 will block waiting for other processes to also enter the MPI_Finalize() call. Meanwhile, process 1 will block waiting for a message to arrive from process 0, thus never reaching to MPI_Fi- nalize(). The whole MPI execution environment is irremediably in a deadlock state. To alleviate this issue, mpi4py offers a simple, alternative command line execution mechanism based on using the -m flag and implemented with the runpy module. To use this features, Python code should be run passing -m mpi4py in the command line invoking the Python interpreter. In case of unhandled exceptions, the finalizer hook will call MPI_Abort() on the MPI_COMM_WORLD communicator, thus effectively abort- ing the MPI execution environment. WARNING: When a process is forced to abort, resources (e.g. open files) are not cleaned-up and any registered finalizers (either with the atexit module, the Python C/API function Py_AtExit(), or even the C stan- dard library function atexit()) will not be executed. Thus, aborting execution is an extremely impolite way of ensuring process termina- tion. However, MPI provides no other mechanism to recover from a deadlock state. Interface options The use of -m mpi4py to execute Python code on the command line resem- bles that of the Python interpreter. • mpiexec -n numprocs python -m mpi4py pyfile [arg] ... • mpiexec -n numprocs python -m mpi4py -m mod [arg] ... • mpiexec -n numprocs python -m mpi4py -c cmd [arg] ... • mpiexec -n numprocs python -m mpi4py - [arg] ... <pyfile> Execute the Python code contained in pyfile, which must be a filesystem path referring to either a Python file, a directory containing a __main__.py file, or a zipfile containing a __main__.py file. -m <mod> Search sys.path for the named module mod and execute its con- tents. -c <cmd> Execute the Python code in the cmd string command. - Read commands from standard input (sys.stdin). SEE ALSO: python:using-on-cmdline Documentation on Python command line interface. REFERENCE ┌───────────┬────────────────────────────┐ │mpi4py.MPI │ Message Passing Interface. │ └───────────┴────────────────────────────┘ mpi4py.MPI Message Passing Interface. Classes ┌───────────────────────────┬────────────────────────────┐ │Cartcomm([comm]) │ Cartesian topology intra- │ │ │ communicator │ ├───────────────────────────┼────────────────────────────┤ │Comm([comm]) │ Communicator │ ├───────────────────────────┼────────────────────────────┤ │Datatype([datatype]) │ Datatype object │ ├───────────────────────────┼────────────────────────────┤ │Distgraphcomm([comm]) │ Distributed graph topology │ │ │ intracommunicator │ ├───────────────────────────┼────────────────────────────┤ │Errhandler([errhandler]) │ Error handler │ ├───────────────────────────┼────────────────────────────┤ │File([file]) │ File handle │ ├───────────────────────────┼────────────────────────────┤ │Graphcomm([comm]) │ General graph topology in- │ │ │ tracommunicator │ ├───────────────────────────┼────────────────────────────┤ │Grequest([request]) │ Generalized request handle │ ├───────────────────────────┼────────────────────────────┤ │Group([group]) │ Group of processes │ ├───────────────────────────┼────────────────────────────┤ │Info([info]) │ Info object │ ├───────────────────────────┼────────────────────────────┤ │Intercomm([comm]) │ Intercommunicator │ ├───────────────────────────┼────────────────────────────┤ │Intracomm([comm]) │ Intracommunicator │ ├───────────────────────────┼────────────────────────────┤ │Message([message]) │ Matched message handle │ └───────────────────────────┴────────────────────────────┘ │Op([op]) │ Operation object │ ├───────────────────────────┼────────────────────────────┤ │Pickle([dumps, loads, pro- │ Pickle/unpickle Python ob- │ │tocol]) │ jects │ ├───────────────────────────┼────────────────────────────┤ │Prequest([request]) │ Persistent request handle │ ├───────────────────────────┼────────────────────────────┤ │Request([request]) │ Request handle │ ├───────────────────────────┼────────────────────────────┤ │Status([status]) │ Status object │ ├───────────────────────────┼────────────────────────────┤ │Topocomm([comm]) │ Topology intracommunicator │ ├───────────────────────────┼────────────────────────────┤ │Win([win]) │ Window handle │ ├───────────────────────────┼────────────────────────────┤ │memory(buf) │ Memory buffer │ └───────────────────────────┴────────────────────────────┘ mpi4py.MPI.Cartcomm class mpi4py.MPI.Cartcomm(comm=None) Bases: mpi4py.MPI.Topocomm Cartesian topology intracommunicator Parameters comm (Optional[Cartcomm]) – Return type Cartcomm static __new__(cls, comm=None) Parameters comm (Optional[Cartcomm]) – Return type Cartcomm Methods Summary ┌───────────────────────┬────────────────────────────┐ │Get_cart_rank(coords) │ Translate logical coordi- │ │ │ nates to ranks │ ├───────────────────────┼────────────────────────────┤ │Get_coords(rank) │ Translate ranks to logical │ │ │ coordinates │ ├───────────────────────┼────────────────────────────┤ │Get_dim() │ Return number of dimen- │ │ │ sions │ ├───────────────────────┼────────────────────────────┤ │Get_topo() │ Return information on the │ │ │ cartesian topology │ ├───────────────────────┼────────────────────────────┤ │Shift(direction, disp) │ Return a tuple (source, │ │ │ dest) of process ranks for │ │ │ data shifting with │ │ │ Comm.Sendrecv() │ ├───────────────────────┼────────────────────────────┤ │Sub(remain_dims) │ Return cartesian communi- │ │ │ cators that form lower-di- │ │ │ mensional subgrids │ └───────────────────────┴────────────────────────────┘ Attributes Summary ┌────────┬──────────────────────┐ │coords │ coordinates │ ├────────┼──────────────────────┤ │dim │ number of dimensions │ ├────────┼──────────────────────┤ │dims │ dimensions │ ├────────┼──────────────────────┤ │ndim │ number of dimensions │ ├────────┼──────────────────────┤ │periods │ periodicity │ ├────────┼──────────────────────┤ │topo │ topology information │ └────────┴──────────────────────┘ Methods Documentation Get_cart_rank(coords) Translate logical coordinates to ranks Parameters coords (Sequence[int]) – Return type int Get_coords(rank) Translate ranks to logical coordinates Parameters rank (int) – Return type List[int] Get_dim() Return number of dimensions Return type int Get_topo() Return information on the cartesian topology Return type Tuple[List[int], List[int], List[int]] Shift(direction, disp) Return a tuple (source, dest) of process ranks for data shifting with Comm.Sendrecv() Parameters • direction (int) – • disp (int) – Return type Tuple[int, int] Sub(remain_dims) Return cartesian communicators that form lower-dimen- sional subgrids Parameters remain_dims (Sequence[bool]) – Return type Cartcomm Attributes Documentation coords coordinates dim number of dimensions dims dimensions ndim number of dimensions periods periodicity topo topology information mpi4py.MPI.Comm class mpi4py.MPI.Comm(comm=None) Bases: object Communicator Parameters comm (Optional[Comm]) – Return type Comm static __new__(cls, comm=None) Parameters comm (Optional[Comm]) – Return type Comm Methods Summary ┌───────────────────────────────┬────────────────────────────┐ │Abort([errorcode]) │ Terminate MPI execution │ │ │ environment │ ├───────────────────────────────┼────────────────────────────┤ │Allgather(sendbuf, │ Gather to All, gather data │ │recvbuf) │ from all processes and │ │ │ distribute it to all other │ │ │ processes in a group │ ├───────────────────────────────┼────────────────────────────┤ │Allgatherv(sendbuf, │ Gather to All Vector, │ │recvbuf) │ gather data from all pro- │ │ │ cesses and distribute it │ │ │ to all other processes in │ │ │ a group providing differ- │ │ │ ent amount of data and │ │ │ displacements │ ├───────────────────────────────┼────────────────────────────┤ │Allreduce(sendbuf, │ Reduce to All │ │recvbuf[, op]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Alltoall(sendbuf, recvbuf) │ All to All Scatter/Gather, │ │ │ send data from all to all │ │ │ processes in a group │ ├───────────────────────────────┼────────────────────────────┤ │Alltoallv(sendbuf, │ All to All Scatter/Gather │ │recvbuf) │ Vector, send data from all │ │ │ to all processes in a │ │ │ group providing different │ │ │ amount of data and dis- │ │ │ placements │ ├───────────────────────────────┼────────────────────────────┤ │Alltoallw(sendbuf, │ Generalized All-to-All │ │recvbuf) │ communication allowing │ │ │ different counts, dis- │ │ │ placements and datatypes │ │ │ for each partner │ ├───────────────────────────────┼────────────────────────────┤ │Barrier() │ Barrier synchronization │ ├───────────────────────────────┼────────────────────────────┤ │Bcast(buf[, root]) │ Broadcast a message from │ │ │ one process to all other │ │ │ processes in a group │ ├───────────────────────────────┼────────────────────────────┤ │Bsend(buf, dest[, tag]) │ Blocking send in buffered │ │ │ mode │ ├───────────────────────────────┼────────────────────────────┤ │Bsend_init(buf, dest[, │ Persistent request for a │ │tag]) │ send in buffered mode │ ├───────────────────────────────┼────────────────────────────┤ │Call_errhandler(errorcode) │ Call the error handler in- │ │ │ stalled on a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Clone() │ Clone an existing communi- │ │ │ cator │ ├───────────────────────────────┼────────────────────────────┤ │Compare(comm1, comm2) │ Compare two communicators │ ├───────────────────────────────┼────────────────────────────┤ │Create(group) │ Create communicator from │ │ │ group │ ├───────────────────────────────┼────────────────────────────┤ │Create_group(group[, tag]) │ Create communicator from │ │ │ group │ └───────────────────────────────┴────────────────────────────┘ │Create_keyval([copy_fn, │ Create a new attribute key │ │delete_fn, nopython]) │ for communicators │ ├───────────────────────────────┼────────────────────────────┤ │Delete_attr(keyval) │ Delete attribute value as- │ │ │ sociated with a key │ ├───────────────────────────────┼────────────────────────────┤ │Disconnect() │ Disconnect from a communi- │ │ │ cator │ ├───────────────────────────────┼────────────────────────────┤ │Dup([info]) │ Duplicate an existing com- │ │ │ municator │ ├───────────────────────────────┼────────────────────────────┤ │Dup_with_info(info) │ Duplicate an existing com- │ │ │ municator │ ├───────────────────────────────┼────────────────────────────┤ │Free() │ Free a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Free_keyval(keyval) │ Free an attribute key for │ │ │ communicators │ ├───────────────────────────────┼────────────────────────────┤ │Gather(sendbuf, recvbuf[, │ Gather together values │ │root]) │ from a group of processes │ ├───────────────────────────────┼────────────────────────────┤ │Gatherv(sendbuf, recvbuf[, │ Gather Vector, gather data │ │root]) │ to one process from all │ │ │ other processes in a group │ │ │ providing different amount │ │ │ of data and displacements │ │ │ at the receiving sides │ ├───────────────────────────────┼────────────────────────────┤ │Get_attr(keyval) │ Retrieve attribute value │ │ │ by key │ ├───────────────────────────────┼────────────────────────────┤ │Get_errhandler() │ Get the error handler for │ │ │ a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Get_group() │ Access the group associ- │ │ │ ated with a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Get_info() │ Return the hints for a │ │ │ communicator that are cur- │ │ │ rently in use │ ├───────────────────────────────┼────────────────────────────┤ │Get_name() │ Get the print name for │ │ │ this communicator │ ├───────────────────────────────┼────────────────────────────┤ │Get_parent() │ Return the parent inter- │ │ │ communicator for this │ │ │ process │ ├───────────────────────────────┼────────────────────────────┤ │Get_rank() │ Return the rank of this │ │ │ process in a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Get_size() │ Return the number of pro- │ │ │ cesses in a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Get_topology() │ Determine the type of │ │ │ topology (if any) associ- │ │ │ ated with a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Iallgather(sendbuf, │ Nonblocking Gather to All │ │recvbuf) │ │ ├───────────────────────────────┼────────────────────────────┤ │Iallgatherv(sendbuf, │ Nonblocking Gather to All │ │recvbuf) │ Vector │ ├───────────────────────────────┼────────────────────────────┤ │Iallreduce(sendbuf, │ Nonblocking Reduce to All │ │recvbuf[, op]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Ialltoall(sendbuf, │ Nonblocking All to All │ │recvbuf) │ Scatter/Gather │ ├───────────────────────────────┼────────────────────────────┤ │Ialltoallv(sendbuf, │ Nonblocking All to All │ │recvbuf) │ Scatter/Gather Vector │ ├───────────────────────────────┼────────────────────────────┤ │Ialltoallw(sendbuf, │ Nonblocking Generalized │ │recvbuf) │ All-to-All │ └───────────────────────────────┴────────────────────────────┘ │Ibarrier() │ Nonblocking Barrier │ ├───────────────────────────────┼────────────────────────────┤ │Ibcast(buf[, root]) │ Nonblocking Broadcast │ ├───────────────────────────────┼────────────────────────────┤ │Ibsend(buf, dest[, tag]) │ Nonblocking send in │ │ │ buffered mode │ ├───────────────────────────────┼────────────────────────────┤ │Idup() │ Nonblocking duplicate an │ │ │ existing communicator │ ├───────────────────────────────┼────────────────────────────┤ │Igather(sendbuf, recvbuf[, │ Nonblocking Gather │ │root]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Igatherv(sendbuf, │ Nonblocking Gather Vector │ │recvbuf[, root]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Improbe([source, tag, sta- │ Nonblocking test for a │ │tus]) │ matched message │ ├───────────────────────────────┼────────────────────────────┤ │Iprobe([source, tag, sta- │ Nonblocking test for a │ │tus]) │ message │ ├───────────────────────────────┼────────────────────────────┤ │Irecv(buf[, source, tag]) │ Nonblocking receive │ ├───────────────────────────────┼────────────────────────────┤ │Ireduce(sendbuf, recvbuf[, │ Nonblocking Reduce to Root │ │op, root]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Ireduce_scatter(sendbuf, │ Nonblocking Reduce-Scatter │ │recvbuf[, ...]) │ (vector version) │ ├───────────────────────────────┼────────────────────────────┤ │Ireduce_scatter_block(sendbuf, │ Nonblocking Reduce-Scatter │ │recvbuf[, op]) │ Block (regular, non-vector │ │ │ version) │ ├───────────────────────────────┼────────────────────────────┤ │Irsend(buf, dest[, tag]) │ Nonblocking send in ready │ │ │ mode │ ├───────────────────────────────┼────────────────────────────┤ │Is_inter() │ Test to see if a comm is │ │ │ an intercommunicator │ ├───────────────────────────────┼────────────────────────────┤ │Is_intra() │ Test to see if a comm is │ │ │ an intracommunicator │ ├───────────────────────────────┼────────────────────────────┤ │Iscatter(sendbuf, recvbuf[, │ Nonblocking Scatter │ │root]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Iscatterv(sendbuf, recvbuf[, │ Nonblocking Scatter Vector │ │root]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Isend(buf, dest[, tag]) │ Nonblocking send │ ├───────────────────────────────┼────────────────────────────┤ │Issend(buf, dest[, tag]) │ Nonblocking send in syn- │ │ │ chronous mode │ ├───────────────────────────────┼────────────────────────────┤ │Join(fd) │ Create a intercommunicator │ │ │ by joining two processes │ │ │ connected by a socket │ ├───────────────────────────────┼────────────────────────────┤ │Mprobe([source, tag, status]) │ Blocking test for a │ │ │ matched message │ ├───────────────────────────────┼────────────────────────────┤ │Probe([source, tag, status]) │ Blocking test for a mes- │ │ │ sage │ ├───────────────────────────────┼────────────────────────────┤ │Recv(buf[, source, tag, sta- │ Blocking receive │ │tus]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Recv_init(buf[, source, tag]) │ Create a persistent re- │ │ │ quest for a receive │ ├───────────────────────────────┼────────────────────────────┤ │Reduce(sendbuf, recvbuf[, op, │ Reduce to Root │ │root]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Reduce_scatter(sendbuf, │ Reduce-Scatter (vector │ │recvbuf[, ...]) │ version) │ └───────────────────────────────┴────────────────────────────┘ │Reduce_scatter_block(sendbuf, │ Reduce-Scatter Block (reg- │ │recvbuf[, op]) │ ular, non-vector version) │ ├───────────────────────────────┼────────────────────────────┤ │Rsend(buf, dest[, tag]) │ Blocking send in ready │ │ │ mode │ ├───────────────────────────────┼────────────────────────────┤ │Rsend_init(buf, dest[, tag]) │ Persistent request for a │ │ │ send in ready mode │ ├───────────────────────────────┼────────────────────────────┤ │Scatter(sendbuf, recvbuf[, │ Scatter data from one │ │root]) │ process to all other pro- │ │ │ cesses in a group │ ├───────────────────────────────┼────────────────────────────┤ │Scatterv(sendbuf, recvbuf[, │ Scatter Vector, scatter │ │root]) │ data from one process to │ │ │ all other processes in a │ │ │ group providing different │ │ │ amount of data and dis- │ │ │ placements at the sending │ │ │ side │ ├───────────────────────────────┼────────────────────────────┤ │Send(buf, dest[, tag]) │ Blocking send │ ├───────────────────────────────┼────────────────────────────┤ │Send_init(buf, dest[, tag]) │ Create a persistent re- │ │ │ quest for a standard send │ ├───────────────────────────────┼────────────────────────────┤ │Sendrecv(sendbuf, dest[, send- │ Send and receive a message │ │tag, recvbuf, ...]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Sendrecv_replace(buf, dest[, │ Send and receive a message │ │sendtag, ...]) │ │ ├───────────────────────────────┼────────────────────────────┤ │Set_attr(keyval, attrval) │ Store attribute value as- │ │ │ sociated with a key │ ├───────────────────────────────┼────────────────────────────┤ │Set_errhandler(errhandler) │ Set the error handler for │ │ │ a communicator │ ├───────────────────────────────┼────────────────────────────┤ │Set_info(info) │ Set new values for the │ │ │ hints associated with a │ │ │ communicator │ ├───────────────────────────────┼────────────────────────────┤ │Set_name(name) │ Set the print name for │ │ │ this communicator │ ├───────────────────────────────┼────────────────────────────┤ │Split([color, key]) │ Split communicator by │ │ │ color and key │ ├───────────────────────────────┼────────────────────────────┤ │Split_type(split_type[, key, │ Split communicator by │ │info]) │ split type │ ├───────────────────────────────┼────────────────────────────┤ │Ssend(buf, dest[, tag]) │ Blocking send in synchro- │ │ │ nous mode │ ├───────────────────────────────┼────────────────────────────┤ │Ssend_init(buf, dest[, tag]) │ Persistent request for a │ │ │ send in synchronous mode │ ├───────────────────────────────┼────────────────────────────┤ │allgather(sendobj) │ Gather to All │ ├───────────────────────────────┼────────────────────────────┤ │allreduce(sendobj[, op]) │ Reduce to All │ ├───────────────────────────────┼────────────────────────────┤ │alltoall(sendobj) │ All to All Scatter/Gather │ ├───────────────────────────────┼────────────────────────────┤ │barrier() │ Barrier │ ├───────────────────────────────┼────────────────────────────┤ │bcast(obj[, root]) │ Broadcast │ ├───────────────────────────────┼────────────────────────────┤ │bsend(obj, dest[, tag]) │ Send in buffered mode │ ├───────────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────────┼────────────────────────────┤ │gather(sendobj[, root]) │ Gather │ ├───────────────────────────────┼────────────────────────────┤ │ibsend(obj, dest[, tag]) │ Nonblocking send in │ │ │ buffered mode │ └───────────────────────────────┴────────────────────────────┘ │improbe([source, tag, status]) │ Nonblocking test for a │ │ │ matched message │ ├───────────────────────────────┼────────────────────────────┤ │iprobe([source, tag, status]) │ Nonblocking test for a │ │ │ message │ ├───────────────────────────────┼────────────────────────────┤ │irecv([buf, source, tag]) │ Nonblocking receive │ ├───────────────────────────────┼────────────────────────────┤ │isend(obj, dest[, tag]) │ Nonblocking send │ ├───────────────────────────────┼────────────────────────────┤ │issend(obj, dest[, tag]) │ Nonblocking send in syn- │ │ │ chronous mode │ ├───────────────────────────────┼────────────────────────────┤ │mprobe([source, tag, status]) │ Blocking test for a │ │ │ matched message │ ├───────────────────────────────┼────────────────────────────┤ │probe([source, tag, status]) │ Blocking test for a mes- │ │ │ sage │ ├───────────────────────────────┼────────────────────────────┤ │py2f() │ │ ├───────────────────────────────┼────────────────────────────┤ │recv([buf, source, tag, sta- │ Receive │ │tus]) │ │ ├───────────────────────────────┼────────────────────────────┤ │reduce(sendobj[, op, root]) │ Reduce to Root │ ├───────────────────────────────┼────────────────────────────┤ │scatter(sendobj[, root]) │ Scatter │ ├───────────────────────────────┼────────────────────────────┤ │send(obj, dest[, tag]) │ Send │ ├───────────────────────────────┼────────────────────────────┤ │sendrecv(sendobj, dest[, send- │ Send and Receive │ │tag, recvbuf, ...]) │ │ ├───────────────────────────────┼────────────────────────────┤ │ssend(obj, dest[, tag]) │ Send in synchronous mode │ └───────────────────────────────┴────────────────────────────┘ Attributes Summary ┌─────────┬────────────────────────────┐ │group │ communicator group │ ├─────────┼────────────────────────────┤ │info │ communicator info │ ├─────────┼────────────────────────────┤ │is_inter │ is intercommunicator │ ├─────────┼────────────────────────────┤ │is_intra │ is intracommunicator │ ├─────────┼────────────────────────────┤ │is_topo │ is a topology communicator │ ├─────────┼────────────────────────────┤ │name │ communicator name │ ├─────────┼────────────────────────────┤ │rank │ rank of this process in │ │ │ communicator │ ├─────────┼────────────────────────────┤ │size │ number of processes in │ │ │ communicator │ ├─────────┼────────────────────────────┤ │topology │ communicator topology type │ └─────────┴────────────────────────────┘ Methods Documentation Abort(errorcode=0) Terminate MPI execution environment WARNING: This is a direct call, use it with care!!!. Parameters errorcode (int) – Return type NoReturn Allgather(sendbuf, recvbuf) Gather to All, gather data from all processes and dis- tribute it to all other processes in a group Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpecB) – Return type None Allgatherv(sendbuf, recvbuf) Gather to All Vector, gather data from all processes and distribute it to all other processes in a group providing different amount of data and displacements Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpecV) – Return type None Allreduce(sendbuf, recvbuf, op=SUM) Reduce to All Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • op (Op) – Return type None Alltoall(sendbuf, recvbuf) All to All Scatter/Gather, send data from all to all pro- cesses in a group Parameters • sendbuf (Union[BufSpecB, InPlace]) – • recvbuf (BufSpecB) – Return type None Alltoallv(sendbuf, recvbuf) All to All Scatter/Gather Vector, send data from all to all processes in a group providing different amount of data and displacements Parameters • sendbuf (Union[BufSpecV, InPlace]) – • recvbuf (BufSpecV) – Return type None Alltoallw(sendbuf, recvbuf) Generalized All-to-All communication allowing different counts, displacements and datatypes for each partner Parameters • sendbuf (Union[BufSpecW, InPlace]) – • recvbuf (BufSpecW) – Return type None Barrier() Barrier synchronization Return type None Bcast(buf, root=0) Broadcast a message from one process to all other pro- cesses in a group Parameters • buf (BufSpec) – • root (int) – Return type None Bsend(buf, dest, tag=0) Blocking send in buffered mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type None Bsend_init(buf, dest, tag=0) Persistent request for a send in buffered mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Request Call_errhandler(errorcode) Call the error handler installed on a communicator Parameters errorcode (int) – Return type None Clone() Clone an existing communicator Return type Comm classmethod Compare(comm1, comm2) Compare two communicators Parameters • comm1 (Comm) – • comm2 (Comm) – Return type int Create(group) Create communicator from group Parameters group (Group) – Return type Comm Create_group(group, tag=0) Create communicator from group Parameters • group (Group) – • tag (int) – Return type Comm classmethod Create_keyval(copy_fn=None, delete_fn=None, nopy- thon=False) Create a new attribute key for communicators Parameters • copy_fn (Optional[Callable[[Comm, int, Any], Any]]) – • delete_fn (Optional[Callable[[Comm, int, Any], None]]) – • nopython (bool) – Return type int Delete_attr(keyval) Delete attribute value associated with a key Parameters keyval (int) – Return type None Disconnect() Disconnect from a communicator Return type None Dup(info=None) Duplicate an existing communicator Parameters info (Optional[Info]) – Return type Comm Dup_with_info(info) Duplicate an existing communicator Parameters info (Info) – Return type Comm Free() Free a communicator Return type None classmethod Free_keyval(keyval) Free an attribute key for communicators Parameters keyval (int) – Return type int Gather(sendbuf, recvbuf, root=0) Gather together values from a group of processes Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (Optional[BufSpecB]) – • root (int) – Return type None Gatherv(sendbuf, recvbuf, root=0) Gather Vector, gather data to one process from all other processes in a group providing different amount of data and displacements at the receiving sides Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (Optional[BufSpecV]) – • root (int) – Return type None Get_attr(keyval) Retrieve attribute value by key Parameters keyval (int) – Return type Optional[Union[int, Any]] Get_errhandler() Get the error handler for a communicator Return type Errhandler Get_group() Access the group associated with a communicator Return type Group Get_info() Return the hints for a communicator that are currently in use Return type Info Get_name() Get the print name for this communicator Return type str classmethod Get_parent() Return the parent intercommunicator for this process Return type Intercomm Get_rank() Return the rank of this process in a communicator Return type int Get_size() Return the number of processes in a communicator Return type int Get_topology() Determine the type of topology (if any) associated with a communicator Return type int Iallgather(sendbuf, recvbuf) Nonblocking Gather to All Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpecB) – Return type Request Iallgatherv(sendbuf, recvbuf) Nonblocking Gather to All Vector Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpecV) – Return type Request Iallreduce(sendbuf, recvbuf, op=SUM) Nonblocking Reduce to All Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • op (Op) – Return type Request Ialltoall(sendbuf, recvbuf) Nonblocking All to All Scatter/Gather Parameters • sendbuf (Union[BufSpecB, InPlace]) – • recvbuf (BufSpecB) – Return type Request Ialltoallv(sendbuf, recvbuf) Nonblocking All to All Scatter/Gather Vector Parameters • sendbuf (Union[BufSpecV, InPlace]) – • recvbuf (BufSpecV) – Return type Request Ialltoallw(sendbuf, recvbuf) Nonblocking Generalized All-to-All Parameters • sendbuf (Union[BufSpecW, InPlace]) – • recvbuf (BufSpecW) – Return type Request Ibarrier() Nonblocking Barrier Return type Request Ibcast(buf, root=0) Nonblocking Broadcast Parameters • buf (BufSpec) – • root (int) – Return type Request Ibsend(buf, dest, tag=0) Nonblocking send in buffered mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Request Idup() Nonblocking duplicate an existing communicator Return type Tuple[Comm, Request] Igather(sendbuf, recvbuf, root=0) Nonblocking Gather Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (Optional[BufSpecB]) – • root (int) – Return type Request Igatherv(sendbuf, recvbuf, root=0) Nonblocking Gather Vector Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (Optional[BufSpecV]) – • root (int) – Return type Request Improbe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Nonblocking test for a matched message Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Optional[Message] Iprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Nonblocking test for a message Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type bool Irecv(buf, source=ANY_SOURCE, tag=ANY_TAG) Nonblocking receive Parameters • buf (BufSpec) – • source (int) – • tag (int) – Return type Request Ireduce(sendbuf, recvbuf, op=SUM, root=0) Nonblocking Reduce to Root Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (Optional[BufSpec]) – • op (Op) – • root (int) – Return type Request Ireduce_scatter(sendbuf, recvbuf, recvcounts=None, op=SUM) Nonblocking Reduce-Scatter (vector version) Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • recvcounts (Optional[Sequence[int]]) – • op (Op) – Return type Request Ireduce_scatter_block(sendbuf, recvbuf, op=SUM) Nonblocking Reduce-Scatter Block (regular, non-vector version) Parameters • sendbuf (Union[BufSpecB, InPlace]) – • recvbuf (Union[BufSpec, BufSpecB]) – • op (Op) – Return type Request Irsend(buf, dest, tag=0) Nonblocking send in ready mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Request Is_inter() Test to see if a comm is an intercommunicator Return type bool Is_intra() Test to see if a comm is an intracommunicator Return type bool Iscatter(sendbuf, recvbuf, root=0) Nonblocking Scatter Parameters • sendbuf (Optional[BufSpecB]) – • recvbuf (Union[BufSpec, InPlace]) – • root (int) – Return type Request Iscatterv(sendbuf, recvbuf, root=0) Nonblocking Scatter Vector Parameters • sendbuf (Optional[BufSpecV]) – • recvbuf (Union[BufSpec, InPlace]) – • root (int) – Return type Request Isend(buf, dest, tag=0) Nonblocking send Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Request Issend(buf, dest, tag=0) Nonblocking send in synchronous mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Request classmethod Join(fd) Create a intercommunicator by joining two processes con- nected by a socket Parameters fd (int) – Return type Intercomm Mprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking test for a matched message Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Message Probe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking test for a message NOTE: This function blocks until the message arrives. Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Literal[True] Recv(buf, source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking receive NOTE: This function blocks until the message is received Parameters • buf (BufSpec) – • source (int) – • tag (int) – • status (Optional[Status]) – Return type None Recv_init(buf, source=ANY_SOURCE, tag=ANY_TAG) Create a persistent request for a receive Parameters • buf (BufSpec) – • source (int) – • tag (int) – Return type Prequest Reduce(sendbuf, recvbuf, op=SUM, root=0) Reduce to Root Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (Optional[BufSpec]) – • op (Op) – • root (int) – Return type None Reduce_scatter(sendbuf, recvbuf, recvcounts=None, op=SUM) Reduce-Scatter (vector version) Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • recvcounts (Optional[Sequence[int]]) – • op (Op) – Return type None Reduce_scatter_block(sendbuf, recvbuf, op=SUM) Reduce-Scatter Block (regular, non-vector version) Parameters • sendbuf (Union[BufSpecB, InPlace]) – • recvbuf (Union[BufSpec, BufSpecB]) – • op (Op) – Return type None Rsend(buf, dest, tag=0) Blocking send in ready mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type None Rsend_init(buf, dest, tag=0) Persistent request for a send in ready mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Request Scatter(sendbuf, recvbuf, root=0) Scatter data from one process to all other processes in a group Parameters • sendbuf (Optional[BufSpecB]) – • recvbuf (Union[BufSpec, InPlace]) – • root (int) – Return type None Scatterv(sendbuf, recvbuf, root=0) Scatter Vector, scatter data from one process to all other processes in a group providing different amount of data and displacements at the sending side Parameters • sendbuf (Optional[BufSpecV]) – • recvbuf (Union[BufSpec, InPlace]) – • root (int) – Return type None Send(buf, dest, tag=0) Blocking send NOTE: This function may block until the message is received. Whether or not Send blocks depends on several factors and is implementation dependent Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type None Send_init(buf, dest, tag=0) Create a persistent request for a standard send Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Prequest Sendrecv(sendbuf, dest, sendtag=0, recvbuf=None, source=ANY_SOURCE, recvtag=ANY_TAG, status=None) Send and receive a message NOTE: This function is guaranteed not to deadlock in situa- tions where pairs of blocking sends and receives may deadlock. CAUTION: A common mistake when using this function is to mis- match the tags with the source and destination ranks, which can result in deadlock. Parameters • sendbuf (BufSpec) – • dest (int) – • sendtag (int) – • recvbuf (BufSpec) – • source (int) – • recvtag (int) – • status (Optional[Status]) – Return type None Sendrecv_replace(buf, dest, sendtag=0, source=ANY_SOURCE, recv- tag=ANY_TAG, status=None) Send and receive a message NOTE: This function is guaranteed not to deadlock in situa- tions where pairs of blocking sends and receives may deadlock. CAUTION: A common mistake when using this function is to mis- match the tags with the source and destination ranks, which can result in deadlock. Parameters • buf (BufSpec) – • dest (int) – • sendtag (int) – • source (int) – • recvtag (int) – • status (Optional[Status]) – Return type None Set_attr(keyval, attrval) Store attribute value associated with a key Parameters • keyval (int) – • attrval (Any) – Return type None Set_errhandler(errhandler) Set the error handler for a communicator Parameters errhandler (Errhandler) – Return type None Set_info(info) Set new values for the hints associated with a communica- tor Parameters info (Info) – Return type None Set_name(name) Set the print name for this communicator Parameters name (str) – Return type None Split(color=0, key=0) Split communicator by color and key Parameters • color (int) – • key (int) – Return type Comm Split_type(split_type, key=0, info=INFO_NULL) Split communicator by split type Parameters • split_type (int) – • key (int) – • info (Info) – Return type Comm Ssend(buf, dest, tag=0) Blocking send in synchronous mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type None Ssend_init(buf, dest, tag=0) Persistent request for a send in synchronous mode Parameters • buf (BufSpec) – • dest (int) – • tag (int) – Return type Request allgather(sendobj) Gather to All Parameters sendobj (Any) – Return type List[Any] allreduce(sendobj, op=SUM) Reduce to All Parameters • sendobj (Any) – • op (Union[Op, Callable[[Any, Any], Any]]) – Return type Any alltoall(sendobj) All to All Scatter/Gather Parameters sendobj (Sequence[Any]) – Return type List[Any] barrier() Barrier Return type None bcast(obj, root=0) Broadcast Parameters • obj (Any) – • root (int) – Return type Any bsend(obj, dest, tag=0) Send in buffered mode Parameters • obj (Any) – • dest (int) – • tag (int) – Return type None classmethod f2py(arg) Parameters arg (int) – Return type Comm gather(sendobj, root=0) Gather Parameters • sendobj (Any) – • root (int) – Return type Optional[List[Any]] ibsend(obj, dest, tag=0) Nonblocking send in buffered mode Parameters • obj (Any) – • dest (int) – • tag (int) – Return type Request improbe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Nonblocking test for a matched message Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Optional[Message] iprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Nonblocking test for a message Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type bool irecv(buf=None, source=ANY_SOURCE, tag=ANY_TAG) Nonblocking receive Parameters • buf (Optional[Buffer]) – • source (int) – • tag (int) – Return type Request isend(obj, dest, tag=0) Nonblocking send Parameters • obj (Any) – • dest (int) – • tag (int) – Return type Request issend(obj, dest, tag=0) Nonblocking send in synchronous mode Parameters • obj (Any) – • dest (int) – • tag (int) – Return type Request mprobe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking test for a matched message Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Message probe(source=ANY_SOURCE, tag=ANY_TAG, status=None) Blocking test for a message Parameters • source (int) – • tag (int) – • status (Optional[Status]) – Return type Literal[True] py2f() Return type int recv(buf=None, source=ANY_SOURCE, tag=ANY_TAG, status=None) Receive Parameters • buf (Optional[Buffer]) – • source (int) – • tag (int) – • status (Optional[Status]) – Return type Any reduce(sendobj, op=SUM, root=0) Reduce to Root Parameters • sendobj (Any) – • op (Union[Op, Callable[[Any, Any], Any]]) – • root (int) – Return type Optional[Any] scatter(sendobj, root=0) Scatter Parameters • sendobj (Sequence[Any]) – • root (int) – Return type Any send(obj, dest, tag=0) Send Parameters • obj (Any) – • dest (int) – • tag (int) – Return type None sendrecv(sendobj, dest, sendtag=0, recvbuf=None, source=ANY_SOURCE, recvtag=ANY_TAG, status=None) Send and Receive Parameters • sendobj (Any) – • dest (int) – • sendtag (int) – • recvbuf (Optional[Buffer]) – • source (int) – • recvtag (int) – • status (Optional[Status]) – Return type Any ssend(obj, dest, tag=0) Send in synchronous mode Parameters • obj (Any) – • dest (int) – • tag (int) – Return type None Attributes Documentation group communicator group info communicator info is_inter is intercommunicator is_intra is intracommunicator is_topo is a topology communicator name communicator name rank rank of this process in communicator size number of processes in communicator topology communicator topology type mpi4py.MPI.Datatype class mpi4py.MPI.Datatype(datatype=None) Bases: object Datatype object Parameters datatype (Optional[Datatype]) – Return type Datatype static __new__(cls, datatype=None) Parameters datatype (Optional[Datatype]) – Return type Datatype Methods Summary ┌───────────────────────────────────┬────────────────────────────┐ │Commit() │ Commit the datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Create_contiguous(count) │ Create a contiguous │ │ │ datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Create_darray(size, rank, │ Create a datatype repre- │ │gsizes, distribs, ...) │ senting an HPF-like dis- │ │ │ tributed array on Carte- │ │ │ sian process grids │ ├───────────────────────────────────┼────────────────────────────┤ │Create_f90_complex(p, r) │ Return a bounded complex │ │ │ datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Create_f90_integer(r) │ Return a bounded integer │ │ │ datatype │ └───────────────────────────────────┴────────────────────────────┘ │Create_f90_real(p, r) │ Return a bounded real │ │ │ datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Create_hindexed(blocklengths, │ Create an indexed datatype │ │displacements) │ with displacements in │ │ │ bytes │ ├───────────────────────────────────┼────────────────────────────┤ │Create_hindexed_block(blocklength, │ Create an indexed datatype │ │displacements) │ with constant-sized blocks │ │ │ and displacements in bytes │ ├───────────────────────────────────┼────────────────────────────┤ │Create_hvector(count, blocklength, │ Create a vector (strided) │ │stride) │ datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Create_indexed(blocklengths, dis- │ Create an indexed datatype │ │placements) │ │ ├───────────────────────────────────┼────────────────────────────┤ │Create_indexed_block(blocklength, │ Create an indexed datatype │ │displacements) │ with constant-sized blocks │ ├───────────────────────────────────┼────────────────────────────┤ │Create_keyval([copy_fn, delete_fn, │ Create a new attribute key │ │nopython]) │ for datatypes │ ├───────────────────────────────────┼────────────────────────────┤ │Create_resized(lb, extent) │ Create a datatype with a │ │ │ new lower bound and extent │ ├───────────────────────────────────┼────────────────────────────┤ │Create_struct(blocklengths, dis- │ Create an datatype from a │ │placements, ...) │ general set of block │ │ │ sizes, displacements and │ │ │ datatypes │ ├───────────────────────────────────┼────────────────────────────┤ │Create_subarray(sizes, subsizes, │ Create a datatype for a │ │starts[, order]) │ subarray of a regular, │ │ │ multidimensional array │ ├───────────────────────────────────┼────────────────────────────┤ │Create_vector(count, blocklength, │ Create a vector (strided) │ │stride) │ datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Delete_attr(keyval) │ Delete attribute value as- │ │ │ sociated with a key │ ├───────────────────────────────────┼────────────────────────────┤ │Dup() │ Duplicate a datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Free() │ Free the datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Free_keyval(keyval) │ Free an attribute key for │ │ │ datatypes │ ├───────────────────────────────────┼────────────────────────────┤ │Get_attr(keyval) │ Retrieve attribute value │ │ │ by key │ ├───────────────────────────────────┼────────────────────────────┤ │Get_contents() │ Retrieve the actual argu- │ │ │ ments used in the call │ │ │ that created a datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Get_envelope() │ Return information on the │ │ │ number and type of input │ │ │ arguments used in the call │ │ │ that created a datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Get_extent() │ Return lower bound and ex- │ │ │ tent of datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Get_name() │ Get the print name for │ │ │ this datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Get_size() │ Return the number of bytes │ │ │ occupied by entries in the │ │ │ datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Get_true_extent() │ Return the true lower │ │ │ bound and extent of a │ │ │ datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Match_size(typeclass, size) │ Find a datatype matching a │ │ │ specified size in bytes │ ├───────────────────────────────────┼────────────────────────────┤ │Pack(inbuf, outbuf, position, │ Pack into contiguous mem- │ │comm) │ ory according to datatype. │ ├───────────────────────────────────┼────────────────────────────┤ │Pack_external(datarep, inbuf, out- │ Pack into contiguous mem- │ │buf, position) │ ory according to datatype, │ │ │ using a portable data rep- │ │ │ resentation (external32). │ ├───────────────────────────────────┼────────────────────────────┤ │Pack_external_size(datarep, count) │ Return the upper bound on │ │ │ the amount of space (in │ │ │ bytes) needed to pack a │ │ │ message according to │ │ │ datatype, using a portable │ │ │ data representation (ex- │ │ │ ternal32). │ └───────────────────────────────────┴────────────────────────────┘ │Pack_size(count, comm) │ Return the upper bound on │ │ │ the amount of space (in │ │ │ bytes) needed to pack a │ │ │ message according to │ │ │ datatype. │ ├───────────────────────────────────┼────────────────────────────┤ │Set_attr(keyval, attrval) │ Store attribute value as- │ │ │ sociated with a key │ ├───────────────────────────────────┼────────────────────────────┤ │Set_name(name) │ Set the print name for │ │ │ this datatype │ ├───────────────────────────────────┼────────────────────────────┤ │Unpack(inbuf, position, outbuf, │ Unpack from contiguous │ │comm) │ memory according to │ │ │ datatype. │ ├───────────────────────────────────┼────────────────────────────┤ │Unpack_external(datarep, inbuf, │ Unpack from contiguous │ │position, outbuf) │ memory according to │ │ │ datatype, using a portable │ │ │ data representation (ex- │ │ │ ternal32). │ ├───────────────────────────────────┼────────────────────────────┤ │decode() │ Convenience method for de- │ │ │ coding a datatype │ ├───────────────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────────────┼────────────────────────────┤ │py2f() │ │ └───────────────────────────────────┴────────────────────────────┘ Attributes Summary ┌──────────────┬──────────────────────────┐ │combiner │ datatype combiner │ ├──────────────┼──────────────────────────┤ │contents │ datatype contents │ ├──────────────┼──────────────────────────┤ │envelope │ datatype envelope │ ├──────────────┼──────────────────────────┤ │extent │ │ ├──────────────┼──────────────────────────┤ │is_named │ is a named datatype │ ├──────────────┼──────────────────────────┤ │is_predefined │ is a predefined datatype │ ├──────────────┼──────────────────────────┤ │lb │ lower bound │ ├──────────────┼──────────────────────────┤ │name │ datatype name │ ├──────────────┼──────────────────────────┤ │size │ │ ├──────────────┼──────────────────────────┤ │true_extent │ true extent │ ├──────────────┼──────────────────────────┤ │true_lb │ true lower bound │ ├──────────────┼──────────────────────────┤ │true_ub │ true upper bound │ ├──────────────┼──────────────────────────┤ │ub │ upper bound │ └──────────────┴──────────────────────────┘ Methods Documentation Commit() Commit the datatype Return type Datatype Create_contiguous(count) Create a contiguous datatype Parameters count (int) – Return type Datatype Create_darray(size, rank, gsizes, distribs, dargs, psizes, or- der=ORDER_C) Create a datatype representing an HPF-like distributed array on Cartesian process grids Parameters • size (int) – • rank (int) – • gsizes (Sequence[int]) – • distribs (Sequence[int]) – • dargs (Sequence[int]) – • psizes (Sequence[int]) – • order (int) – Return type Datatype classmethod Create_f90_complex(p, r) Return a bounded complex datatype Parameters • p (int) – • r (int) – Return type Datatype classmethod Create_f90_integer(r) Return a bounded integer datatype Parameters r (int) – Return type Datatype classmethod Create_f90_real(p, r) Return a bounded real datatype Parameters • p (int) – • r (int) – Return type Datatype Create_hindexed(blocklengths, displacements) Create an indexed datatype with displacements in bytes Parameters • blocklengths (Sequence[int]) – • displacements (Sequence[int]) – Return type Datatype Create_hindexed_block(blocklength, displacements) Create an indexed datatype with constant-sized blocks and displacements in bytes Parameters • blocklength (int) – • displacements (Sequence[int]) – Return type Datatype Create_hvector(count, blocklength, stride) Create a vector (strided) datatype Parameters • count (int) – • blocklength (int) – • stride (int) – Return type Datatype Create_indexed(blocklengths, displacements) Create an indexed datatype Parameters • blocklengths (Sequence[int]) – • displacements (Sequence[int]) – Return type Datatype Create_indexed_block(blocklength, displacements) Create an indexed datatype with constant-sized blocks Parameters • blocklength (int) – • displacements (Sequence[int]) – Return type Datatype classmethod Create_keyval(copy_fn=None, delete_fn=None, nopy- thon=False) Create a new attribute key for datatypes Parameters • copy_fn (Optional[Callable[[Datatype, int, Any], Any]]) – • delete_fn (Optional[Callable[[Datatype, int, Any], None]]) – • nopython (bool) – Return type int Create_resized(lb, extent) Create a datatype with a new lower bound and extent Parameters • lb (int) – • extent (int) – Return type Datatype classmethod Create_struct(blocklengths, displacements, datatypes) Create an datatype from a general set of block sizes, displacements and datatypes Parameters • blocklengths (Sequence[int]) – • displacements (Sequence[int]) – • datatypes (Sequence[Datatype]) – Return type Datatype Create_subarray(sizes, subsizes, starts, order=ORDER_C) Create a datatype for a subarray of a regular, multidi- mensional array Parameters • sizes (Sequence[int]) – • subsizes (Sequence[int]) – • starts (Sequence[int]) – • order (int) – Return type Datatype Create_vector(count, blocklength, stride) Create a vector (strided) datatype Parameters • count (int) – • blocklength (int) – • stride (int) – Return type Datatype Delete_attr(keyval) Delete attribute value associated with a key Parameters keyval (int) – Return type None Dup() Duplicate a datatype Return type Datatype Free() Free the datatype Return type None classmethod Free_keyval(keyval) Free an attribute key for datatypes Parameters keyval (int) – Return type int Get_attr(keyval) Retrieve attribute value by key Parameters keyval (int) – Return type Optional[Union[int, Any]] Get_contents() Retrieve the actual arguments used in the call that cre- ated a datatype Return type Tuple[List[int], List[int], List[Datatype]] Get_envelope() Return information on the number and type of input argu- ments used in the call that created a datatype Return type Tuple[int, int, int, int] Get_extent() Return lower bound and extent of datatype Return type Tuple[int, int] Get_name() Get the print name for this datatype Return type str Get_size() Return the number of bytes occupied by entries in the datatype Return type int Get_true_extent() Return the true lower bound and extent of a datatype Return type Tuple[int, int] classmethod Match_size(typeclass, size) Find a datatype matching a specified size in bytes Parameters • typeclass (int) – • size (int) – Return type Datatype Pack(inbuf, outbuf, position, comm) Pack into contiguous memory according to datatype. Parameters • inbuf (BufSpec) – • outbuf (BufSpec) – • position (int) – • comm (Comm) – Return type int Pack_external(datarep, inbuf, outbuf, position) Pack into contiguous memory according to datatype, using a portable data representation (external32). Parameters • datarep (str) – • inbuf (BufSpec) – • outbuf (BufSpec) – • position (int) – Return type int Pack_external_size(datarep, count) Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype, using a portable data representation (external32). Parameters • datarep (str) – • count (int) – Return type int Pack_size(count, comm) Return the upper bound on the amount of space (in bytes) needed to pack a message according to datatype. Parameters • count (int) – • comm (Comm) – Return type int Set_attr(keyval, attrval) Store attribute value associated with a key Parameters • keyval (int) – • attrval (Any) – Return type None Set_name(name) Set the print name for this datatype Parameters name (str) – Return type None Unpack(inbuf, position, outbuf, comm) Unpack from contiguous memory according to datatype. Parameters • inbuf (BufSpec) – • position (int) – • outbuf (BufSpec) – • comm (Comm) – Return type int Unpack_external(datarep, inbuf, position, outbuf) Unpack from contiguous memory according to datatype, us- ing a portable data representation (external32). Parameters • datarep (str) – • inbuf (BufSpec) – • position (int) – • outbuf (BufSpec) – Return type int decode() Convenience method for decoding a datatype Return type Tuple[Datatype, str, Dict[str, Any]] classmethod f2py(arg) Parameters arg (int) – Return type Datatype py2f() Return type int Attributes Documentation combiner datatype combiner contents datatype contents envelope datatype envelope extent is_named is a named datatype is_predefined is a predefined datatype lb lower bound name datatype name size true_extent true extent true_lb true lower bound true_ub true upper bound ub upper bound mpi4py.MPI.Distgraphcomm class mpi4py.MPI.Distgraphcomm(comm=None) Bases: mpi4py.MPI.Topocomm Distributed graph topology intracommunicator Parameters comm (Optional[Distgraphcomm]) – Return type Distgraphcomm static __new__(cls, comm=None) Parameters comm (Optional[Distgraphcomm]) – Return type Distgraphcomm Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Get_dist_neighbors() │ Return adjacency informa- │ │ │ tion for a distributed │ │ │ graph topology │ ├───────────────────────────┼────────────────────────────┤ │Get_dist_neighbors_count() │ Return adjacency informa- │ │ │ tion for a distributed │ │ │ graph topology │ └───────────────────────────┴────────────────────────────┘ Methods Documentation Get_dist_neighbors() Return adjacency information for a distributed graph topology Return type Tuple[List[int], List[int], Optional[Tu- ple[List[int], List[int]]]] Get_dist_neighbors_count() Return adjacency information for a distributed graph topology Return type int mpi4py.MPI.Errhandler class mpi4py.MPI.Errhandler(errhandler=None) Bases: object Error handler Parameters errhandler (Optional[Errhandler]) – Return type Errhandler static __new__(cls, errhandler=None) Parameters errhandler (Optional[Errhandler]) – Return type Errhandler Methods Summary ┌──────────┬───────────────────────┐ │Free() │ Free an error handler │ ├──────────┼───────────────────────┤ │f2py(arg) │ │ ├──────────┼───────────────────────┤ │py2f() │ │ └──────────┴───────────────────────┘ Methods Documentation Free() Free an error handler Return type None classmethod f2py(arg) Parameters arg (int) – Return type Errhandler py2f() Return type int mpi4py.MPI.File class mpi4py.MPI.File(file=None) Bases: object File handle Parameters file (Optional[File]) – Return type File static __new__(cls, file=None) Parameters file (Optional[File]) – Return type File Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Call_errhandler(errorcode) │ Call the error handler in- │ │ │ stalled on a file │ ├───────────────────────────┼────────────────────────────┤ │Close() │ Close a file │ ├───────────────────────────┼────────────────────────────┤ │Delete(filename[, info]) │ Delete a file │ ├───────────────────────────┼────────────────────────────┤ │Get_amode() │ Return the file access │ │ │ mode │ ├───────────────────────────┼────────────────────────────┤ │Get_atomicity() │ Return the atomicity mode │ ├───────────────────────────┼────────────────────────────┤ │Get_byte_offset(offset) │ Return the absolute byte │ │ │ position in the file cor- │ │ │ responding to 'offset' │ │ │ etypes relative to the │ │ │ current view │ ├───────────────────────────┼────────────────────────────┤ │Get_errhandler() │ Get the error handler for │ │ │ a file │ ├───────────────────────────┼────────────────────────────┤ │Get_group() │ Return the group of pro- │ │ │ cesses that opened the │ │ │ file │ ├───────────────────────────┼────────────────────────────┤ │Get_info() │ Return the hints for a │ │ │ file that that are cur- │ │ │ rently in use │ ├───────────────────────────┼────────────────────────────┤ │Get_position() │ Return the current posi- │ │ │ tion of the individual │ │ │ file pointer in etype │ │ │ units relative to the cur- │ │ │ rent view │ ├───────────────────────────┼────────────────────────────┤ │Get_position_shared() │ Return the current posi- │ │ │ tion of the shared file │ │ │ pointer in etype units │ │ │ relative to the current │ │ │ view │ ├───────────────────────────┼────────────────────────────┤ │Get_size() │ Return the file size │ ├───────────────────────────┼────────────────────────────┤ │Get_type_extent(datatype) │ Return the extent of │ │ │ datatype in the file │ ├───────────────────────────┼────────────────────────────┤ │Get_view() │ Return the file view │ ├───────────────────────────┼────────────────────────────┤ │Iread(buf) │ Nonblocking read using in- │ │ │ dividual file pointer │ ├───────────────────────────┼────────────────────────────┤ │Iread_all(buf) │ Nonblocking collective │ │ │ read using individual file │ │ │ pointer │ ├───────────────────────────┼────────────────────────────┤ │Iread_at(offset, buf) │ Nonblocking read using ex- │ │ │ plicit offset │ ├───────────────────────────┼────────────────────────────┤ │Iread_at_all(offset, buf) │ Nonblocking collective │ │ │ read using explicit offset │ ├───────────────────────────┼────────────────────────────┤ │Iread_shared(buf) │ Nonblocking read using │ │ │ shared file pointer │ ├───────────────────────────┼────────────────────────────┤ │Iwrite(buf) │ Nonblocking write using │ │ │ individual file pointer │ ├───────────────────────────┼────────────────────────────┤ │Iwrite_all(buf) │ Nonblocking collective │ │ │ write using individual │ │ │ file pointer │ ├───────────────────────────┼────────────────────────────┤ │Iwrite_at(offset, buf) │ Nonblocking write using │ │ │ explicit offset │ ├───────────────────────────┼────────────────────────────┤ │Iwrite_at_all(offset, buf) │ Nonblocking collective │ │ │ write using explicit off- │ │ │ set │ ├───────────────────────────┼────────────────────────────┤ │Iwrite_shared(buf) │ Nonblocking write using │ │ │ shared file pointer │ └───────────────────────────┴────────────────────────────┘ │Open(comm, filename[, │ Open a file │ │amode, info]) │ │ ├───────────────────────────┼────────────────────────────┤ │Preallocate(size) │ Preallocate storage space │ │ │ for a file │ ├───────────────────────────┼────────────────────────────┤ │Read(buf[, status]) │ Read using individual file │ │ │ pointer │ ├───────────────────────────┼────────────────────────────┤ │Read_all(buf[, status]) │ Collective read using in- │ │ │ dividual file pointer │ ├───────────────────────────┼────────────────────────────┤ │Read_all_begin(buf) │ Start a split collective │ │ │ read using individual file │ │ │ pointer │ ├───────────────────────────┼────────────────────────────┤ │Read_all_end(buf[, sta- │ Complete a split collec- │ │tus]) │ tive read using individual │ │ │ file pointer │ ├───────────────────────────┼────────────────────────────┤ │Read_at(offset, buf[, sta- │ Read using explicit offset │ │tus]) │ │ ├───────────────────────────┼────────────────────────────┤ │Read_at_all(offset, buf[, │ Collective read using ex- │ │status]) │ plicit offset │ ├───────────────────────────┼────────────────────────────┤ │Read_at_all_begin(offset, │ Start a split collective │ │buf) │ read using explict offset │ ├───────────────────────────┼────────────────────────────┤ │Read_at_all_end(buf[, sta- │ Complete a split collec- │ │tus]) │ tive read using explict │ │ │ offset │ ├───────────────────────────┼────────────────────────────┤ │Read_ordered(buf[, sta- │ Collective read using │ │tus]) │ shared file pointer │ ├───────────────────────────┼────────────────────────────┤ │Read_ordered_begin(buf) │ Start a split collective │ │ │ read using shared file │ │ │ pointer │ ├───────────────────────────┼────────────────────────────┤ │Read_ordered_end(buf[, │ Complete a split collec- │ │status]) │ tive read using shared │ │ │ file pointer │ ├───────────────────────────┼────────────────────────────┤ │Read_shared(buf[, status]) │ Read using shared file │ │ │ pointer │ ├───────────────────────────┼────────────────────────────┤ │Seek(offset[, whence]) │ Update the individual file │ │ │ pointer │ ├───────────────────────────┼────────────────────────────┤ │Seek_shared(offset[, │ Update the shared file │ │whence]) │ pointer │ ├───────────────────────────┼────────────────────────────┤ │Set_atomicity(flag) │ Set the atomicity mode │ ├───────────────────────────┼────────────────────────────┤ │Set_errhandler(errhandler) │ Set the error handler for │ │ │ a file │ ├───────────────────────────┼────────────────────────────┤ │Set_info(info) │ Set new values for the │ │ │ hints associated with a │ │ │ file │ ├───────────────────────────┼────────────────────────────┤ │Set_size(size) │ Sets the file size │ ├───────────────────────────┼────────────────────────────┤ │Set_view([disp, etype, │ Set the file view │ │filetype, datarep, info]) │ │ ├───────────────────────────┼────────────────────────────┤ │Sync() │ Causes all previous writes │ │ │ to be transferred to the │ │ │ storage device │ ├───────────────────────────┼────────────────────────────┤ │Write(buf[, status]) │ Write using individual │ │ │ file pointer │ ├───────────────────────────┼────────────────────────────┤ │Write_all(buf[, status]) │ Collective write using in- │ │ │ dividual file pointer │ ├───────────────────────────┼────────────────────────────┤ │Write_all_begin(buf) │ Start a split collective │ │ │ write using individual │ │ │ file pointer │ ├───────────────────────────┼────────────────────────────┤ │Write_all_end(buf[, sta- │ Complete a split collec- │ │tus]) │ tive write using individ- │ │ │ ual file pointer │ ├───────────────────────────┼────────────────────────────┤ │Write_at(offset, buf[, │ Write using explicit off- │ │status]) │ set │ ├───────────────────────────┼────────────────────────────┤ │Write_at_all(offset, buf[, │ Collective write using ex- │ │status]) │ plicit offset │ ├───────────────────────────┼────────────────────────────┤ │Write_at_all_begin(offset, │ Start a split collective │ │buf) │ write using explict offset │ ├───────────────────────────┼────────────────────────────┤ │Write_at_all_end(buf[, │ Complete a split collec- │ │status]) │ tive write using explict │ │ │ offset │ ├───────────────────────────┼────────────────────────────┤ │Write_ordered(buf[, sta- │ Collective write using │ │tus]) │ shared file pointer │ ├───────────────────────────┼────────────────────────────┤ │Write_ordered_begin(buf) │ Start a split collective │ │ │ write using shared file │ │ │ pointer │ └───────────────────────────┴────────────────────────────┘ │Write_ordered_end(buf[, │ Complete a split collec- │ │status]) │ tive write using shared │ │ │ file pointer │ ├───────────────────────────┼────────────────────────────┤ │Write_shared(buf[, sta- │ Write using shared file │ │tus]) │ pointer │ ├───────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────┼────────────────────────────┤ │py2f() │ │ └───────────────────────────┴────────────────────────────┘ Attributes Summary ┌──────────┬──────────────────┐ │amode │ file access mode │ ├──────────┼──────────────────┤ │atomicity │ │ ├──────────┼──────────────────┤ │group │ file group │ ├──────────┼──────────────────┤ │info │ file info │ ├──────────┼──────────────────┤ │size │ file size │ └──────────┴──────────────────┘ Methods Documentation Call_errhandler(errorcode) Call the error handler installed on a file Parameters errorcode (int) – Return type None Close() Close a file Return type None classmethod Delete(filename, info=INFO_NULL) Delete a file Parameters • filename (str) – • info (Info) – Return type None Get_amode() Return the file access mode Return type int Get_atomicity() Return the atomicity mode Return type bool Get_byte_offset(offset) Return the absolute byte position in the file correspond- ing to ‘offset’ etypes relative to the current view Parameters offset (int) – Return type int Get_errhandler() Get the error handler for a file Return type Errhandler Get_group() Return the group of processes that opened the file Return type Group Get_info() Return the hints for a file that that are currently in use Return type Info Get_position() Return the current position of the individual file pointer in etype units relative to the current view Return type int Get_position_shared() Return the current position of the shared file pointer in etype units relative to the current view Return type int Get_size() Return the file size Return type int Get_type_extent(datatype) Return the extent of datatype in the file Parameters datatype (Datatype) – Return type int Get_view() Return the file view Return type Tuple[int, Datatype, Datatype, str] Iread(buf) Nonblocking read using individual file pointer Parameters buf (BufSpec) – Return type Request Iread_all(buf) Nonblocking collective read using individual file pointer Parameters buf (BufSpec) – Return type Request Iread_at(offset, buf) Nonblocking read using explicit offset Parameters • offset (int) – • buf (BufSpec) – Return type Request Iread_at_all(offset, buf) Nonblocking collective read using explicit offset Parameters • offset (int) – • buf (BufSpec) – Return type Request Iread_shared(buf) Nonblocking read using shared file pointer Parameters buf (BufSpec) – Return type Request Iwrite(buf) Nonblocking write using individual file pointer Parameters buf (BufSpec) – Return type Request Iwrite_all(buf) Nonblocking collective write using individual file pointer Parameters buf (BufSpec) – Return type Request Iwrite_at(offset, buf) Nonblocking write using explicit offset Parameters • offset (int) – • buf (BufSpec) – Return type Request Iwrite_at_all(offset, buf) Nonblocking collective write using explicit offset Parameters • offset (int) – • buf (BufSpec) – Return type Request Iwrite_shared(buf) Nonblocking write using shared file pointer Parameters buf (BufSpec) – Return type Request classmethod Open(comm, filename, amode=MODE_RDONLY, info=INFO_NULL) Open a file Parameters • comm (Intracomm) – • filename (str) – • amode (int) – • info (Info) – Return type File Preallocate(size) Preallocate storage space for a file Parameters size (int) – Return type None Read(buf, status=None) Read using individual file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_all(buf, status=None) Collective read using individual file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_all_begin(buf) Start a split collective read using individual file pointer Parameters buf (BufSpec) – Return type None Read_all_end(buf, status=None) Complete a split collective read using individual file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_at(offset, buf, status=None) Read using explicit offset Parameters • offset (int) – • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_at_all(offset, buf, status=None) Collective read using explicit offset Parameters • offset (int) – • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_at_all_begin(offset, buf) Start a split collective read using explict offset Parameters • offset (int) – • buf (BufSpec) – Return type None Read_at_all_end(buf, status=None) Complete a split collective read using explict offset Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_ordered(buf, status=None) Collective read using shared file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_ordered_begin(buf) Start a split collective read using shared file pointer Parameters buf (BufSpec) – Return type None Read_ordered_end(buf, status=None) Complete a split collective read using shared file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Read_shared(buf, status=None) Read using shared file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Seek(offset, whence=SEEK_SET) Update the individual file pointer Parameters • offset (int) – • whence (int) – Return type None Seek_shared(offset, whence=SEEK_SET) Update the shared file pointer Parameters • offset (int) – • whence (int) – Return type None Set_atomicity(flag) Set the atomicity mode Parameters flag (bool) – Return type None Set_errhandler(errhandler) Set the error handler for a file Parameters errhandler (Errhandler) – Return type None Set_info(info) Set new values for the hints associated with a file Parameters info (Info) – Return type None Set_size(size) Sets the file size Parameters size (int) – Return type None Set_view(disp=0, etype=BYTE, filetype=None, datarep='native', info=INFO_NULL) Set the file view Parameters • disp (int) – • etype (Datatype) – • filetype (Optional[Datatype]) – • datarep (str) – • info (Info) – Return type None Sync() Causes all previous writes to be transferred to the stor- age device Return type None Write(buf, status=None) Write using individual file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_all(buf, status=None) Collective write using individual file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_all_begin(buf) Start a split collective write using individual file pointer Parameters buf (BufSpec) – Return type None Write_all_end(buf, status=None) Complete a split collective write using individual file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_at(offset, buf, status=None) Write using explicit offset Parameters • offset (int) – • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_at_all(offset, buf, status=None) Collective write using explicit offset Parameters • offset (int) – • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_at_all_begin(offset, buf) Start a split collective write using explict offset Parameters • offset (int) – • buf (BufSpec) – Return type None Write_at_all_end(buf, status=None) Complete a split collective write using explict offset Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_ordered(buf, status=None) Collective write using shared file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_ordered_begin(buf) Start a split collective write using shared file pointer Parameters buf (BufSpec) – Return type None Write_ordered_end(buf, status=None) Complete a split collective write using shared file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None Write_shared(buf, status=None) Write using shared file pointer Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None classmethod f2py(arg) Parameters arg (int) – Return type File py2f() Return type int Attributes Documentation amode file access mode atomicity group file group info file info size file size mpi4py.MPI.Graphcomm class mpi4py.MPI.Graphcomm(comm=None) Bases: mpi4py.MPI.Topocomm General graph topology intracommunicator Parameters comm (Optional[Graphcomm]) – Return type Graphcomm static __new__(cls, comm=None) Parameters comm (Optional[Graphcomm]) – Return type Graphcomm Methods Summary ┌──────────────────────────┬────────────────────────────┐ │Get_dims() │ Return the number of nodes │ │ │ and edges │ ├──────────────────────────┼────────────────────────────┤ │Get_neighbors(rank) │ Return list of neighbors │ │ │ of a process │ ├──────────────────────────┼────────────────────────────┤ │Get_neighbors_count(rank) │ Return number of neighbors │ │ │ of a process │ ├──────────────────────────┼────────────────────────────┤ │Get_topo() │ Return index and edges │ └──────────────────────────┴────────────────────────────┘ Attributes Summary ┌───────────┬───────────────────────────┐ │dims │ number of nodes and edges │ ├───────────┼───────────────────────────┤ │edges │ │ ├───────────┼───────────────────────────┤ │index │ │ ├───────────┼───────────────────────────┤ │nedges │ number of edges │ ├───────────┼───────────────────────────┤ │neighbors │ │ ├───────────┼───────────────────────────┤ │nneighbors │ number of neighbors │ ├───────────┼───────────────────────────┤ │nnodes │ number of nodes │ ├───────────┼───────────────────────────┤ │topo │ topology information │ └───────────┴───────────────────────────┘ Methods Documentation Get_dims() Return the number of nodes and edges Return type Tuple[int, int] Get_neighbors(rank) Return list of neighbors of a process Parameters rank (int) – Return type List[int] Get_neighbors_count(rank) Return number of neighbors of a process Parameters rank (int) – Return type int Get_topo() Return index and edges Return type Tuple[List[int], List[int]] Attributes Documentation dims number of nodes and edges edges index nedges number of edges neighbors nneighbors number of neighbors nnodes number of nodes topo topology information mpi4py.MPI.Grequest class mpi4py.MPI.Grequest(request=None) Bases: mpi4py.MPI.Request Generalized request handle Parameters request (Optional[Grequest]) – Return type Grequest static __new__(cls, request=None) Parameters request (Optional[Grequest]) – Return type Grequest Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Complete() │ Notify that a user-defined │ │ │ request is complete │ ├───────────────────────────┼────────────────────────────┤ │Start(query_fn, free_fn, │ Create and return a │ │cancel_fn[, args, ...]) │ user-defined request │ └───────────────────────────┴────────────────────────────┘ Methods Documentation Complete() Notify that a user-defined request is complete Return type None classmethod Start(query_fn, free_fn, cancel_fn, args=None, kargs=None) Create and return a user-defined request Parameters • query_fn (Callable[..., None]) – • free_fn (Callable[..., None]) – • cancel_fn (Callable[..., None]) – • args (Optional[Tuple[Any]]) – • kargs (Optional[Dict[str, Any]]) – Return type Grequest mpi4py.MPI.Group class mpi4py.MPI.Group(group=None) Bases: object Group of processes Parameters group (Optional[Group]) – Return type Group static __new__(cls, group=None) Parameters group (Optional[Group]) – Return type Group Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Compare(group1, group2) │ Compare two groups │ ├───────────────────────────┼────────────────────────────┤ │Difference(group1, group2) │ Produce a group from the │ │ │ difference of two existing │ │ │ groups │ ├───────────────────────────┼────────────────────────────┤ │Dup() │ Duplicate a group │ ├───────────────────────────┼────────────────────────────┤ │Excl(ranks) │ Produce a group by re- │ │ │ ordering an existing group │ │ │ and taking only unlisted │ │ │ members │ ├───────────────────────────┼────────────────────────────┤ │Free() │ Free a group │ ├───────────────────────────┼────────────────────────────┤ │Get_rank() │ Return the rank of this │ │ │ process in a group │ ├───────────────────────────┼────────────────────────────┤ │Get_size() │ Return the size of a group │ ├───────────────────────────┼────────────────────────────┤ │Incl(ranks) │ Produce a group by re- │ │ │ ordering an existing group │ │ │ and taking only listed │ │ │ members │ ├───────────────────────────┼────────────────────────────┤ │Intersection(group1, │ Produce a group as the in- │ │group2) │ tersection of two existing │ │ │ groups │ ├───────────────────────────┼────────────────────────────┤ │Range_excl(ranks) │ Create a new group by ex- │ │ │ cluding ranges of pro- │ │ │ cesses from an existing │ │ │ group │ ├───────────────────────────┼────────────────────────────┤ │Range_incl(ranks) │ Create a new group from │ │ │ ranges of of ranks in an │ │ │ existing group │ ├───────────────────────────┼────────────────────────────┤ │Translate_ranks(group1, │ Translate the ranks of │ │ranks1[, group2]) │ processes in one group to │ │ │ those in another group │ ├───────────────────────────┼────────────────────────────┤ │Union(group1, group2) │ Produce a group by combin- │ │ │ ing two existing groups │ ├───────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────┼────────────────────────────┤ │py2f() │ │ └───────────────────────────┴────────────────────────────┘ Attributes Summary ┌─────┬────────────────────────────┐ │rank │ rank of this process in │ │ │ group │ └─────┴────────────────────────────┘ │size │ number of processes in │ │ │ group │ └─────┴────────────────────────────┘ Methods Documentation classmethod Compare(group1, group2) Compare two groups Parameters • group1 (Group) – • group2 (Group) – Return type int classmethod Difference(group1, group2) Produce a group from the difference of two existing groups Parameters • group1 (Group) – • group2 (Group) – Return type Group Dup() Duplicate a group Return type Group Excl(ranks) Produce a group by reordering an existing group and tak- ing only unlisted members Parameters ranks (Sequence[int]) – Return type Group Free() Free a group Return type None Get_rank() Return the rank of this process in a group Return type int Get_size() Return the size of a group Return type int Incl(ranks) Produce a group by reordering an existing group and tak- ing only listed members Parameters ranks (Sequence[int]) – Return type Group classmethod Intersection(group1, group2) Produce a group as the intersection of two existing groups Parameters • group1 (Group) – • group2 (Group) – Return type Group Range_excl(ranks) Create a new group by excluding ranges of processes from an existing group Parameters ranks (Sequence[Tuple[int, int, int]]) – Return type Group Range_incl(ranks) Create a new group from ranges of of ranks in an existing group Parameters ranks (Sequence[Tuple[int, int, int]]) – Return type Group classmethod Translate_ranks(group1, ranks1, group2=None) Translate the ranks of processes in one group to those in another group Parameters • group1 (Group) – • ranks1 (Sequence[int]) – • group2 (Optional[Group]) – Return type List[int] classmethod Union(group1, group2) Produce a group by combining two existing groups Parameters • group1 (Group) – • group2 (Group) – Return type Group classmethod f2py(arg) Parameters arg (int) – Return type Group py2f() Return type int Attributes Documentation rank rank of this process in group size number of processes in group mpi4py.MPI.Info class mpi4py.MPI.Info(info=None) Bases: object Info object Parameters info (Optional[Info]) – Return type Info static __new__(cls, info=None) Parameters info (Optional[Info]) – Return type Info Methods Summary ┌────────────────────┬────────────────────────────┐ │Create() │ Create a new, empty info │ │ │ object │ ├────────────────────┼────────────────────────────┤ │Delete(key) │ Remove a (key, value) pair │ │ │ from info │ ├────────────────────┼────────────────────────────┤ │Dup() │ Duplicate an existing info │ │ │ object, creating a new ob- │ │ │ ject, with the same (key, │ │ │ value) pairs and the same │ │ │ ordering of keys │ ├────────────────────┼────────────────────────────┤ │Free() │ Free a info object │ ├────────────────────┼────────────────────────────┤ │Get(key[, maxlen]) │ Retrieve the value associ- │ │ │ ated with a key │ ├────────────────────┼────────────────────────────┤ │Get_nkeys() │ Return the number of cur- │ │ │ rently defined keys in │ │ │ info │ ├────────────────────┼────────────────────────────┤ │Get_nthkey(n) │ Return the nth defined key │ │ │ in info. │ ├────────────────────┼────────────────────────────┤ │Set(key, value) │ Add the (key, value) pair │ │ │ to info, and overrides the │ │ │ value if a value for the │ │ │ same key was previously │ │ │ set │ ├────────────────────┼────────────────────────────┤ │clear() │ info clear │ ├────────────────────┼────────────────────────────┤ │copy() │ info copy │ ├────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├────────────────────┼────────────────────────────┤ │get(key[, default]) │ info get │ ├────────────────────┼────────────────────────────┤ │items() │ info items │ ├────────────────────┼────────────────────────────┤ │keys() │ info keys │ ├────────────────────┼────────────────────────────┤ │pop(key, *default) │ info pop │ ├────────────────────┼────────────────────────────┤ │popitem() │ info popitem │ ├────────────────────┼────────────────────────────┤ │py2f() │ │ ├────────────────────┼────────────────────────────┤ │update([other]) │ info update │ ├────────────────────┼────────────────────────────┤ │values() │ info values │ └────────────────────┴────────────────────────────┘ Methods Documentation classmethod Create() Create a new, empty info object Return type Info Delete(key) Remove a (key, value) pair from info Parameters key (str) – Return type None Dup() Duplicate an existing info object, creating a new object, with the same (key, value) pairs and the same ordering of keys Return type Info Free() Free a info object Return type None Get(key, maxlen=- 1) Retrieve the value associated with a key Parameters • key (str) – • maxlen (int) – Return type Optional[str] Get_nkeys() Return the number of currently defined keys in info Return type int Get_nthkey(n) Return the nth defined key in info. Keys are numbered in the range [0, N) where N is the value returned by Info.Get_nkeys() Parameters n (int) – Return type str Set(key, value) Add the (key, value) pair to info, and overrides the value if a value for the same key was previously set Parameters • key (str) – • value (str) – Return type None clear() info clear Return type None copy() info copy Return type Info classmethod f2py(arg) Parameters arg (int) – Return type Info get(key, default=None) info get Parameters • key (str) – • default (Optional[str]) – Return type Optional[str] items() info items Return type List[Tuple[str, str]] keys() info keys Return type List[str] pop(key, *default) info pop Parameters • key (str) – • default (str) – Return type str popitem() info popitem Return type Tuple[str, str] py2f() Return type int update(other=(), **kwds) info update Parameters • other (Union[Info, Mapping[str, str], Iter- able[Tuple[str, str]]]) – • kwds (str) – Return type None values() info values Return type List[str] mpi4py.MPI.Intercomm class mpi4py.MPI.Intercomm(comm=None) Bases: mpi4py.MPI.Comm Intercommunicator Parameters comm (Optional[Intercomm]) – Return type Intercomm static __new__(cls, comm=None) Parameters comm (Optional[Intercomm]) – Return type Intercomm Methods Summary ┌───────────────────┬────────────────────────────┐ │Get_remote_group() │ Access the remote group │ │ │ associated with the in- │ │ │ ter-communicator │ ├───────────────────┼────────────────────────────┤ │Get_remote_size() │ Intercommunicator remote │ │ │ size │ ├───────────────────┼────────────────────────────┤ │Merge([high]) │ Merge intercommunicator │ └───────────────────┴────────────────────────────┘ Attributes Summary ┌─────────────┬────────────────────────────┐ │remote_group │ remote group │ ├─────────────┼────────────────────────────┤ │remote_size │ number of remote processes │ └─────────────┴────────────────────────────┘ Methods Documentation Get_remote_group() Access the remote group associated with the inter-commu- nicator Return type Group Get_remote_size() Intercommunicator remote size Return type int Merge(high=False) Merge intercommunicator Parameters high (bool) – Return type Intracomm Attributes Documentation remote_group remote group remote_size number of remote processes mpi4py.MPI.Intracomm class mpi4py.MPI.Intracomm(comm=None) Bases: mpi4py.MPI.Comm Intracommunicator Parameters comm (Optional[Intracomm]) – Return type Intracomm static __new__(cls, comm=None) Parameters comm (Optional[Intracomm]) – Return type Intracomm Methods Summary ┌────────────────────────────────────┬────────────────────────────┐ │Accept(port_name[, info, │ Accept a request to form a │ │root]) │ new intercommunicator │ ├────────────────────────────────────┼────────────────────────────┤ │Cart_map(dims[, periods]) │ Return an optimal place- │ │ │ ment for the calling │ │ │ process on the physical │ │ │ machine │ ├────────────────────────────────────┼────────────────────────────┤ │Connect(port_name[, info, │ Make a request to form a │ │root]) │ new intercommunicator │ ├────────────────────────────────────┼────────────────────────────┤ │Create_cart(dims[, peri- │ Create cartesian communi- │ │ods, reorder]) │ cator │ ├────────────────────────────────────┼────────────────────────────┤ │Create_dist_graph(sources, │ Create distributed graph │ │degrees, destinations) │ communicator │ ├────────────────────────────────────┼────────────────────────────┤ │Create_dist_graph_adjacent(sources, │ Create distributed graph │ │destinations) │ communicator │ ├────────────────────────────────────┼────────────────────────────┤ │Create_graph(index, edges[, re- │ Create graph communicator │ │order]) │ │ ├────────────────────────────────────┼────────────────────────────┤ │Create_intercomm(local_leader, │ Create intercommunicator │ │peer_comm, ...) │ │ ├────────────────────────────────────┼────────────────────────────┤ │Exscan(sendbuf, recvbuf[, op]) │ Exclusive Scan │ ├────────────────────────────────────┼────────────────────────────┤ │Graph_map(index, edges) │ Return an optimal place- │ │ │ ment for the calling │ │ │ process on the physical │ │ │ machine │ ├────────────────────────────────────┼────────────────────────────┤ │Iexscan(sendbuf, recvbuf[, op]) │ Inclusive Scan │ ├────────────────────────────────────┼────────────────────────────┤ │Iscan(sendbuf, recvbuf[, op]) │ Inclusive Scan │ ├────────────────────────────────────┼────────────────────────────┤ │Scan(sendbuf, recvbuf[, op]) │ Inclusive Scan │ ├────────────────────────────────────┼────────────────────────────┤ │Spawn(command[, args, maxprocs, │ Spawn instances of a sin- │ │info, root, ...]) │ gle MPI application │ ├────────────────────────────────────┼────────────────────────────┤ │Spawn_multiple(command[, args, max- │ Spawn instances of multi- │ │procs, ...]) │ ple MPI applications │ ├────────────────────────────────────┼────────────────────────────┤ │exscan(sendobj[, op]) │ Exclusive Scan │ ├────────────────────────────────────┼────────────────────────────┤ │scan(sendobj[, op]) │ Inclusive Scan │ └────────────────────────────────────┴────────────────────────────┘ Methods Documentation Accept(port_name, info=INFO_NULL, root=0) Accept a request to form a new intercommunicator Parameters • port_name (str) – • info (Info) – • root (int) – Return type Intercomm Cart_map(dims, periods=None) Return an optimal placement for the calling process on the physical machine Parameters • dims (Sequence[int]) – • periods (Optional[Sequence[bool]]) – Return type int Connect(port_name, info=INFO_NULL, root=0) Make a request to form a new intercommunicator Parameters • port_name (str) – • info (Info) – • root (int) – Return type Intercomm Create_cart(dims, periods=None, reorder=False) Create cartesian communicator Parameters • dims (Sequence[int]) – • periods (Optional[Sequence[bool]]) – • reorder (bool) – Return type Cartcomm Create_dist_graph(sources, degrees, destinations, weights=None, info=INFO_NULL, reorder=False) Create distributed graph communicator Parameters • sources (Sequence[int]) – • degrees (Sequence[int]) – • destinations (Sequence[int]) – • weights (Optional[Sequence[int]]) – • info (Info) – • reorder (bool) – Return type Distgraphcomm Create_dist_graph_adjacent(sources, destinations, sourceweights=None, destweights=None, info=INFO_NULL, re- order=False) Create distributed graph communicator Parameters • sources (Sequence[int]) – • destinations (Sequence[int]) – • sourceweights (Optional[Sequence[int]]) – • destweights (Optional[Sequence[int]]) – • info (Info) – • reorder (bool) – Return type Distgraphcomm Create_graph(index, edges, reorder=False) Create graph communicator Parameters • index (Sequence[int]) – • edges (Sequence[int]) – • reorder (bool) – Return type Graphcomm Create_intercomm(local_leader, peer_comm, remote_leader, tag=0) Create intercommunicator Parameters • local_leader (int) – • peer_comm (Intracomm) – • remote_leader (int) – • tag (int) – Return type Intercomm Exscan(sendbuf, recvbuf, op=SUM) Exclusive Scan Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • op (Op) – Return type None Graph_map(index, edges) Return an optimal placement for the calling process on the physical machine Parameters • index (Sequence[int]) – • edges (Sequence[int]) – Return type int Iexscan(sendbuf, recvbuf, op=SUM) Inclusive Scan Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • op (Op) – Return type Request Iscan(sendbuf, recvbuf, op=SUM) Inclusive Scan Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • op (Op) – Return type Request Scan(sendbuf, recvbuf, op=SUM) Inclusive Scan Parameters • sendbuf (Union[BufSpec, InPlace]) – • recvbuf (BufSpec) – • op (Op) – Return type None Spawn(command, args=None, maxprocs=1, info=INFO_NULL, root=0, errcodes=None) Spawn instances of a single MPI application Parameters • command (str) – • args (Optional[Sequence[str]]) – • maxprocs (int) – • info (Info) – • root (int) – • errcodes (Optional[list]) – Return type Intercomm Spawn_multiple(command, args=None, maxprocs=None, info=INFO_NULL, root=0, errcodes=None) Spawn instances of multiple MPI applications Parameters • command (Sequence[str]) – • args (Optional[Sequence[Sequence[str]]]) – • maxprocs (Optional[Sequence[int]]) – • info (Union[Info, Sequence[Info]]) – • root (int) – • errcodes (Optional[list]) – Return type Intercomm exscan(sendobj, op=SUM) Exclusive Scan Parameters • sendobj (Any) – • op (Union[Op, Callable[[Any, Any], Any]]) – Return type Any scan(sendobj, op=SUM) Inclusive Scan Parameters • sendobj (Any) – • op (Union[Op, Callable[[Any, Any], Any]]) – Return type Any mpi4py.MPI.Message class mpi4py.MPI.Message(message=None) Bases: object Matched message handle Parameters message (Optional[Message]) – Return type Message static __new__(cls, message=None) Parameters message (Optional[Message]) – Return type Message Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Iprobe(comm[, source, tag, │ Nonblocking test for a │ │status]) │ matched message │ ├───────────────────────────┼────────────────────────────┤ │Irecv(buf) │ Nonblocking receive of │ │ │ matched message │ ├───────────────────────────┼────────────────────────────┤ │Probe(comm[, source, tag, │ Blocking test for a │ │status]) │ matched message │ ├───────────────────────────┼────────────────────────────┤ │Recv(buf[, status]) │ Blocking receive of │ │ │ matched message │ ├───────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────┼────────────────────────────┤ │iprobe(comm[, source, tag, │ Nonblocking test for a │ │status]) │ matched message │ ├───────────────────────────┼────────────────────────────┤ │irecv() │ Nonblocking receive of │ │ │ matched message │ └───────────────────────────┴────────────────────────────┘ │probe(comm[, source, tag, │ Blocking test for a │ │status]) │ matched message │ ├───────────────────────────┼────────────────────────────┤ │py2f() │ │ ├───────────────────────────┼────────────────────────────┤ │recv([status]) │ Blocking receive of │ │ │ matched message │ └───────────────────────────┴────────────────────────────┘ Methods Documentation classmethod Iprobe(comm, source=ANY_SOURCE, tag=ANY_TAG, sta- tus=None) Nonblocking test for a matched message Parameters • comm (Comm) – • source (int) – • tag (int) – • status (Optional[Status]) – Return type Optional[Message] Irecv(buf) Nonblocking receive of matched message Parameters buf (BufSpec) – Return type Request classmethod Probe(comm, source=ANY_SOURCE, tag=ANY_TAG, sta- tus=None) Blocking test for a matched message Parameters • comm (Comm) – • source (int) – • tag (int) – • status (Optional[Status]) – Return type Message Recv(buf, status=None) Blocking receive of matched message Parameters • buf (BufSpec) – • status (Optional[Status]) – Return type None classmethod f2py(arg) Parameters arg (int) – Return type Message classmethod iprobe(comm, source=ANY_SOURCE, tag=ANY_TAG, sta- tus=None) Nonblocking test for a matched message Parameters • comm (Comm) – • source (int) – • tag (int) – • status (Optional[Status]) – Return type Optional[Message] irecv() Nonblocking receive of matched message Return type Request classmethod probe(comm, source=ANY_SOURCE, tag=ANY_TAG, sta- tus=None) Blocking test for a matched message Parameters • comm (Comm) – • source (int) – • tag (int) – • status (Optional[Status]) – Return type Message py2f() Return type int recv(status=None) Blocking receive of matched message Parameters status (Optional[Status]) – Return type Any mpi4py.MPI.Op class mpi4py.MPI.Op(op=None) Bases: object Operation object Parameters op (Optional[Op]) – Return type Op static __new__(cls, op=None) Parameters op (Optional[Op]) – Return type Op Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Create(function[, com- │ Create a user-defined op- │ │mute]) │ eration │ ├───────────────────────────┼────────────────────────────┤ │Free() │ Free the operation │ ├───────────────────────────┼────────────────────────────┤ │Is_commutative() │ Query reduction operations │ │ │ for their commutativity │ ├───────────────────────────┼────────────────────────────┤ │Reduce_local(inbuf, inout- │ Apply a reduction operator │ │buf) │ to local data │ ├───────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────┼────────────────────────────┤ │py2f() │ │ └───────────────────────────┴────────────────────────────┘ Attributes Summary ┌───────────────┬───────────────────────────┐ │is_commutative │ is commutative │ ├───────────────┼───────────────────────────┤ │is_predefined │ is a predefined operation │ └───────────────┴───────────────────────────┘ Methods Documentation classmethod Create(function, commute=False) Create a user-defined operation Parameters • function (Callable[[Buffer, Buffer, Datatype], None]) – • commute (bool) – Return type Op Free() Free the operation Return type None Is_commutative() Query reduction operations for their commutativity Return type bool Reduce_local(inbuf, inoutbuf) Apply a reduction operator to local data Parameters • inbuf (BufSpec) – • inoutbuf (BufSpec) – Return type None classmethod f2py(arg) Parameters arg (int) – Return type Op py2f() Return type int Attributes Documentation is_commutative is commutative is_predefined is a predefined operation mpi4py.MPI.Pickle class mpi4py.MPI.Pickle(dumps=None, loads=None, protocol=None) Bases: object Pickle/unpickle Python objects Parameters • dumps (Optional[Callable[[Any, int], bytes]]) – • loads (Optional[Callable[[Buffer], Any]]) – • protocol (Optional[int]) – Return type None __init__(dumps=None, loads=None, protocol=None) Parameters • dumps (Optional[Callable[[Any, int], bytes]]) – • loads (Optional[Callable[[Buffer], Any]]) – • protocol (Optional[int]) – Return type None Methods Summary ┌───────────────────────────┬────────────────────────────┐ │dumps(obj[, buffer_call- │ Serialize object to pickle │ │back]) │ data stream. │ ├───────────────────────────┼────────────────────────────┤ │loads(data[, buffers]) │ Deserialize object from │ │ │ pickle data stream. │ └───────────────────────────┴────────────────────────────┘ Attributes Summary ┌─────────┬─────────────────┐ │PROTOCOL │ pickle protocol │ └─────────┴─────────────────┘ Methods Documentation dumps(obj, buffer_callback=None) Serialize object to pickle data stream. Parameters • obj (Any) – • buffer_callback (Optional[Callable[[Buffer], Any]]) – Return type bytes loads(data, buffers=None) Deserialize object from pickle data stream. Parameters • data (Buffer) – • buffers (Optional[Iterable[Buffer]]) – Return type Any Attributes Documentation PROTOCOL pickle protocol mpi4py.MPI.Prequest class mpi4py.MPI.Prequest(request=None) Bases: mpi4py.MPI.Request Persistent request handle Parameters request (Optional[Prequest]) – Return type Prequest static __new__(cls, request=None) Parameters request (Optional[Prequest]) – Return type Prequest Methods Summary ┌───────────────────┬────────────────────────────┐ │Start() │ Initiate a communication │ │ │ with a persistent request │ ├───────────────────┼────────────────────────────┤ │Startall(requests) │ Start a collection of per- │ │ │ sistent requests │ └───────────────────┴────────────────────────────┘ Methods Documentation Start() Initiate a communication with a persistent request Return type None classmethod Startall(requests) Start a collection of persistent requests Parameters requests (List[Prequest]) – Return type None mpi4py.MPI.Request class mpi4py.MPI.Request(request=None) Bases: object Request handle Parameters request (Optional[Request]) – Return type Request static __new__(cls, request=None) Parameters request (Optional[Request]) – Return type Request Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Cancel() │ Cancel a communication re- │ │ │ quest │ ├───────────────────────────┼────────────────────────────┤ │Free() │ Free a communication re- │ │ │ quest │ ├───────────────────────────┼────────────────────────────┤ │Get_status([status]) │ Non-destructive test for │ │ │ the completion of a re- │ │ │ quest │ ├───────────────────────────┼────────────────────────────┤ │Test([status]) │ Test for the completion of │ │ │ a send or receive │ ├───────────────────────────┼────────────────────────────┤ │Testall(requests[, sta- │ Test for completion of all │ │tuses]) │ previously initiated re- │ │ │ quests │ ├───────────────────────────┼────────────────────────────┤ │Testany(requests[, sta- │ Test for completion of any │ │tus]) │ previously initiated re- │ │ │ quest │ ├───────────────────────────┼────────────────────────────┤ │Testsome(requests[, sta- │ Test for completion of │ │tuses]) │ some previously initiated │ │ │ requests │ ├───────────────────────────┼────────────────────────────┤ │Wait([status]) │ Wait for a send or receive │ │ │ to complete │ ├───────────────────────────┼────────────────────────────┤ │Waitall(requests[, sta- │ Wait for all previously │ │tuses]) │ initiated requests to com- │ │ │ plete │ ├───────────────────────────┼────────────────────────────┤ │Waitany(requests[, sta- │ Wait for any previously │ │tus]) │ initiated request to com- │ │ │ plete │ ├───────────────────────────┼────────────────────────────┤ │Waitsome(requests[, sta- │ Wait for some previously │ │tuses]) │ initiated requests to com- │ │ │ plete │ ├───────────────────────────┼────────────────────────────┤ │cancel() │ Cancel a communication re- │ │ │ quest │ ├───────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────┼────────────────────────────┤ │get_status([status]) │ Non-destructive test for │ │ │ the completion of a re- │ │ │ quest │ ├───────────────────────────┼────────────────────────────┤ │py2f() │ │ ├───────────────────────────┼────────────────────────────┤ │test([status]) │ Test for the completion of │ │ │ a send or receive │ ├───────────────────────────┼────────────────────────────┤ │testall(requests[, sta- │ Test for completion of all │ │tuses]) │ previously initiated re- │ │ │ quests │ ├───────────────────────────┼────────────────────────────┤ │testany(requests[, sta- │ Test for completion of any │ │tus]) │ previously initiated re- │ │ │ quest │ ├───────────────────────────┼────────────────────────────┤ │testsome(requests[, sta- │ Test for completion of │ │tuses]) │ some previously initiated │ │ │ requests │ ├───────────────────────────┼────────────────────────────┤ │wait([status]) │ Wait for a send or receive │ │ │ to complete │ ├───────────────────────────┼────────────────────────────┤ │waitall(requests[, sta- │ Wait for all previously │ │tuses]) │ initiated requests to com- │ │ │ plete │ ├───────────────────────────┼────────────────────────────┤ │waitany(requests[, sta- │ Wait for any previously │ │tus]) │ initiated request to com- │ │ │ plete │ ├───────────────────────────┼────────────────────────────┤ │waitsome(requests[, sta- │ Wait for some previously │ │tuses]) │ initiated requests to com- │ │ │ plete │ └───────────────────────────┴────────────────────────────┘ Methods Documentation Cancel() Cancel a communication request Return type None Free() Free a communication request Return type None Get_status(status=None) Non-destructive test for the completion of a request Parameters status (Optional[Status]) – Return type bool Test(status=None) Test for the completion of a send or receive Parameters status (Optional[Status]) – Return type bool classmethod Testall(requests, statuses=None) Test for completion of all previously initiated requests Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type bool classmethod Testany(requests, status=None) Test for completion of any previously initiated request Parameters • requests (Sequence[Request]) – • status (Optional[Status]) – Return type Tuple[int, bool] classmethod Testsome(requests, statuses=None) Test for completion of some previously initiated requests Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type Optional[List[int]] Wait(status=None) Wait for a send or receive to complete Parameters status (Optional[Status]) – Return type Literal[True] classmethod Waitall(requests, statuses=None) Wait for all previously initiated requests to complete Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type Literal[True] classmethod Waitany(requests, status=None) Wait for any previously initiated request to complete Parameters • requests (Sequence[Request]) – • status (Optional[Status]) – Return type int classmethod Waitsome(requests, statuses=None) Wait for some previously initiated requests to complete Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type Optional[List[int]] cancel() Cancel a communication request Return type None classmethod f2py(arg) Parameters arg (int) – Return type Request get_status(status=None) Non-destructive test for the completion of a request Parameters status (Optional[Status]) – Return type bool py2f() Return type int test(status=None) Test for the completion of a send or receive Parameters status (Optional[Status]) – Return type Tuple[bool, Optional[Any]] classmethod testall(requests, statuses=None) Test for completion of all previously initiated requests Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type Tuple[bool, Optional[List[Any]]] classmethod testany(requests, status=None) Test for completion of any previously initiated request Parameters • requests (Sequence[Request]) – • status (Optional[Status]) – Return type Tuple[int, bool, Optional[Any]] classmethod testsome(requests, statuses=None) Test for completion of some previously initiated requests Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type Tuple[Optional[List[int]], Optional[List[Any]]] wait(status=None) Wait for a send or receive to complete Parameters status (Optional[Status]) – Return type Any classmethod waitall(requests, statuses=None) Wait for all previously initiated requests to complete Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type List[Any] classmethod waitany(requests, status=None) Wait for any previously initiated request to complete Parameters • requests (Sequence[Request]) – • status (Optional[Status]) – Return type Tuple[int, Any] classmethod waitsome(requests, statuses=None) Wait for some previously initiated requests to complete Parameters • requests (Sequence[Request]) – • statuses (Optional[List[Status]]) – Return type Tuple[Optional[List[int]], Optional[List[Any]]] mpi4py.MPI.Status class mpi4py.MPI.Status(status=None) Bases: object Status object Parameters status (Optional[Status]) – Return type Status static __new__(cls, status=None) Parameters status (Optional[Status]) – Return type Status Methods Summary ┌───────────────────────┬────────────────────────────┐ │Get_count([datatype]) │ Get the number of top │ │ │ level elements │ ├───────────────────────┼────────────────────────────┤ │Get_elements(datatype) │ Get the number of basic │ │ │ elements in a datatype │ ├───────────────────────┼────────────────────────────┤ │Get_error() │ Get message error │ ├───────────────────────┼────────────────────────────┤ │Get_source() │ Get message source │ ├───────────────────────┼────────────────────────────┤ │Get_tag() │ Get message tag │ ├───────────────────────┼────────────────────────────┤ │Is_cancelled() │ Test to see if a request │ │ │ was cancelled │ ├───────────────────────┼────────────────────────────┤ │Set_cancelled(flag) │ Set the cancelled state │ │ │ associated with a status │ ├───────────────────────┼────────────────────────────┤ │Set_elements(datatype, │ Set the number of elements │ │count) │ in a status │ └───────────────────────┴────────────────────────────┘ │Set_error(error) │ Set message error │ ├───────────────────────┼────────────────────────────┤ │Set_source(source) │ Set message source │ ├───────────────────────┼────────────────────────────┤ │Set_tag(tag) │ Set message tag │ ├───────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────┼────────────────────────────┤ │py2f() │ │ └───────────────────────┴────────────────────────────┘ Attributes Summary ┌──────────┬─────────────────┐ │cancelled │ cancelled state │ ├──────────┼─────────────────┤ │count │ byte count │ ├──────────┼─────────────────┤ │error │ │ ├──────────┼─────────────────┤ │source │ │ ├──────────┼─────────────────┤ │tag │ │ └──────────┴─────────────────┘ Methods Documentation Get_count(datatype=BYTE) Get the number of top level elements Parameters datatype (Datatype) – Return type int Get_elements(datatype) Get the number of basic elements in a datatype Parameters datatype (Datatype) – Return type int Get_error() Get message error Return type int Get_source() Get message source Return type int Get_tag() Get message tag Return type int Is_cancelled() Test to see if a request was cancelled Return type bool Set_cancelled(flag) Set the cancelled state associated with a status NOTE: This should be only used when implementing query call- back functions for generalized requests Parameters flag (bool) – Return type None Set_elements(datatype, count) Set the number of elements in a status NOTE: This should be only used when implementing query call- back functions for generalized requests Parameters • datatype (Datatype) – • count (int) – Return type None Set_error(error) Set message error Parameters error (int) – Return type None Set_source(source) Set message source Parameters source (int) – Return type None Set_tag(tag) Set message tag Parameters tag (int) – Return type None classmethod f2py(arg) Parameters arg (List[int]) – Return type Status py2f() Return type List[int] Attributes Documentation cancelled cancelled state count byte count error source tag mpi4py.MPI.Topocomm class mpi4py.MPI.Topocomm(comm=None) Bases: mpi4py.MPI.Intracomm Topology intracommunicator Parameters comm (Optional[Topocomm]) – Return type Topocomm static __new__(cls, comm=None) Parameters comm (Optional[Topocomm]) – Return type Topocomm Methods Summary ┌──────────────────────────────┬────────────────────────────┐ │Ineighbor_allgather(sendbuf, │ Nonblocking Neighbor │ │recvbuf) │ Gather to All │ ├──────────────────────────────┼────────────────────────────┤ │Ineighbor_allgatherv(sendbuf, │ Nonblocking Neighbor │ │recvbuf) │ Gather to All Vector │ ├──────────────────────────────┼────────────────────────────┤ │Ineighbor_alltoall(sendbuf, │ Nonblocking Neighbor │ │recvbuf) │ All-to-All │ ├──────────────────────────────┼────────────────────────────┤ │Ineighbor_alltoallv(sendbuf, │ Nonblocking Neighbor │ │recvbuf) │ All-to-All Vector │ ├──────────────────────────────┼────────────────────────────┤ │Ineighbor_alltoallw(sendbuf, │ Nonblocking Neighbor │ │recvbuf) │ All-to-All Generalized │ ├──────────────────────────────┼────────────────────────────┤ │Neighbor_allgather(sendbuf, │ Neighbor Gather to All │ │recvbuf) │ │ ├──────────────────────────────┼────────────────────────────┤ │Neighbor_allgatherv(sendbuf, │ Neighbor Gather to All │ │recvbuf) │ Vector │ ├──────────────────────────────┼────────────────────────────┤ │Neighbor_alltoall(sendbuf, │ Neighbor All-to-All │ │recvbuf) │ │ ├──────────────────────────────┼────────────────────────────┤ │Neighbor_alltoallv(sendbuf, │ Neighbor All-to-All Vector │ │recvbuf) │ │ ├──────────────────────────────┼────────────────────────────┤ │Neighbor_alltoallw(sendbuf, │ Neighbor All-to-All Gener- │ │recvbuf) │ alized │ ├──────────────────────────────┼────────────────────────────┤ │neighbor_allgather(sendobj) │ Neighbor Gather to All │ ├──────────────────────────────┼────────────────────────────┤ │neighbor_alltoall(sendobj) │ Neighbor All to All Scat- │ │ │ ter/Gather │ └──────────────────────────────┴────────────────────────────┘ Attributes Summary ┌───────────┬────────────────────────────┐ │degrees │ number of incoming and │ │ │ outgoing neighbors │ ├───────────┼────────────────────────────┤ │indegree │ number of incoming neigh- │ │ │ bors │ ├───────────┼────────────────────────────┤ │inedges │ incoming neighbors │ ├───────────┼────────────────────────────┤ │inoutedges │ incoming and outgoing │ │ │ neighbors │ ├───────────┼────────────────────────────┤ │outdegree │ number of outgoing neigh- │ │ │ bors │ ├───────────┼────────────────────────────┤ │outedges │ outgoing neighbors │ └───────────┴────────────────────────────┘ Methods Documentation Ineighbor_allgather(sendbuf, recvbuf) Nonblocking Neighbor Gather to All Parameters • sendbuf (BufSpec) – • recvbuf (BufSpecB) – Return type Request Ineighbor_allgatherv(sendbuf, recvbuf) Nonblocking Neighbor Gather to All Vector Parameters • sendbuf (BufSpec) – • recvbuf (BufSpecV) – Return type Request Ineighbor_alltoall(sendbuf, recvbuf) Nonblocking Neighbor All-to-All Parameters • sendbuf (BufSpecB) – • recvbuf (BufSpecB) – Return type Request Ineighbor_alltoallv(sendbuf, recvbuf) Nonblocking Neighbor All-to-All Vector Parameters • sendbuf (BufSpecV) – • recvbuf (BufSpecV) – Return type Request Ineighbor_alltoallw(sendbuf, recvbuf) Nonblocking Neighbor All-to-All Generalized Parameters • sendbuf (BufSpecW) – • recvbuf (BufSpecW) – Return type Request Neighbor_allgather(sendbuf, recvbuf) Neighbor Gather to All Parameters • sendbuf (BufSpec) – • recvbuf (BufSpecB) – Return type None Neighbor_allgatherv(sendbuf, recvbuf) Neighbor Gather to All Vector Parameters • sendbuf (BufSpec) – • recvbuf (BufSpecV) – Return type None Neighbor_alltoall(sendbuf, recvbuf) Neighbor All-to-All Parameters • sendbuf (BufSpecB) – • recvbuf (BufSpecB) – Return type None Neighbor_alltoallv(sendbuf, recvbuf) Neighbor All-to-All Vector Parameters • sendbuf (BufSpecV) – • recvbuf (BufSpecV) – Return type None Neighbor_alltoallw(sendbuf, recvbuf) Neighbor All-to-All Generalized Parameters • sendbuf (BufSpecW) – • recvbuf (BufSpecW) – Return type None neighbor_allgather(sendobj) Neighbor Gather to All Parameters sendobj (Any) – Return type List[Any] neighbor_alltoall(sendobj) Neighbor All to All Scatter/Gather Parameters sendobj (List[Any]) – Return type List[Any] Attributes Documentation degrees number of incoming and outgoing neighbors indegree number of incoming neighbors inedges incoming neighbors inoutedges incoming and outgoing neighbors outdegree number of outgoing neighbors outedges outgoing neighbors mpi4py.MPI.Win class mpi4py.MPI.Win(win=None) Bases: object Window handle Parameters win (Optional[Win]) – Return type Win static __new__(cls, win=None) Parameters win (Optional[Win]) – Return type Win Methods Summary ┌───────────────────────────┬────────────────────────────┐ │Accumulate(origin, tar- │ Accumulate data into the │ │get_rank[, target, op]) │ target process │ ├───────────────────────────┼────────────────────────────┤ │Allocate(size[, disp_unit, │ Create an window object │ │info, comm]) │ for one-sided communica- │ │ │ tion │ ├───────────────────────────┼────────────────────────────┤ │Allocate_shared(size[, │ Create an window object │ │disp_unit, info, comm]) │ for one-sided communica- │ │ │ tion │ ├───────────────────────────┼────────────────────────────┤ │Attach(memory) │ Attach a local memory re- │ │ │ gion │ ├───────────────────────────┼────────────────────────────┤ │Call_errhandler(errorcode) │ Call the error handler in- │ │ │ stalled on a window │ ├───────────────────────────┼────────────────────────────┤ │Compare_and_swap(origin, │ Perform one-sided atomic │ │compare, result, ...) │ compare-and-swap │ ├───────────────────────────┼────────────────────────────┤ │Complete() │ Completes an RMA opera- │ │ │ tions begun after an │ │ │ Win.Start() │ ├───────────────────────────┼────────────────────────────┤ │Create(memory[, disp_unit, │ Create an window object │ │info, comm]) │ for one-sided communica- │ │ │ tion │ ├───────────────────────────┼────────────────────────────┤ │Create_dynamic([info, │ Create an window object │ │comm]) │ for one-sided communica- │ │ │ tion │ ├───────────────────────────┼────────────────────────────┤ │Create_keyval([copy_fn, │ Create a new attribute key │ │delete_fn, nopython]) │ for windows │ ├───────────────────────────┼────────────────────────────┤ │Delete_attr(keyval) │ Delete attribute value as- │ │ │ sociated with a key │ ├───────────────────────────┼────────────────────────────┤ │Detach(memory) │ Detach a local memory re- │ │ │ gion │ ├───────────────────────────┼────────────────────────────┤ │Fence([assertion]) │ Perform an MPI fence syn- │ │ │ chronization on a window │ ├───────────────────────────┼────────────────────────────┤ │Fetch_and_op(origin, re- │ Perform one-sided │ │sult, target_rank[, ...]) │ read-modify-write │ ├───────────────────────────┼────────────────────────────┤ │Flush(rank) │ Complete all outstanding │ │ │ RMA operations at the │ │ │ given target │ ├───────────────────────────┼────────────────────────────┤ │Flush_all() │ Complete all outstanding │ │ │ RMA operations at all tar- │ │ │ gets │ ├───────────────────────────┼────────────────────────────┤ │Flush_local(rank) │ Complete locally all out- │ │ │ standing RMA operations at │ │ │ the given target │ ├───────────────────────────┼────────────────────────────┤ │Flush_local_all() │ Complete locally all out- │ │ │ standing RMA opera- tions │ │ │ at all targets │ ├───────────────────────────┼────────────────────────────┤ │Free() │ Free a window │ ├───────────────────────────┼────────────────────────────┤ │Free_keyval(keyval) │ Free an attribute key for │ │ │ windows │ ├───────────────────────────┼────────────────────────────┤ │Get(origin, target_rank[, │ Get data from a memory │ │target]) │ window on a remote │ │ │ process. │ ├───────────────────────────┼────────────────────────────┤ │Get_accumulate(origin, re- │ Fetch-and-accumulate data │ │sult, target_rank) │ into the target process │ ├───────────────────────────┼────────────────────────────┤ │Get_attr(keyval) │ Retrieve attribute value │ │ │ by key │ ├───────────────────────────┼────────────────────────────┤ │Get_errhandler() │ Get the error handler for │ │ │ a window │ ├───────────────────────────┼────────────────────────────┤ │Get_group() │ Return a duplicate of the │ │ │ group of the communicator │ │ │ used to create the window │ ├───────────────────────────┼────────────────────────────┤ │Get_info() │ Return the hints for a │ │ │ windows that are currently │ │ │ in use │ └───────────────────────────┴────────────────────────────┘ │Get_name() │ Get the print name associ- │ │ │ ated with the window │ ├───────────────────────────┼────────────────────────────┤ │Lock(rank[, lock_type, as- │ Begin an RMA access epoch │ │sertion]) │ at the target process │ ├───────────────────────────┼────────────────────────────┤ │Lock_all([assertion]) │ Begin an RMA access epoch │ │ │ at all processes │ ├───────────────────────────┼────────────────────────────┤ │Post(group[, assertion]) │ Start an RMA exposure │ │ │ epoch │ ├───────────────────────────┼────────────────────────────┤ │Put(origin, target_rank[, │ Put data into a memory │ │target]) │ window on a remote │ │ │ process. │ ├───────────────────────────┼────────────────────────────┤ │Raccumulate(origin, tar- │ Fetch-and-accumulate data │ │get_rank[, target, op]) │ into the target process │ ├───────────────────────────┼────────────────────────────┤ │Rget(origin, target_rank[, │ Get data from a memory │ │target]) │ window on a remote │ │ │ process. │ ├───────────────────────────┼────────────────────────────┤ │Rget_accumulate(origin, │ Accumulate data into the │ │result, target_rank) │ target process using re- │ │ │ mote memory access. │ ├───────────────────────────┼────────────────────────────┤ │Rput(origin, target_rank[, │ Put data into a memory │ │target]) │ window on a remote │ │ │ process. │ ├───────────────────────────┼────────────────────────────┤ │Set_attr(keyval, attrval) │ Store attribute value as- │ │ │ sociated with a key │ ├───────────────────────────┼────────────────────────────┤ │Set_errhandler(errhandler) │ Set the error handler for │ │ │ a window │ ├───────────────────────────┼────────────────────────────┤ │Set_info(info) │ Set new values for the │ │ │ hints associated with a │ │ │ window │ ├───────────────────────────┼────────────────────────────┤ │Set_name(name) │ Set the print name associ- │ │ │ ated with the window │ ├───────────────────────────┼────────────────────────────┤ │Shared_query(rank) │ Query the process-local │ │ │ address for remote memory │ │ │ segments created with │ │ │ Win.Allocate_shared() │ ├───────────────────────────┼────────────────────────────┤ │Start(group[, assertion]) │ Start an RMA access epoch │ │ │ for MPI │ ├───────────────────────────┼────────────────────────────┤ │Sync() │ Synchronize public and │ │ │ private copies of the │ │ │ given window │ ├───────────────────────────┼────────────────────────────┤ │Test() │ Test whether an RMA expo- │ │ │ sure epoch has completed │ ├───────────────────────────┼────────────────────────────┤ │Unlock(rank) │ Complete an RMA access │ │ │ epoch at the target │ │ │ process │ ├───────────────────────────┼────────────────────────────┤ │Unlock_all() │ Complete an RMA access │ │ │ epoch at all processes │ ├───────────────────────────┼────────────────────────────┤ │Wait() │ Complete an RMA exposure │ │ │ epoch begun with │ │ │ Win.Post() │ ├───────────────────────────┼────────────────────────────┤ │f2py(arg) │ │ ├───────────────────────────┼────────────────────────────┤ │py2f() │ │ ├───────────────────────────┼────────────────────────────┤ │tomemory() │ Return window memory buf- │ │ │ fer │ └───────────────────────────┴────────────────────────────┘ Attributes Summary ┌───────┬──────────────────────┐ │attrs │ window attributes │ ├───────┼──────────────────────┤ │flavor │ window create flavor │ ├───────┼──────────────────────┤ │group │ window group │ ├───────┼──────────────────────┤ │info │ window info │ ├───────┼──────────────────────┤ │model │ window memory model │ ├───────┼──────────────────────┤ │name │ window name │ └───────┴──────────────────────┘ Methods Documentation Accumulate(origin, target_rank, target=None, op=SUM) Accumulate data into the target process Parameters • origin (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – • op (Op) – Return type None classmethod Allocate(size, disp_unit=1, info=INFO_NULL, comm=COMM_SELF) Create an window object for one-sided communication Parameters • size (int) – • disp_unit (int) – • info (Info) – • comm (Intracomm) – Return type Win classmethod Allocate_shared(size, disp_unit=1, info=INFO_NULL, comm=COMM_SELF) Create an window object for one-sided communication Parameters • size (int) – • disp_unit (int) – • info (Info) – • comm (Intracomm) – Return type Win Attach(memory) Attach a local memory region Parameters memory (Buffer) – Return type None Call_errhandler(errorcode) Call the error handler installed on a window Parameters errorcode (int) – Return type None Compare_and_swap(origin, compare, result, target_rank, tar- get_disp=0) Perform one-sided atomic compare-and-swap Parameters • origin (BufSpec) – • compare (BufSpec) – • result (BufSpec) – • target_rank (int) – • target_disp (int) – Return type None Complete() Completes an RMA operations begun after an Win.Start() Return type None classmethod Create(memory, disp_unit=1, info=INFO_NULL, comm=COMM_SELF) Create an window object for one-sided communication Parameters • memory (Union[Buffer, Bottom, None]) – • disp_unit (int) – • info (Info) – • comm (Intracomm) – Return type Win classmethod Create_dynamic(info=INFO_NULL, comm=COMM_SELF) Create an window object for one-sided communication Parameters • info (Info) – • comm (Intracomm) – Return type Win classmethod Create_keyval(copy_fn=None, delete_fn=None, nopy- thon=False) Create a new attribute key for windows Parameters • copy_fn (Optional[Callable[[Win, int, Any], Any]]) – • delete_fn (Optional[Callable[[Win, int, Any], None]]) – • nopython (bool) – Return type int Delete_attr(keyval) Delete attribute value associated with a key Parameters keyval (int) – Return type None Detach(memory) Detach a local memory region Parameters memory (Buffer) – Return type None Fence(assertion=0) Perform an MPI fence synchronization on a window Parameters assertion (int) – Return type None Fetch_and_op(origin, result, target_rank, target_disp=0, op=SUM) Perform one-sided read-modify-write Parameters • origin (BufSpec) – • result (BufSpec) – • target_rank (int) – • target_disp (int) – • op (Op) – Return type None Flush(rank) Complete all outstanding RMA operations at the given tar- get Parameters rank (int) – Return type None Flush_all() Complete all outstanding RMA operations at all targets Return type None Flush_local(rank) Complete locally all outstanding RMA operations at the given target Parameters rank (int) – Return type None Flush_local_all() Complete locally all outstanding RMA opera- tions at all targets Return type None Free() Free a window Return type None classmethod Free_keyval(keyval) Free an attribute key for windows Parameters keyval (int) – Return type int Get(origin, target_rank, target=None) Get data from a memory window on a remote process. Parameters • origin (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – Return type None Get_accumulate(origin, result, target_rank, target=None, op=SUM) Fetch-and-accumulate data into the target process Parameters • origin (BufSpec) – • result (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – • op (Op) – Return type None Get_attr(keyval) Retrieve attribute value by key Parameters keyval (int) – Return type Optional[Union[int, Any]] Get_errhandler() Get the error handler for a window Return type Errhandler Get_group() Return a duplicate of the group of the communicator used to create the window Return type Group Get_info() Return the hints for a windows that are currently in use Return type Info Get_name() Get the print name associated with the window Return type str Lock(rank, lock_type=LOCK_EXCLUSIVE, assertion=0) Begin an RMA access epoch at the target process Parameters • rank (int) – • lock_type (int) – • assertion (int) – Return type None Lock_all(assertion=0) Begin an RMA access epoch at all processes Parameters assertion (int) – Return type None Post(group, assertion=0) Start an RMA exposure epoch Parameters • group (Group) – • assertion (int) – Return type None Put(origin, target_rank, target=None) Put data into a memory window on a remote process. Parameters • origin (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – Return type None Raccumulate(origin, target_rank, target=None, op=SUM) Fetch-and-accumulate data into the target process Parameters • origin (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – • op (Op) – Return type Request Rget(origin, target_rank, target=None) Get data from a memory window on a remote process. Parameters • origin (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – Return type Request Rget_accumulate(origin, result, target_rank, target=None, op=SUM) Accumulate data into the target process using remote mem- ory access. Parameters • origin (BufSpec) – • result (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – • op (Op) – Return type Request Rput(origin, target_rank, target=None) Put data into a memory window on a remote process. Parameters • origin (BufSpec) – • target_rank (int) – • target (Optional[TargetSpec]) – Return type Request Set_attr(keyval, attrval) Store attribute value associated with a key Parameters • keyval (int) – • attrval (Any) – Return type None Set_errhandler(errhandler) Set the error handler for a window Parameters errhandler (Errhandler) – Return type None Set_info(info) Set new values for the hints associated with a window Parameters info (Info) – Return type None Set_name(name) Set the print name associated with the window Parameters name (str) – Return type None Shared_query(rank) Query the process-local address for remote memory seg- ments created with Win.Allocate_shared() Parameters rank (int) – Return type Tuple[memory, int] Start(group, assertion=0) Start an RMA access epoch for MPI Parameters • group (Group) – • assertion (int) – Return type None Sync() Synchronize public and private copies of the given window Return type None Test() Test whether an RMA exposure epoch has completed Return type bool Unlock(rank) Complete an RMA access epoch at the target process Parameters rank (int) – Return type None Unlock_all() Complete an RMA access epoch at all processes Return type None Wait() Complete an RMA exposure epoch begun with Win.Post() Return type Literal[True] classmethod f2py(arg) Parameters arg (int) – Return type Win py2f() Return type int tomemory() Return window memory buffer Return type memory Attributes Documentation attrs window attributes flavor window create flavor group window group info window info model window memory model name window name mpi4py.MPI.memory class mpi4py.MPI.memory(buf) Bases: object Memory buffer Parameters buf (Buffer) – Return type memory static __new__(cls, buf) Parameters buf (Buffer) – Return type memory Methods Summary ┌───────────────────────────┬────────────────────────────┐ │allocate(nbytes[, clear]) │ Memory allocation │ ├───────────────────────────┼────────────────────────────┤ │fromaddress(address, │ Memory from address and │ │nbytes[, readonly]) │ size in bytes │ ├───────────────────────────┼────────────────────────────┤ │frombuffer(obj[, read- │ Memory from buffer-like │ │only]) │ object │ ├───────────────────────────┼────────────────────────────┤ │release() │ Release the underlying │ │ │ buffer exposed by the mem- │ │ │ ory object │ ├───────────────────────────┼────────────────────────────┤ │tobytes([order]) │ Return the data in the │ │ │ buffer as a byte string │ ├───────────────────────────┼────────────────────────────┤ │toreadonly() │ Return a readonly version │ │ │ of the memory object │ └───────────────────────────┴────────────────────────────┘ Attributes Summary ┌─────────┬────────────────────────────┐ │address │ Memory address │ ├─────────┼────────────────────────────┤ │format │ A string with the format │ │ │ of each element │ ├─────────┼────────────────────────────┤ │itemsize │ The size in bytes of each │ │ │ element │ ├─────────┼────────────────────────────┤ │nbytes │ Memory size (in bytes) │ ├─────────┼────────────────────────────┤ │obj │ The underlying object of │ │ │ the memory │ ├─────────┼────────────────────────────┤ │readonly │ Boolean indicating whether │ │ │ the memory is read-only │ └─────────┴────────────────────────────┘ Methods Documentation static allocate(nbytes, clear=False) Memory allocation Parameters • nbytes (int) – • clear (bool) – Return type memory static fromaddress(address, nbytes, readonly=False) Memory from address and size in bytes Parameters • address (int) – • nbytes (int) – • readonly (bool) – Return type memory static frombuffer(obj, readonly=False) Memory from buffer-like object Parameters • obj (Buffer) – • readonly (bool) – Return type memory release() Release the underlying buffer exposed by the memory ob- ject Return type None tobytes(order=None) Return the data in the buffer as a byte string Parameters order (Optional[str]) – Return type bytes toreadonly() Return a readonly version of the memory object Return type memory Attributes Documentation address Memory address format A string with the format of each element itemsize The size in bytes of each element nbytes Memory size (in bytes) obj The underlying object of the memory readonly Boolean indicating whether the memory is read-only Exceptions ┌──────────────────┬─────────────────┐ │Exception([ierr]) │ Exception class │ └──────────────────┴─────────────────┘ mpi4py.MPI.Exception exception mpi4py.MPI.Exception(ierr=SUCCESS) Bases: RuntimeError Exception class Parameters ierr (int) – Return type Exception static __new__(cls, ierr=SUCCESS) Parameters ierr (int) – Return type Exception Methods Summary ┌───────────────────┬──────────────┐ │Get_error_class() │ Error class │ ├───────────────────┼──────────────┤ │Get_error_code() │ Error code │ ├───────────────────┼──────────────┤ │Get_error_string() │ Error string │ └───────────────────┴──────────────┘ Attributes Summary ┌─────────────┬──────────────┐ │error_class │ error class │ ├─────────────┼──────────────┤ │error_code │ error code │ ├─────────────┼──────────────┤ │error_string │ error string │ └─────────────┴──────────────┘ Methods Documentation Get_error_class() Error class Return type int Get_error_code() Error code Return type int Get_error_string() Error string Return type str Attributes Documentation error_class error class error_code error code error_string error string Functions ┌───────────────────────────┬────────────────────────────┐ │Add_error_class() │ Add an error class to the │ │ │ known error classes │ ├───────────────────────────┼────────────────────────────┤ │Add_error_code(errorclass) │ Add an error code to an │ │ │ error class │ ├───────────────────────────┼────────────────────────────┤ │Add_error_string(error- │ Associate an error string │ │code, string) │ with an error class or er- │ │ │ rorcode │ ├───────────────────────────┼────────────────────────────┤ │Aint_add(base, disp) │ Return the sum of base ad- │ │ │ dress and displacement │ ├───────────────────────────┼────────────────────────────┤ │Aint_diff(addr1, addr2) │ Return the difference be- │ │ │ tween absolute addresses │ ├───────────────────────────┼────────────────────────────┤ │Alloc_mem(size[, info]) │ Allocate memory for mes- │ │ │ sage passing and RMA │ ├───────────────────────────┼────────────────────────────┤ │Attach_buffer(buf) │ Attach a user-provided │ │ │ buffer for sending in │ │ │ buffered mode │ ├───────────────────────────┼────────────────────────────┤ │Close_port(port_name) │ Close a port │ ├───────────────────────────┼────────────────────────────┤ │Compute_dims(nnodes, dims) │ Return a balanced distri- │ │ │ bution of processes per │ │ │ coordinate direction │ ├───────────────────────────┼────────────────────────────┤ │Detach_buffer() │ Remove an existing at- │ │ │ tached buffer │ ├───────────────────────────┼────────────────────────────┤ │Finalize() │ Terminate the MPI execu- │ │ │ tion environment │ ├───────────────────────────┼────────────────────────────┤ │Free_mem(mem) │ Free memory allocated with │ │ │ Alloc_mem() │ ├───────────────────────────┼────────────────────────────┤ │Get_address(location) │ Get the address of a loca- │ │ │ tion in memory │ ├───────────────────────────┼────────────────────────────┤ │Get_error_class(errorcode) │ Convert an error code into │ │ │ an error class │ ├───────────────────────────┼────────────────────────────┤ │Get_error_string(error- │ Return the error string │ │code) │ for a given error class or │ │ │ error code │ ├───────────────────────────┼────────────────────────────┤ │Get_library_version() │ Obtain the version string │ │ │ of the MPI library │ ├───────────────────────────┼────────────────────────────┤ │Get_processor_name() │ Obtain the name of the │ │ │ calling processor │ ├───────────────────────────┼────────────────────────────┤ │Get_version() │ Obtain the version number │ │ │ of the MPI standard sup- │ │ │ ported by the implementa- │ │ │ tion as a tuple (version, │ │ │ subversion) │ └───────────────────────────┴────────────────────────────┘ │Init() │ Initialize the MPI execu- │ │ │ tion environment │ ├───────────────────────────┼────────────────────────────┤ │Init_thread([required]) │ Initialize the MPI execu- │ │ │ tion environment │ ├───────────────────────────┼────────────────────────────┤ │Is_finalized() │ Indicates whether Finalize │ │ │ has completed │ ├───────────────────────────┼────────────────────────────┤ │Is_initialized() │ Indicates whether Init has │ │ │ been called │ ├───────────────────────────┼────────────────────────────┤ │Is_thread_main() │ Indicate whether this │ │ │ thread called Init or │ │ │ Init_thread │ ├───────────────────────────┼────────────────────────────┤ │Lookup_name(service_name[, │ Lookup a port name given a │ │info]) │ service name │ ├───────────────────────────┼────────────────────────────┤ │Open_port([info]) │ Return an address that can │ │ │ be used to establish con- │ │ │ nections between groups of │ │ │ MPI processes │ ├───────────────────────────┼────────────────────────────┤ │Pcontrol(level) │ Control profiling │ ├───────────────────────────┼────────────────────────────┤ │Publish_name(service_name, │ Publish a service name │ │port_name[, info]) │ │ ├───────────────────────────┼────────────────────────────┤ │Query_thread() │ Return the level of thread │ │ │ support provided by the │ │ │ MPI library │ ├───────────────────────────┼────────────────────────────┤ │Register_datarep(datarep, │ Register user-defined data │ │read_fn, write_fn, ...) │ representations │ ├───────────────────────────┼────────────────────────────┤ │Unpublish_name(ser- │ Unpublish a service name │ │vice_name, port_name[, │ │ │info]) │ │ ├───────────────────────────┼────────────────────────────┤ │Wtick() │ Return the resolution of │ │ │ Wtime │ ├───────────────────────────┼────────────────────────────┤ │Wtime() │ Return an elapsed time on │ │ │ the calling processor │ ├───────────────────────────┼────────────────────────────┤ │get_vendor() │ Infomation about the un- │ │ │ derlying MPI implementa- │ │ │ tion │ └───────────────────────────┴────────────────────────────┘ mpi4py.MPI.Add_error_class mpi4py.MPI.Add_error_class() Add an error class to the known error classes Return type int mpi4py.MPI.Add_error_code mpi4py.MPI.Add_error_code(errorclass) Add an error code to an error class Parameters errorclass (int) – Return type int mpi4py.MPI.Add_error_string mpi4py.MPI.Add_error_string(errorcode, string) Associate an error string with an error class or errorcode Parameters • errorcode (int) – • string (str) – Return type None mpi4py.MPI.Aint_add mpi4py.MPI.Aint_add(base, disp) Return the sum of base address and displacement Parameters • base (int) – • disp (int) – Return type int mpi4py.MPI.Aint_diff mpi4py.MPI.Aint_diff(addr1, addr2) Return the difference between absolute addresses Parameters • addr1 (int) – • addr2 (int) – Return type int mpi4py.MPI.Alloc_mem mpi4py.MPI.Alloc_mem(size, info=INFO_NULL) Allocate memory for message passing and RMA Parameters • size (int) – • info (Info) – Return type memory mpi4py.MPI.Attach_buffer mpi4py.MPI.Attach_buffer(buf) Attach a user-provided buffer for sending in buffered mode Parameters buf (Buffer) – Return type None mpi4py.MPI.Close_port mpi4py.MPI.Close_port(port_name) Close a port Parameters port_name (str) – Return type None mpi4py.MPI.Compute_dims mpi4py.MPI.Compute_dims(nnodes, dims) Return a balanced distribution of processes per coordinate di- rection Parameters • nnodes (int) – • dims (Union[int, Sequence[int]]) – Return type List[int] mpi4py.MPI.Detach_buffer mpi4py.MPI.Detach_buffer() Remove an existing attached buffer Return type Buffer mpi4py.MPI.Finalize mpi4py.MPI.Finalize() Terminate the MPI execution environment Return type None mpi4py.MPI.Free_mem mpi4py.MPI.Free_mem(mem) Free memory allocated with Alloc_mem() Parameters mem (memory) – Return type None mpi4py.MPI.Get_address mpi4py.MPI.Get_address(location) Get the address of a location in memory Parameters location (Union[Buffer, Bottom]) – Return type int mpi4py.MPI.Get_error_class mpi4py.MPI.Get_error_class(errorcode) Convert an error code into an error class Parameters errorcode (int) – Return type int mpi4py.MPI.Get_error_string mpi4py.MPI.Get_error_string(errorcode) Return the error string for a given error class or error code Parameters errorcode (int) – Return type str mpi4py.MPI.Get_library_version mpi4py.MPI.Get_library_version() Obtain the version string of the MPI library Return type str mpi4py.MPI.Get_processor_name mpi4py.MPI.Get_processor_name() Obtain the name of the calling processor Return type str mpi4py.MPI.Get_version mpi4py.MPI.Get_version() Obtain the version number of the MPI standard supported by the implementation as a tuple (version, subversion) Return type Tuple[int, int] mpi4py.MPI.Init mpi4py.MPI.Init() Initialize the MPI execution environment Return type None mpi4py.MPI.Init_thread mpi4py.MPI.Init_thread(required=THREAD_MULTIPLE) Initialize the MPI execution environment Parameters required (int) – Return type int mpi4py.MPI.Is_finalized mpi4py.MPI.Is_finalized() Indicates whether Finalize has completed Return type bool mpi4py.MPI.Is_initialized mpi4py.MPI.Is_initialized() Indicates whether Init has been called Return type bool mpi4py.MPI.Is_thread_main mpi4py.MPI.Is_thread_main() Indicate whether this thread called Init or Init_thread Return type bool mpi4py.MPI.Lookup_name mpi4py.MPI.Lookup_name(service_name, info=INFO_NULL) Lookup a port name given a service name Parameters • service_name (str) – • info (Info) – Return type str mpi4py.MPI.Open_port mpi4py.MPI.Open_port(info=INFO_NULL) Return an address that can be used to establish connections be- tween groups of MPI processes Parameters info (Info) – Return type str mpi4py.MPI.Pcontrol mpi4py.MPI.Pcontrol(level) Control profiling Parameters level (int) – Return type None mpi4py.MPI.Publish_name mpi4py.MPI.Publish_name(service_name, port_name, info=INFO_NULL) Publish a service name Parameters • service_name (str) – • port_name (str) – • info (Info) – Return type None mpi4py.MPI.Query_thread mpi4py.MPI.Query_thread() Return the level of thread support provided by the MPI library Return type int mpi4py.MPI.Register_datarep mpi4py.MPI.Register_datarep(datarep, read_fn, write_fn, extent_fn) Register user-defined data representations Parameters • datarep (str) – • read_fn (Callable[[Buffer, Datatype, int, Buffer, int], None]) – • write_fn (Callable[[Buffer, Datatype, int, Buffer, int], None]) – • extent_fn (Callable[[Datatype], int]) – Return type None mpi4py.MPI.Unpublish_name mpi4py.MPI.Unpublish_name(service_name, port_name, info=INFO_NULL) Unpublish a service name Parameters • service_name (str) – • port_name (str) – • info (Info) – Return type None mpi4py.MPI.Wtick mpi4py.MPI.Wtick() Return the resolution of Wtime Return type float mpi4py.MPI.Wtime mpi4py.MPI.Wtime() Return an elapsed time on the calling processor Return type float mpi4py.MPI.get_vendor mpi4py.MPI.get_vendor() Infomation about the underlying MPI implementation Returns • a string with the name of the MPI implementation • an integer 3-tuple version (major, minor, micro) Return type Tuple[str, Tuple[int, int, int]] Attributes ┌───────────────────────────┬────────────────────────────┐ │UNDEFINED │ int UNDEFINED │ ├───────────────────────────┼────────────────────────────┤ │ANY_SOURCE │ int ANY_SOURCE │ ├───────────────────────────┼────────────────────────────┤ │ANY_TAG │ int ANY_TAG │ ├───────────────────────────┼────────────────────────────┤ │PROC_NULL │ int PROC_NULL │ ├───────────────────────────┼────────────────────────────┤ │ROOT │ int ROOT │ ├───────────────────────────┼────────────────────────────┤ │BOTTOM │ Bottom BOTTOM │ └───────────────────────────┴────────────────────────────┘ │IN_PLACE │ InPlace IN_PLACE │ ├───────────────────────────┼────────────────────────────┤ │KEYVAL_INVALID │ int KEYVAL_INVALID │ ├───────────────────────────┼────────────────────────────┤ │TAG_UB │ int TAG_UB │ ├───────────────────────────┼────────────────────────────┤ │HOST │ int HOST │ ├───────────────────────────┼────────────────────────────┤ │IO │ int IO │ ├───────────────────────────┼────────────────────────────┤ │WTIME_IS_GLOBAL │ int WTIME_IS_GLOBAL │ ├───────────────────────────┼────────────────────────────┤ │UNIVERSE_SIZE │ int UNIVERSE_SIZE │ ├───────────────────────────┼────────────────────────────┤ │APPNUM │ int APPNUM │ ├───────────────────────────┼────────────────────────────┤ │LASTUSEDCODE │ int LASTUSEDCODE │ ├───────────────────────────┼────────────────────────────┤ │WIN_BASE │ int WIN_BASE │ ├───────────────────────────┼────────────────────────────┤ │WIN_SIZE │ int WIN_SIZE │ ├───────────────────────────┼────────────────────────────┤ │WIN_DISP_UNIT │ int WIN_DISP_UNIT │ ├───────────────────────────┼────────────────────────────┤ │WIN_CREATE_FLAVOR │ int WIN_CREATE_FLAVOR │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR │ int WIN_FLAVOR │ ├───────────────────────────┼────────────────────────────┤ │WIN_MODEL │ int WIN_MODEL │ ├───────────────────────────┼────────────────────────────┤ │SUCCESS │ int SUCCESS │ ├───────────────────────────┼────────────────────────────┤ │ERR_LASTCODE │ int ERR_LASTCODE │ ├───────────────────────────┼────────────────────────────┤ │ERR_COMM │ int ERR_COMM │ ├───────────────────────────┼────────────────────────────┤ │ERR_GROUP │ int ERR_GROUP │ ├───────────────────────────┼────────────────────────────┤ │ERR_TYPE │ int ERR_TYPE │ ├───────────────────────────┼────────────────────────────┤ │ERR_REQUEST │ int ERR_REQUEST │ ├───────────────────────────┼────────────────────────────┤ │ERR_OP │ int ERR_OP │ ├───────────────────────────┼────────────────────────────┤ │ERR_BUFFER │ int ERR_BUFFER │ ├───────────────────────────┼────────────────────────────┤ │ERR_COUNT │ int ERR_COUNT │ ├───────────────────────────┼────────────────────────────┤ │ERR_TAG │ int ERR_TAG │ ├───────────────────────────┼────────────────────────────┤ │ERR_RANK │ int ERR_RANK │ ├───────────────────────────┼────────────────────────────┤ │ERR_ROOT │ int ERR_ROOT │ ├───────────────────────────┼────────────────────────────┤ │ERR_TRUNCATE │ int ERR_TRUNCATE │ ├───────────────────────────┼────────────────────────────┤ │ERR_IN_STATUS │ int ERR_IN_STATUS │ ├───────────────────────────┼────────────────────────────┤ │ERR_PENDING │ int ERR_PENDING │ ├───────────────────────────┼────────────────────────────┤ │ERR_TOPOLOGY │ int ERR_TOPOLOGY │ ├───────────────────────────┼────────────────────────────┤ │ERR_DIMS │ int ERR_DIMS │ ├───────────────────────────┼────────────────────────────┤ │ERR_ARG │ int ERR_ARG │ ├───────────────────────────┼────────────────────────────┤ │ERR_OTHER │ int ERR_OTHER │ ├───────────────────────────┼────────────────────────────┤ │ERR_UNKNOWN │ int ERR_UNKNOWN │ ├───────────────────────────┼────────────────────────────┤ │ERR_INTERN │ int ERR_INTERN │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO │ int ERR_INFO │ ├───────────────────────────┼────────────────────────────┤ │ERR_FILE │ int ERR_FILE │ ├───────────────────────────┼────────────────────────────┤ │ERR_WIN │ int ERR_WIN │ ├───────────────────────────┼────────────────────────────┤ │ERR_KEYVAL │ int ERR_KEYVAL │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO_KEY │ int ERR_INFO_KEY │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO_VALUE │ int ERR_INFO_VALUE │ ├───────────────────────────┼────────────────────────────┤ │ERR_INFO_NOKEY │ int ERR_INFO_NOKEY │ ├───────────────────────────┼────────────────────────────┤ │ERR_ACCESS │ int ERR_ACCESS │ ├───────────────────────────┼────────────────────────────┤ │ERR_AMODE │ int ERR_AMODE │ ├───────────────────────────┼────────────────────────────┤ │ERR_BAD_FILE │ int ERR_BAD_FILE │ ├───────────────────────────┼────────────────────────────┤ │ERR_FILE_EXISTS │ int ERR_FILE_EXISTS │ ├───────────────────────────┼────────────────────────────┤ │ERR_FILE_IN_USE │ int ERR_FILE_IN_USE │ ├───────────────────────────┼────────────────────────────┤ │ERR_NO_SPACE │ int ERR_NO_SPACE │ ├───────────────────────────┼────────────────────────────┤ │ERR_NO_SUCH_FILE │ int ERR_NO_SUCH_FILE │ ├───────────────────────────┼────────────────────────────┤ │ERR_IO │ int ERR_IO │ ├───────────────────────────┼────────────────────────────┤ │ERR_READ_ONLY │ int ERR_READ_ONLY │ ├───────────────────────────┼────────────────────────────┤ │ERR_CONVERSION │ int ERR_CONVERSION │ ├───────────────────────────┼────────────────────────────┤ │ERR_DUP_DATAREP │ int ERR_DUP_DATAREP │ ├───────────────────────────┼────────────────────────────┤ │ERR_UNSUPPORTED_DATAREP │ int ERR_UNSUP- │ │ │ PORTED_DATAREP │ ├───────────────────────────┼────────────────────────────┤ │ERR_UNSUPPORTED_OPERATION │ int ERR_UNSUPPORTED_OPERA- │ │ │ TION │ ├───────────────────────────┼────────────────────────────┤ │ERR_NAME │ int ERR_NAME │ ├───────────────────────────┼────────────────────────────┤ │ERR_NO_MEM │ int ERR_NO_MEM │ ├───────────────────────────┼────────────────────────────┤ │ERR_NOT_SAME │ int ERR_NOT_SAME │ ├───────────────────────────┼────────────────────────────┤ │ERR_PORT │ int ERR_PORT │ ├───────────────────────────┼────────────────────────────┤ │ERR_QUOTA │ int ERR_QUOTA │ ├───────────────────────────┼────────────────────────────┤ │ERR_SERVICE │ int ERR_SERVICE │ ├───────────────────────────┼────────────────────────────┤ │ERR_SPAWN │ int ERR_SPAWN │ ├───────────────────────────┼────────────────────────────┤ │ERR_BASE │ int ERR_BASE │ ├───────────────────────────┼────────────────────────────┤ │ERR_SIZE │ int ERR_SIZE │ └───────────────────────────┴────────────────────────────┘ │ERR_DISP │ int ERR_DISP │ ├───────────────────────────┼────────────────────────────┤ │ERR_ASSERT │ int ERR_ASSERT │ ├───────────────────────────┼────────────────────────────┤ │ERR_LOCKTYPE │ int ERR_LOCKTYPE │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_CONFLICT │ int ERR_RMA_CONFLICT │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_SYNC │ int ERR_RMA_SYNC │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_RANGE │ int ERR_RMA_RANGE │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_ATTACH │ int ERR_RMA_ATTACH │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_SHARED │ int ERR_RMA_SHARED │ ├───────────────────────────┼────────────────────────────┤ │ERR_RMA_FLAVOR │ int ERR_RMA_FLAVOR │ ├───────────────────────────┼────────────────────────────┤ │ORDER_C │ int ORDER_C │ ├───────────────────────────┼────────────────────────────┤ │ORDER_FORTRAN │ int ORDER_FORTRAN │ ├───────────────────────────┼────────────────────────────┤ │ORDER_F │ int ORDER_F │ ├───────────────────────────┼────────────────────────────┤ │TYPECLASS_INTEGER │ int TYPECLASS_INTEGER │ ├───────────────────────────┼────────────────────────────┤ │TYPECLASS_REAL │ int TYPECLASS_REAL │ ├───────────────────────────┼────────────────────────────┤ │TYPECLASS_COMPLEX │ int TYPECLASS_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_NONE │ int DISTRIBUTE_NONE │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_BLOCK │ int DISTRIBUTE_BLOCK │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_CYCLIC │ int DISTRIBUTE_CYCLIC │ ├───────────────────────────┼────────────────────────────┤ │DISTRIBUTE_DFLT_DARG │ int DISTRIBUTE_DFLT_DARG │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_NAMED │ int COMBINER_NAMED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_DUP │ int COMBINER_DUP │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_CONTIGUOUS │ int COMBINER_CONTIGUOUS │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_VECTOR │ int COMBINER_VECTOR │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_HVECTOR │ int COMBINER_HVECTOR │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_INDEXED │ int COMBINER_INDEXED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_HINDEXED │ int COMBINER_HINDEXED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_INDEXED_BLOCK │ int COMBINER_INDEXED_BLOCK │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_HINDEXED_BLOCK │ int COMBINER_HIN- │ │ │ DEXED_BLOCK │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_STRUCT │ int COMBINER_STRUCT │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_SUBARRAY │ int COMBINER_SUBARRAY │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_DARRAY │ int COMBINER_DARRAY │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_RESIZED │ int COMBINER_RESIZED │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_F90_REAL │ int COMBINER_F90_REAL │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_F90_COMPLEX │ int COMBINER_F90_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │COMBINER_F90_INTEGER │ int COMBINER_F90_INTEGER │ ├───────────────────────────┼────────────────────────────┤ │IDENT │ int IDENT │ ├───────────────────────────┼────────────────────────────┤ │CONGRUENT │ int CONGRUENT │ ├───────────────────────────┼────────────────────────────┤ │SIMILAR │ int SIMILAR │ ├───────────────────────────┼────────────────────────────┤ │UNEQUAL │ int UNEQUAL │ ├───────────────────────────┼────────────────────────────┤ │CART │ int CART │ ├───────────────────────────┼────────────────────────────┤ │GRAPH │ int GRAPH │ ├───────────────────────────┼────────────────────────────┤ │DIST_GRAPH │ int DIST_GRAPH │ ├───────────────────────────┼────────────────────────────┤ │UNWEIGHTED │ int UNWEIGHTED │ ├───────────────────────────┼────────────────────────────┤ │WEIGHTS_EMPTY │ int WEIGHTS_EMPTY │ ├───────────────────────────┼────────────────────────────┤ │COMM_TYPE_SHARED │ int COMM_TYPE_SHARED │ ├───────────────────────────┼────────────────────────────┤ │BSEND_OVERHEAD │ int BSEND_OVERHEAD │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR_CREATE │ int WIN_FLAVOR_CREATE │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR_ALLOCATE │ int WIN_FLAVOR_ALLOCATE │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR_DYNAMIC │ int WIN_FLAVOR_DYNAMIC │ ├───────────────────────────┼────────────────────────────┤ │WIN_FLAVOR_SHARED │ int WIN_FLAVOR_SHARED │ ├───────────────────────────┼────────────────────────────┤ │WIN_SEPARATE │ int WIN_SEPARATE │ ├───────────────────────────┼────────────────────────────┤ │WIN_UNIFIED │ int WIN_UNIFIED │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOCHECK │ int MODE_NOCHECK │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOSTORE │ int MODE_NOSTORE │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOPUT │ int MODE_NOPUT │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOPRECEDE │ int MODE_NOPRECEDE │ ├───────────────────────────┼────────────────────────────┤ │MODE_NOSUCCEED │ int MODE_NOSUCCEED │ ├───────────────────────────┼────────────────────────────┤ │LOCK_EXCLUSIVE │ int LOCK_EXCLUSIVE │ ├───────────────────────────┼────────────────────────────┤ │LOCK_SHARED │ int LOCK_SHARED │ ├───────────────────────────┼────────────────────────────┤ │MODE_RDONLY │ int MODE_RDONLY │ ├───────────────────────────┼────────────────────────────┤ │MODE_WRONLY │ int MODE_WRONLY │ ├───────────────────────────┼────────────────────────────┤ │MODE_RDWR │ int MODE_RDWR │ ├───────────────────────────┼────────────────────────────┤ │MODE_CREATE │ int MODE_CREATE │ ├───────────────────────────┼────────────────────────────┤ │MODE_EXCL │ int MODE_EXCL │ ├───────────────────────────┼────────────────────────────┤ │MODE_DELETE_ON_CLOSE │ int MODE_DELETE_ON_CLOSE │ ├───────────────────────────┼────────────────────────────┤ │MODE_UNIQUE_OPEN │ int MODE_UNIQUE_OPEN │ └───────────────────────────┴────────────────────────────┘ │MODE_SEQUENTIAL │ int MODE_SEQUENTIAL │ ├───────────────────────────┼────────────────────────────┤ │MODE_APPEND │ int MODE_APPEND │ ├───────────────────────────┼────────────────────────────┤ │SEEK_SET │ int SEEK_SET │ ├───────────────────────────┼────────────────────────────┤ │SEEK_CUR │ int SEEK_CUR │ ├───────────────────────────┼────────────────────────────┤ │SEEK_END │ int SEEK_END │ ├───────────────────────────┼────────────────────────────┤ │DISPLACEMENT_CURRENT │ int DISPLACEMENT_CURRENT │ ├───────────────────────────┼────────────────────────────┤ │DISP_CUR │ int DISP_CUR │ ├───────────────────────────┼────────────────────────────┤ │THREAD_SINGLE │ int THREAD_SINGLE │ ├───────────────────────────┼────────────────────────────┤ │THREAD_FUNNELED │ int THREAD_FUNNELED │ ├───────────────────────────┼────────────────────────────┤ │THREAD_SERIALIZED │ int THREAD_SERIALIZED │ ├───────────────────────────┼────────────────────────────┤ │THREAD_MULTIPLE │ int THREAD_MULTIPLE │ ├───────────────────────────┼────────────────────────────┤ │VERSION │ int VERSION │ ├───────────────────────────┼────────────────────────────┤ │SUBVERSION │ int SUBVERSION │ ├───────────────────────────┼────────────────────────────┤ │MAX_PROCESSOR_NAME │ int MAX_PROCESSOR_NAME │ ├───────────────────────────┼────────────────────────────┤ │MAX_ERROR_STRING │ int MAX_ERROR_STRING │ ├───────────────────────────┼────────────────────────────┤ │MAX_PORT_NAME │ int MAX_PORT_NAME │ ├───────────────────────────┼────────────────────────────┤ │MAX_INFO_KEY │ int MAX_INFO_KEY │ ├───────────────────────────┼────────────────────────────┤ │MAX_INFO_VAL │ int MAX_INFO_VAL │ ├───────────────────────────┼────────────────────────────┤ │MAX_OBJECT_NAME │ int MAX_OBJECT_NAME │ ├───────────────────────────┼────────────────────────────┤ │MAX_DATAREP_STRING │ int MAX_DATAREP_STRING │ ├───────────────────────────┼────────────────────────────┤ │MAX_LIBRARY_VERSION_STRING │ int MAX_LIBRARY_VER- │ │ │ SION_STRING │ ├───────────────────────────┼────────────────────────────┤ │DATATYPE_NULL │ Datatype DATATYPE_NULL │ ├───────────────────────────┼────────────────────────────┤ │UB │ Datatype UB │ ├───────────────────────────┼────────────────────────────┤ │LB │ Datatype LB │ ├───────────────────────────┼────────────────────────────┤ │PACKED │ Datatype PACKED │ ├───────────────────────────┼────────────────────────────┤ │BYTE │ Datatype BYTE │ ├───────────────────────────┼────────────────────────────┤ │AINT │ Datatype AINT │ ├───────────────────────────┼────────────────────────────┤ │OFFSET │ Datatype OFFSET │ ├───────────────────────────┼────────────────────────────┤ │COUNT │ Datatype COUNT │ ├───────────────────────────┼────────────────────────────┤ │CHAR │ Datatype CHAR │ ├───────────────────────────┼────────────────────────────┤ │WCHAR │ Datatype WCHAR │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_CHAR │ Datatype SIGNED_CHAR │ ├───────────────────────────┼────────────────────────────┤ │SHORT │ Datatype SHORT │ ├───────────────────────────┼────────────────────────────┤ │INT │ Datatype INT │ ├───────────────────────────┼────────────────────────────┤ │LONG │ Datatype LONG │ ├───────────────────────────┼────────────────────────────┤ │LONG_LONG │ Datatype LONG_LONG │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_CHAR │ Datatype UNSIGNED_CHAR │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_SHORT │ Datatype UNSIGNED_SHORT │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED │ Datatype UNSIGNED │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_LONG │ Datatype UNSIGNED_LONG │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_LONG_LONG │ Datatype UN- │ │ │ SIGNED_LONG_LONG │ ├───────────────────────────┼────────────────────────────┤ │FLOAT │ Datatype FLOAT │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE │ Datatype DOUBLE │ ├───────────────────────────┼────────────────────────────┤ │LONG_DOUBLE │ Datatype LONG_DOUBLE │ ├───────────────────────────┼────────────────────────────┤ │C_BOOL │ Datatype C_BOOL │ ├───────────────────────────┼────────────────────────────┤ │INT8_T │ Datatype INT8_T │ ├───────────────────────────┼────────────────────────────┤ │INT16_T │ Datatype INT16_T │ ├───────────────────────────┼────────────────────────────┤ │INT32_T │ Datatype INT32_T │ ├───────────────────────────┼────────────────────────────┤ │INT64_T │ Datatype INT64_T │ ├───────────────────────────┼────────────────────────────┤ │UINT8_T │ Datatype UINT8_T │ ├───────────────────────────┼────────────────────────────┤ │UINT16_T │ Datatype UINT16_T │ ├───────────────────────────┼────────────────────────────┤ │UINT32_T │ Datatype UINT32_T │ ├───────────────────────────┼────────────────────────────┤ │UINT64_T │ Datatype UINT64_T │ ├───────────────────────────┼────────────────────────────┤ │C_COMPLEX │ Datatype C_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │C_FLOAT_COMPLEX │ Datatype C_FLOAT_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │C_DOUBLE_COMPLEX │ Datatype C_DOUBLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │C_LONG_DOUBLE_COMPLEX │ Datatype C_LONG_DOU- │ │ │ BLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │CXX_BOOL │ Datatype CXX_BOOL │ ├───────────────────────────┼────────────────────────────┤ │CXX_FLOAT_COMPLEX │ Datatype CXX_FLOAT_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │CXX_DOUBLE_COMPLEX │ Datatype CXX_DOUBLE_COM- │ │ │ PLEX │ ├───────────────────────────┼────────────────────────────┤ │CXX_LONG_DOUBLE_COMPLEX │ Datatype CXX_LONG_DOU- │ │ │ BLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │SHORT_INT │ Datatype SHORT_INT │ ├───────────────────────────┼────────────────────────────┤ │INT_INT │ Datatype INT_INT │ ├───────────────────────────┼────────────────────────────┤ │TWOINT │ Datatype TWOINT │ └───────────────────────────┴────────────────────────────┘ │LONG_INT │ Datatype LONG_INT │ ├───────────────────────────┼────────────────────────────┤ │FLOAT_INT │ Datatype FLOAT_INT │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE_INT │ Datatype DOUBLE_INT │ ├───────────────────────────┼────────────────────────────┤ │LONG_DOUBLE_INT │ Datatype LONG_DOUBLE_INT │ ├───────────────────────────┼────────────────────────────┤ │CHARACTER │ Datatype CHARACTER │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL │ Datatype LOGICAL │ ├───────────────────────────┼────────────────────────────┤ │INTEGER │ Datatype INTEGER │ ├───────────────────────────┼────────────────────────────┤ │REAL │ Datatype REAL │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE_PRECISION │ Datatype DOUBLE_PRECISION │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX │ Datatype COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │DOUBLE_COMPLEX │ Datatype DOUBLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL1 │ Datatype LOGICAL1 │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL2 │ Datatype LOGICAL2 │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL4 │ Datatype LOGICAL4 │ ├───────────────────────────┼────────────────────────────┤ │LOGICAL8 │ Datatype LOGICAL8 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER1 │ Datatype INTEGER1 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER2 │ Datatype INTEGER2 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER4 │ Datatype INTEGER4 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER8 │ Datatype INTEGER8 │ ├───────────────────────────┼────────────────────────────┤ │INTEGER16 │ Datatype INTEGER16 │ ├───────────────────────────┼────────────────────────────┤ │REAL2 │ Datatype REAL2 │ ├───────────────────────────┼────────────────────────────┤ │REAL4 │ Datatype REAL4 │ ├───────────────────────────┼────────────────────────────┤ │REAL8 │ Datatype REAL8 │ ├───────────────────────────┼────────────────────────────┤ │REAL16 │ Datatype REAL16 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX4 │ Datatype COMPLEX4 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX8 │ Datatype COMPLEX8 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX16 │ Datatype COMPLEX16 │ ├───────────────────────────┼────────────────────────────┤ │COMPLEX32 │ Datatype COMPLEX32 │ ├───────────────────────────┼────────────────────────────┤ │UNSIGNED_INT │ Datatype UNSIGNED_INT │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_SHORT │ Datatype SIGNED_SHORT │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_INT │ Datatype SIGNED_INT │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_LONG │ Datatype SIGNED_LONG │ ├───────────────────────────┼────────────────────────────┤ │SIGNED_LONG_LONG │ Datatype SIGNED_LONG_LONG │ ├───────────────────────────┼────────────────────────────┤ │BOOL │ Datatype BOOL │ ├───────────────────────────┼────────────────────────────┤ │SINT8_T │ Datatype SINT8_T │ ├───────────────────────────┼────────────────────────────┤ │SINT16_T │ Datatype SINT16_T │ ├───────────────────────────┼────────────────────────────┤ │SINT32_T │ Datatype SINT32_T │ ├───────────────────────────┼────────────────────────────┤ │SINT64_T │ Datatype SINT64_T │ ├───────────────────────────┼────────────────────────────┤ │F_BOOL │ Datatype F_BOOL │ ├───────────────────────────┼────────────────────────────┤ │F_INT │ Datatype F_INT │ ├───────────────────────────┼────────────────────────────┤ │F_FLOAT │ Datatype F_FLOAT │ ├───────────────────────────┼────────────────────────────┤ │F_DOUBLE │ Datatype F_DOUBLE │ ├───────────────────────────┼────────────────────────────┤ │F_COMPLEX │ Datatype F_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │F_FLOAT_COMPLEX │ Datatype F_FLOAT_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │F_DOUBLE_COMPLEX │ Datatype F_DOUBLE_COMPLEX │ ├───────────────────────────┼────────────────────────────┤ │REQUEST_NULL │ Request REQUEST_NULL │ ├───────────────────────────┼────────────────────────────┤ │MESSAGE_NULL │ Message MESSAGE_NULL │ ├───────────────────────────┼────────────────────────────┤ │MESSAGE_NO_PROC │ Message MESSAGE_NO_PROC │ ├───────────────────────────┼────────────────────────────┤ │OP_NULL │ Op OP_NULL │ ├───────────────────────────┼────────────────────────────┤ │MAX │ Op MAX │ ├───────────────────────────┼────────────────────────────┤ │MIN │ Op MIN │ ├───────────────────────────┼────────────────────────────┤ │SUM │ Op SUM │ ├───────────────────────────┼────────────────────────────┤ │PROD │ Op PROD │ ├───────────────────────────┼────────────────────────────┤ │LAND │ Op LAND │ ├───────────────────────────┼────────────────────────────┤ │BAND │ Op BAND │ ├───────────────────────────┼────────────────────────────┤ │LOR │ Op LOR │ ├───────────────────────────┼────────────────────────────┤ │BOR │ Op BOR │ ├───────────────────────────┼────────────────────────────┤ │LXOR │ Op LXOR │ ├───────────────────────────┼────────────────────────────┤ │BXOR │ Op BXOR │ ├───────────────────────────┼────────────────────────────┤ │MAXLOC │ Op MAXLOC │ ├───────────────────────────┼────────────────────────────┤ │MINLOC │ Op MINLOC │ ├───────────────────────────┼────────────────────────────┤ │REPLACE │ Op REPLACE │ ├───────────────────────────┼────────────────────────────┤ │NO_OP │ Op NO_OP │ ├───────────────────────────┼────────────────────────────┤ │GROUP_NULL │ Group GROUP_NULL │ ├───────────────────────────┼────────────────────────────┤ │GROUP_EMPTY │ Group GROUP_EMPTY │ ├───────────────────────────┼────────────────────────────┤ │INFO_NULL │ Info INFO_NULL │ └───────────────────────────┴────────────────────────────┘ │INFO_ENV │ Info INFO_ENV │ ├───────────────────────────┼────────────────────────────┤ │ERRHANDLER_NULL │ Errhandler ERRHANDLER_NULL │ ├───────────────────────────┼────────────────────────────┤ │ERRORS_RETURN │ Errhandler ERRORS_RETURN │ ├───────────────────────────┼────────────────────────────┤ │ERRORS_ARE_FATAL │ Errhandler ERRORS_ARE_FA- │ │ │ TAL │ ├───────────────────────────┼────────────────────────────┤ │COMM_NULL │ Comm COMM_NULL │ ├───────────────────────────┼────────────────────────────┤ │COMM_SELF │ Intracomm COMM_SELF │ ├───────────────────────────┼────────────────────────────┤ │COMM_WORLD │ Intracomm COMM_WORLD │ ├───────────────────────────┼────────────────────────────┤ │WIN_NULL │ Win WIN_NULL │ ├───────────────────────────┼────────────────────────────┤ │FILE_NULL │ File FILE_NULL │ ├───────────────────────────┼────────────────────────────┤ │pickle │ Pickle pickle │ └───────────────────────────┴────────────────────────────┘ mpi4py.MPI.UNDEFINED mpi4py.MPI.UNDEFINED: int = UNDEFINED int UNDEFINED mpi4py.MPI.ANY_SOURCE mpi4py.MPI.ANY_SOURCE: int = ANY_SOURCE int ANY_SOURCE mpi4py.MPI.ANY_TAG mpi4py.MPI.ANY_TAG: int = ANY_TAG int ANY_TAG mpi4py.MPI.PROC_NULL mpi4py.MPI.PROC_NULL: int = PROC_NULL int PROC_NULL mpi4py.MPI.ROOT mpi4py.MPI.ROOT: int = ROOT int ROOT mpi4py.MPI.BOTTOM mpi4py.MPI.BOTTOM: Bottom = BOTTOM Bottom BOTTOM mpi4py.MPI.IN_PLACE mpi4py.MPI.IN_PLACE: InPlace = IN_PLACE InPlace IN_PLACE mpi4py.MPI.KEYVAL_INVALID mpi4py.MPI.KEYVAL_INVALID: int = KEYVAL_INVALID int KEYVAL_INVALID mpi4py.MPI.TAG_UB mpi4py.MPI.TAG_UB: int = TAG_UB int TAG_UB mpi4py.MPI.HOST mpi4py.MPI.HOST: int = HOST int HOST mpi4py.MPI.IO mpi4py.MPI.IO: int = IO int IO mpi4py.MPI.WTIME_IS_GLOBAL mpi4py.MPI.WTIME_IS_GLOBAL: int = WTIME_IS_GLOBAL int WTIME_IS_GLOBAL mpi4py.MPI.UNIVERSE_SIZE mpi4py.MPI.UNIVERSE_SIZE: int = UNIVERSE_SIZE int UNIVERSE_SIZE mpi4py.MPI.APPNUM mpi4py.MPI.APPNUM: int = APPNUM int APPNUM mpi4py.MPI.LASTUSEDCODE mpi4py.MPI.LASTUSEDCODE: int = LASTUSEDCODE int LASTUSEDCODE mpi4py.MPI.WIN_BASE mpi4py.MPI.WIN_BASE: int = WIN_BASE int WIN_BASE mpi4py.MPI.WIN_SIZE mpi4py.MPI.WIN_SIZE: int = WIN_SIZE int WIN_SIZE mpi4py.MPI.WIN_DISP_UNIT mpi4py.MPI.WIN_DISP_UNIT: int = WIN_DISP_UNIT int WIN_DISP_UNIT mpi4py.MPI.WIN_CREATE_FLAVOR mpi4py.MPI.WIN_CREATE_FLAVOR: int = WIN_CREATE_FLAVOR int WIN_CREATE_FLAVOR mpi4py.MPI.WIN_FLAVOR mpi4py.MPI.WIN_FLAVOR: int = WIN_FLAVOR int WIN_FLAVOR mpi4py.MPI.WIN_MODEL mpi4py.MPI.WIN_MODEL: int = WIN_MODEL int WIN_MODEL mpi4py.MPI.SUCCESS mpi4py.MPI.SUCCESS: int = SUCCESS int SUCCESS mpi4py.MPI.ERR_LASTCODE mpi4py.MPI.ERR_LASTCODE: int = ERR_LASTCODE int ERR_LASTCODE mpi4py.MPI.ERR_COMM mpi4py.MPI.ERR_COMM: int = ERR_COMM int ERR_COMM mpi4py.MPI.ERR_GROUP mpi4py.MPI.ERR_GROUP: int = ERR_GROUP int ERR_GROUP mpi4py.MPI.ERR_TYPE mpi4py.MPI.ERR_TYPE: int = ERR_TYPE int ERR_TYPE mpi4py.MPI.ERR_REQUEST mpi4py.MPI.ERR_REQUEST: int = ERR_REQUEST int ERR_REQUEST mpi4py.MPI.ERR_OP mpi4py.MPI.ERR_OP: int = ERR_OP int ERR_OP mpi4py.MPI.ERR_BUFFER mpi4py.MPI.ERR_BUFFER: int = ERR_BUFFER int ERR_BUFFER mpi4py.MPI.ERR_COUNT mpi4py.MPI.ERR_COUNT: int = ERR_COUNT int ERR_COUNT mpi4py.MPI.ERR_TAG mpi4py.MPI.ERR_TAG: int = ERR_TAG int ERR_TAG mpi4py.MPI.ERR_RANK mpi4py.MPI.ERR_RANK: int = ERR_RANK int ERR_RANK mpi4py.MPI.ERR_ROOT mpi4py.MPI.ERR_ROOT: int = ERR_ROOT int ERR_ROOT mpi4py.MPI.ERR_TRUNCATE mpi4py.MPI.ERR_TRUNCATE: int = ERR_TRUNCATE int ERR_TRUNCATE mpi4py.MPI.ERR_IN_STATUS mpi4py.MPI.ERR_IN_STATUS: int = ERR_IN_STATUS int ERR_IN_STATUS mpi4py.MPI.ERR_PENDING mpi4py.MPI.ERR_PENDING: int = ERR_PENDING int ERR_PENDING mpi4py.MPI.ERR_TOPOLOGY mpi4py.MPI.ERR_TOPOLOGY: int = ERR_TOPOLOGY int ERR_TOPOLOGY mpi4py.MPI.ERR_DIMS mpi4py.MPI.ERR_DIMS: int = ERR_DIMS int ERR_DIMS mpi4py.MPI.ERR_ARG mpi4py.MPI.ERR_ARG: int = ERR_ARG int ERR_ARG mpi4py.MPI.ERR_OTHER mpi4py.MPI.ERR_OTHER: int = ERR_OTHER int ERR_OTHER mpi4py.MPI.ERR_UNKNOWN mpi4py.MPI.ERR_UNKNOWN: int = ERR_UNKNOWN int ERR_UNKNOWN mpi4py.MPI.ERR_INTERN mpi4py.MPI.ERR_INTERN: int = ERR_INTERN int ERR_INTERN mpi4py.MPI.ERR_INFO mpi4py.MPI.ERR_INFO: int = ERR_INFO int ERR_INFO mpi4py.MPI.ERR_FILE mpi4py.MPI.ERR_FILE: int = ERR_FILE int ERR_FILE mpi4py.MPI.ERR_WIN mpi4py.MPI.ERR_WIN: int = ERR_WIN int ERR_WIN mpi4py.MPI.ERR_KEYVAL mpi4py.MPI.ERR_KEYVAL: int = ERR_KEYVAL int ERR_KEYVAL mpi4py.MPI.ERR_INFO_KEY mpi4py.MPI.ERR_INFO_KEY: int = ERR_INFO_KEY int ERR_INFO_KEY mpi4py.MPI.ERR_INFO_VALUE mpi4py.MPI.ERR_INFO_VALUE: int = ERR_INFO_VALUE int ERR_INFO_VALUE mpi4py.MPI.ERR_INFO_NOKEY mpi4py.MPI.ERR_INFO_NOKEY: int = ERR_INFO_NOKEY int ERR_INFO_NOKEY mpi4py.MPI.ERR_ACCESS mpi4py.MPI.ERR_ACCESS: int = ERR_ACCESS int ERR_ACCESS mpi4py.MPI.ERR_AMODE mpi4py.MPI.ERR_AMODE: int = ERR_AMODE int ERR_AMODE mpi4py.MPI.ERR_BAD_FILE mpi4py.MPI.ERR_BAD_FILE: int = ERR_BAD_FILE int ERR_BAD_FILE mpi4py.MPI.ERR_FILE_EXISTS mpi4py.MPI.ERR_FILE_EXISTS: int = ERR_FILE_EXISTS int ERR_FILE_EXISTS mpi4py.MPI.ERR_FILE_IN_USE mpi4py.MPI.ERR_FILE_IN_USE: int = ERR_FILE_IN_USE int ERR_FILE_IN_USE mpi4py.MPI.ERR_NO_SPACE mpi4py.MPI.ERR_NO_SPACE: int = ERR_NO_SPACE int ERR_NO_SPACE mpi4py.MPI.ERR_NO_SUCH_FILE mpi4py.MPI.ERR_NO_SUCH_FILE: int = ERR_NO_SUCH_FILE int ERR_NO_SUCH_FILE mpi4py.MPI.ERR_IO mpi4py.MPI.ERR_IO: int = ERR_IO int ERR_IO mpi4py.MPI.ERR_READ_ONLY mpi4py.MPI.ERR_READ_ONLY: int = ERR_READ_ONLY int ERR_READ_ONLY mpi4py.MPI.ERR_CONVERSION mpi4py.MPI.ERR_CONVERSION: int = ERR_CONVERSION int ERR_CONVERSION mpi4py.MPI.ERR_DUP_DATAREP mpi4py.MPI.ERR_DUP_DATAREP: int = ERR_DUP_DATAREP int ERR_DUP_DATAREP mpi4py.MPI.ERR_UNSUPPORTED_DATAREP mpi4py.MPI.ERR_UNSUPPORTED_DATAREP: int = ERR_UNSUPPORTED_DATAREP int ERR_UNSUPPORTED_DATAREP mpi4py.MPI.ERR_UNSUPPORTED_OPERATION mpi4py.MPI.ERR_UNSUPPORTED_OPERATION: int = ERR_UNSUPPORTED_OPERATION int ERR_UNSUPPORTED_OPERATION mpi4py.MPI.ERR_NAME mpi4py.MPI.ERR_NAME: int = ERR_NAME int ERR_NAME mpi4py.MPI.ERR_NO_MEM mpi4py.MPI.ERR_NO_MEM: int = ERR_NO_MEM int ERR_NO_MEM mpi4py.MPI.ERR_NOT_SAME mpi4py.MPI.ERR_NOT_SAME: int = ERR_NOT_SAME int ERR_NOT_SAME mpi4py.MPI.ERR_PORT mpi4py.MPI.ERR_PORT: int = ERR_PORT int ERR_PORT mpi4py.MPI.ERR_QUOTA mpi4py.MPI.ERR_QUOTA: int = ERR_QUOTA int ERR_QUOTA mpi4py.MPI.ERR_SERVICE mpi4py.MPI.ERR_SERVICE: int = ERR_SERVICE int ERR_SERVICE mpi4py.MPI.ERR_SPAWN mpi4py.MPI.ERR_SPAWN: int = ERR_SPAWN int ERR_SPAWN mpi4py.MPI.ERR_BASE mpi4py.MPI.ERR_BASE: int = ERR_BASE int ERR_BASE mpi4py.MPI.ERR_SIZE mpi4py.MPI.ERR_SIZE: int = ERR_SIZE int ERR_SIZE mpi4py.MPI.ERR_DISP mpi4py.MPI.ERR_DISP: int = ERR_DISP int ERR_DISP mpi4py.MPI.ERR_ASSERT mpi4py.MPI.ERR_ASSERT: int = ERR_ASSERT int ERR_ASSERT mpi4py.MPI.ERR_LOCKTYPE mpi4py.MPI.ERR_LOCKTYPE: int = ERR_LOCKTYPE int ERR_LOCKTYPE mpi4py.MPI.ERR_RMA_CONFLICT mpi4py.MPI.ERR_RMA_CONFLICT: int = ERR_RMA_CONFLICT int ERR_RMA_CONFLICT mpi4py.MPI.ERR_RMA_SYNC mpi4py.MPI.ERR_RMA_SYNC: int = ERR_RMA_SYNC int ERR_RMA_SYNC mpi4py.MPI.ERR_RMA_RANGE mpi4py.MPI.ERR_RMA_RANGE: int = ERR_RMA_RANGE int ERR_RMA_RANGE mpi4py.MPI.ERR_RMA_ATTACH mpi4py.MPI.ERR_RMA_ATTACH: int = ERR_RMA_ATTACH int ERR_RMA_ATTACH mpi4py.MPI.ERR_RMA_SHARED mpi4py.MPI.ERR_RMA_SHARED: int = ERR_RMA_SHARED int ERR_RMA_SHARED mpi4py.MPI.ERR_RMA_FLAVOR mpi4py.MPI.ERR_RMA_FLAVOR: int = ERR_RMA_FLAVOR int ERR_RMA_FLAVOR mpi4py.MPI.ORDER_C mpi4py.MPI.ORDER_C: int = ORDER_C int ORDER_C mpi4py.MPI.ORDER_FORTRAN mpi4py.MPI.ORDER_FORTRAN: int = ORDER_FORTRAN int ORDER_FORTRAN mpi4py.MPI.ORDER_F mpi4py.MPI.ORDER_F: int = ORDER_F int ORDER_F mpi4py.MPI.TYPECLASS_INTEGER mpi4py.MPI.TYPECLASS_INTEGER: int = TYPECLASS_INTEGER int TYPECLASS_INTEGER mpi4py.MPI.TYPECLASS_REAL mpi4py.MPI.TYPECLASS_REAL: int = TYPECLASS_REAL int TYPECLASS_REAL mpi4py.MPI.TYPECLASS_COMPLEX mpi4py.MPI.TYPECLASS_COMPLEX: int = TYPECLASS_COMPLEX int TYPECLASS_COMPLEX mpi4py.MPI.DISTRIBUTE_NONE mpi4py.MPI.DISTRIBUTE_NONE: int = DISTRIBUTE_NONE int DISTRIBUTE_NONE mpi4py.MPI.DISTRIBUTE_BLOCK mpi4py.MPI.DISTRIBUTE_BLOCK: int = DISTRIBUTE_BLOCK int DISTRIBUTE_BLOCK mpi4py.MPI.DISTRIBUTE_CYCLIC mpi4py.MPI.DISTRIBUTE_CYCLIC: int = DISTRIBUTE_CYCLIC int DISTRIBUTE_CYCLIC mpi4py.MPI.DISTRIBUTE_DFLT_DARG mpi4py.MPI.DISTRIBUTE_DFLT_DARG: int = DISTRIBUTE_DFLT_DARG int DISTRIBUTE_DFLT_DARG mpi4py.MPI.COMBINER_NAMED mpi4py.MPI.COMBINER_NAMED: int = COMBINER_NAMED int COMBINER_NAMED mpi4py.MPI.COMBINER_DUP mpi4py.MPI.COMBINER_DUP: int = COMBINER_DUP int COMBINER_DUP mpi4py.MPI.COMBINER_CONTIGUOUS mpi4py.MPI.COMBINER_CONTIGUOUS: int = COMBINER_CONTIGUOUS int COMBINER_CONTIGUOUS mpi4py.MPI.COMBINER_VECTOR mpi4py.MPI.COMBINER_VECTOR: int = COMBINER_VECTOR int COMBINER_VECTOR mpi4py.MPI.COMBINER_HVECTOR mpi4py.MPI.COMBINER_HVECTOR: int = COMBINER_HVECTOR int COMBINER_HVECTOR mpi4py.MPI.COMBINER_INDEXED mpi4py.MPI.COMBINER_INDEXED: int = COMBINER_INDEXED int COMBINER_INDEXED mpi4py.MPI.COMBINER_HINDEXED mpi4py.MPI.COMBINER_HINDEXED: int = COMBINER_HINDEXED int COMBINER_HINDEXED mpi4py.MPI.COMBINER_INDEXED_BLOCK mpi4py.MPI.COMBINER_INDEXED_BLOCK: int = COMBINER_INDEXED_BLOCK int COMBINER_INDEXED_BLOCK mpi4py.MPI.COMBINER_HINDEXED_BLOCK mpi4py.MPI.COMBINER_HINDEXED_BLOCK: int = COMBINER_HINDEXED_BLOCK int COMBINER_HINDEXED_BLOCK mpi4py.MPI.COMBINER_STRUCT mpi4py.MPI.COMBINER_STRUCT: int = COMBINER_STRUCT int COMBINER_STRUCT mpi4py.MPI.COMBINER_SUBARRAY mpi4py.MPI.COMBINER_SUBARRAY: int = COMBINER_SUBARRAY int COMBINER_SUBARRAY mpi4py.MPI.COMBINER_DARRAY mpi4py.MPI.COMBINER_DARRAY: int = COMBINER_DARRAY int COMBINER_DARRAY mpi4py.MPI.COMBINER_RESIZED mpi4py.MPI.COMBINER_RESIZED: int = COMBINER_RESIZED int COMBINER_RESIZED mpi4py.MPI.COMBINER_F90_REAL mpi4py.MPI.COMBINER_F90_REAL: int = COMBINER_F90_REAL int COMBINER_F90_REAL mpi4py.MPI.COMBINER_F90_COMPLEX mpi4py.MPI.COMBINER_F90_COMPLEX: int = COMBINER_F90_COMPLEX int COMBINER_F90_COMPLEX mpi4py.MPI.COMBINER_F90_INTEGER mpi4py.MPI.COMBINER_F90_INTEGER: int = COMBINER_F90_INTEGER int COMBINER_F90_INTEGER mpi4py.MPI.IDENT mpi4py.MPI.IDENT: int = IDENT int IDENT mpi4py.MPI.CONGRUENT mpi4py.MPI.CONGRUENT: int = CONGRUENT int CONGRUENT mpi4py.MPI.SIMILAR mpi4py.MPI.SIMILAR: int = SIMILAR int SIMILAR mpi4py.MPI.UNEQUAL mpi4py.MPI.UNEQUAL: int = UNEQUAL int UNEQUAL mpi4py.MPI.CART mpi4py.MPI.CART: int = CART int CART mpi4py.MPI.GRAPH mpi4py.MPI.GRAPH: int = GRAPH int GRAPH mpi4py.MPI.DIST_GRAPH mpi4py.MPI.DIST_GRAPH: int = DIST_GRAPH int DIST_GRAPH mpi4py.MPI.UNWEIGHTED mpi4py.MPI.UNWEIGHTED: int = UNWEIGHTED int UNWEIGHTED mpi4py.MPI.WEIGHTS_EMPTY mpi4py.MPI.WEIGHTS_EMPTY: int = WEIGHTS_EMPTY int WEIGHTS_EMPTY mpi4py.MPI.COMM_TYPE_SHARED mpi4py.MPI.COMM_TYPE_SHARED: int = COMM_TYPE_SHARED int COMM_TYPE_SHARED mpi4py.MPI.BSEND_OVERHEAD mpi4py.MPI.BSEND_OVERHEAD: int = BSEND_OVERHEAD int BSEND_OVERHEAD mpi4py.MPI.WIN_FLAVOR_CREATE mpi4py.MPI.WIN_FLAVOR_CREATE: int = WIN_FLAVOR_CREATE int WIN_FLAVOR_CREATE mpi4py.MPI.WIN_FLAVOR_ALLOCATE mpi4py.MPI.WIN_FLAVOR_ALLOCATE: int = WIN_FLAVOR_ALLOCATE int WIN_FLAVOR_ALLOCATE mpi4py.MPI.WIN_FLAVOR_DYNAMIC mpi4py.MPI.WIN_FLAVOR_DYNAMIC: int = WIN_FLAVOR_DYNAMIC int WIN_FLAVOR_DYNAMIC mpi4py.MPI.WIN_FLAVOR_SHARED mpi4py.MPI.WIN_FLAVOR_SHARED: int = WIN_FLAVOR_SHARED int WIN_FLAVOR_SHARED mpi4py.MPI.WIN_SEPARATE mpi4py.MPI.WIN_SEPARATE: int = WIN_SEPARATE int WIN_SEPARATE mpi4py.MPI.WIN_UNIFIED mpi4py.MPI.WIN_UNIFIED: int = WIN_UNIFIED int WIN_UNIFIED mpi4py.MPI.MODE_NOCHECK mpi4py.MPI.MODE_NOCHECK: int = MODE_NOCHECK int MODE_NOCHECK mpi4py.MPI.MODE_NOSTORE mpi4py.MPI.MODE_NOSTORE: int = MODE_NOSTORE int MODE_NOSTORE mpi4py.MPI.MODE_NOPUT mpi4py.MPI.MODE_NOPUT: int = MODE_NOPUT int MODE_NOPUT mpi4py.MPI.MODE_NOPRECEDE mpi4py.MPI.MODE_NOPRECEDE: int = MODE_NOPRECEDE int MODE_NOPRECEDE mpi4py.MPI.MODE_NOSUCCEED mpi4py.MPI.MODE_NOSUCCEED: int = MODE_NOSUCCEED int MODE_NOSUCCEED mpi4py.MPI.LOCK_EXCLUSIVE mpi4py.MPI.LOCK_EXCLUSIVE: int = LOCK_EXCLUSIVE int LOCK_EXCLUSIVE mpi4py.MPI.LOCK_SHARED mpi4py.MPI.LOCK_SHARED: int = LOCK_SHARED int LOCK_SHARED mpi4py.MPI.MODE_RDONLY mpi4py.MPI.MODE_RDONLY: int = MODE_RDONLY int MODE_RDONLY mpi4py.MPI.MODE_WRONLY mpi4py.MPI.MODE_WRONLY: int = MODE_WRONLY int MODE_WRONLY mpi4py.MPI.MODE_RDWR mpi4py.MPI.MODE_RDWR: int = MODE_RDWR int MODE_RDWR mpi4py.MPI.MODE_CREATE mpi4py.MPI.MODE_CREATE: int = MODE_CREATE int MODE_CREATE mpi4py.MPI.MODE_EXCL mpi4py.MPI.MODE_EXCL: int = MODE_EXCL int MODE_EXCL mpi4py.MPI.MODE_DELETE_ON_CLOSE mpi4py.MPI.MODE_DELETE_ON_CLOSE: int = MODE_DELETE_ON_CLOSE int MODE_DELETE_ON_CLOSE mpi4py.MPI.MODE_UNIQUE_OPEN mpi4py.MPI.MODE_UNIQUE_OPEN: int = MODE_UNIQUE_OPEN int MODE_UNIQUE_OPEN mpi4py.MPI.MODE_SEQUENTIAL mpi4py.MPI.MODE_SEQUENTIAL: int = MODE_SEQUENTIAL int MODE_SEQUENTIAL mpi4py.MPI.MODE_APPEND mpi4py.MPI.MODE_APPEND: int = MODE_APPEND int MODE_APPEND mpi4py.MPI.SEEK_SET mpi4py.MPI.SEEK_SET: int = SEEK_SET int SEEK_SET mpi4py.MPI.SEEK_CUR mpi4py.MPI.SEEK_CUR: int = SEEK_CUR int SEEK_CUR mpi4py.MPI.SEEK_END mpi4py.MPI.SEEK_END: int = SEEK_END int SEEK_END mpi4py.MPI.DISPLACEMENT_CURRENT mpi4py.MPI.DISPLACEMENT_CURRENT: int = DISPLACEMENT_CURRENT int DISPLACEMENT_CURRENT mpi4py.MPI.DISP_CUR mpi4py.MPI.DISP_CUR: int = DISP_CUR int DISP_CUR mpi4py.MPI.THREAD_SINGLE mpi4py.MPI.THREAD_SINGLE: int = THREAD_SINGLE int THREAD_SINGLE mpi4py.MPI.THREAD_FUNNELED mpi4py.MPI.THREAD_FUNNELED: int = THREAD_FUNNELED int THREAD_FUNNELED mpi4py.MPI.THREAD_SERIALIZED mpi4py.MPI.THREAD_SERIALIZED: int = THREAD_SERIALIZED int THREAD_SERIALIZED mpi4py.MPI.THREAD_MULTIPLE mpi4py.MPI.THREAD_MULTIPLE: int = THREAD_MULTIPLE int THREAD_MULTIPLE mpi4py.MPI.VERSION mpi4py.MPI.VERSION: int = VERSION int VERSION mpi4py.MPI.SUBVERSION mpi4py.MPI.SUBVERSION: int = SUBVERSION int SUBVERSION mpi4py.MPI.MAX_PROCESSOR_NAME mpi4py.MPI.MAX_PROCESSOR_NAME: int = MAX_PROCESSOR_NAME int MAX_PROCESSOR_NAME mpi4py.MPI.MAX_ERROR_STRING mpi4py.MPI.MAX_ERROR_STRING: int = MAX_ERROR_STRING int MAX_ERROR_STRING mpi4py.MPI.MAX_PORT_NAME mpi4py.MPI.MAX_PORT_NAME: int = MAX_PORT_NAME int MAX_PORT_NAME mpi4py.MPI.MAX_INFO_KEY mpi4py.MPI.MAX_INFO_KEY: int = MAX_INFO_KEY int MAX_INFO_KEY mpi4py.MPI.MAX_INFO_VAL mpi4py.MPI.MAX_INFO_VAL: int = MAX_INFO_VAL int MAX_INFO_VAL mpi4py.MPI.MAX_OBJECT_NAME mpi4py.MPI.MAX_OBJECT_NAME: int = MAX_OBJECT_NAME int MAX_OBJECT_NAME mpi4py.MPI.MAX_DATAREP_STRING mpi4py.MPI.MAX_DATAREP_STRING: int = MAX_DATAREP_STRING int MAX_DATAREP_STRING mpi4py.MPI.MAX_LIBRARY_VERSION_STRING mpi4py.MPI.MAX_LIBRARY_VERSION_STRING: int = MAX_LIBRARY_VERSION_STRING int MAX_LIBRARY_VERSION_STRING mpi4py.MPI.DATATYPE_NULL mpi4py.MPI.DATATYPE_NULL: Datatype = DATATYPE_NULL Datatype DATATYPE_NULL mpi4py.MPI.UB mpi4py.MPI.UB: Datatype = UB Datatype UB mpi4py.MPI.LB mpi4py.MPI.LB: Datatype = LB Datatype LB mpi4py.MPI.PACKED mpi4py.MPI.PACKED: Datatype = PACKED Datatype PACKED mpi4py.MPI.BYTE mpi4py.MPI.BYTE: Datatype = BYTE Datatype BYTE mpi4py.MPI.AINT mpi4py.MPI.AINT: Datatype = AINT Datatype AINT mpi4py.MPI.OFFSET mpi4py.MPI.OFFSET: Datatype = OFFSET Datatype OFFSET mpi4py.MPI.COUNT mpi4py.MPI.COUNT: Datatype = COUNT Datatype COUNT mpi4py.MPI.CHAR mpi4py.MPI.CHAR: Datatype = CHAR Datatype CHAR mpi4py.MPI.WCHAR mpi4py.MPI.WCHAR: Datatype = WCHAR Datatype WCHAR mpi4py.MPI.SIGNED_CHAR mpi4py.MPI.SIGNED_CHAR: Datatype = SIGNED_CHAR Datatype SIGNED_CHAR mpi4py.MPI.SHORT mpi4py.MPI.SHORT: Datatype = SHORT Datatype SHORT mpi4py.MPI.INT mpi4py.MPI.INT: Datatype = INT Datatype INT mpi4py.MPI.LONG mpi4py.MPI.LONG: Datatype = LONG Datatype LONG mpi4py.MPI.LONG_LONG mpi4py.MPI.LONG_LONG: Datatype = LONG_LONG Datatype LONG_LONG mpi4py.MPI.UNSIGNED_CHAR mpi4py.MPI.UNSIGNED_CHAR: Datatype = UNSIGNED_CHAR Datatype UNSIGNED_CHAR mpi4py.MPI.UNSIGNED_SHORT mpi4py.MPI.UNSIGNED_SHORT: Datatype = UNSIGNED_SHORT Datatype UNSIGNED_SHORT mpi4py.MPI.UNSIGNED mpi4py.MPI.UNSIGNED: Datatype = UNSIGNED Datatype UNSIGNED mpi4py.MPI.UNSIGNED_LONG mpi4py.MPI.UNSIGNED_LONG: Datatype = UNSIGNED_LONG Datatype UNSIGNED_LONG mpi4py.MPI.UNSIGNED_LONG_LONG mpi4py.MPI.UNSIGNED_LONG_LONG: Datatype = UNSIGNED_LONG_LONG Datatype UNSIGNED_LONG_LONG mpi4py.MPI.FLOAT mpi4py.MPI.FLOAT: Datatype = FLOAT Datatype FLOAT mpi4py.MPI.DOUBLE mpi4py.MPI.DOUBLE: Datatype = DOUBLE Datatype DOUBLE mpi4py.MPI.LONG_DOUBLE mpi4py.MPI.LONG_DOUBLE: Datatype = LONG_DOUBLE Datatype LONG_DOUBLE mpi4py.MPI.C_BOOL mpi4py.MPI.C_BOOL: Datatype = C_BOOL Datatype C_BOOL mpi4py.MPI.INT8_T mpi4py.MPI.INT8_T: Datatype = INT8_T Datatype INT8_T mpi4py.MPI.INT16_T mpi4py.MPI.INT16_T: Datatype = INT16_T Datatype INT16_T mpi4py.MPI.INT32_T mpi4py.MPI.INT32_T: Datatype = INT32_T Datatype INT32_T mpi4py.MPI.INT64_T mpi4py.MPI.INT64_T: Datatype = INT64_T Datatype INT64_T mpi4py.MPI.UINT8_T mpi4py.MPI.UINT8_T: Datatype = UINT8_T Datatype UINT8_T mpi4py.MPI.UINT16_T mpi4py.MPI.UINT16_T: Datatype = UINT16_T Datatype UINT16_T mpi4py.MPI.UINT32_T mpi4py.MPI.UINT32_T: Datatype = UINT32_T Datatype UINT32_T mpi4py.MPI.UINT64_T mpi4py.MPI.UINT64_T: Datatype = UINT64_T Datatype UINT64_T mpi4py.MPI.C_COMPLEX mpi4py.MPI.C_COMPLEX: Datatype = C_COMPLEX Datatype C_COMPLEX mpi4py.MPI.C_FLOAT_COMPLEX mpi4py.MPI.C_FLOAT_COMPLEX: Datatype = C_FLOAT_COMPLEX Datatype C_FLOAT_COMPLEX mpi4py.MPI.C_DOUBLE_COMPLEX mpi4py.MPI.C_DOUBLE_COMPLEX: Datatype = C_DOUBLE_COMPLEX Datatype C_DOUBLE_COMPLEX mpi4py.MPI.C_LONG_DOUBLE_COMPLEX mpi4py.MPI.C_LONG_DOUBLE_COMPLEX: Datatype = C_LONG_DOUBLE_COMPLEX Datatype C_LONG_DOUBLE_COMPLEX mpi4py.MPI.CXX_BOOL mpi4py.MPI.CXX_BOOL: Datatype = CXX_BOOL Datatype CXX_BOOL mpi4py.MPI.CXX_FLOAT_COMPLEX mpi4py.MPI.CXX_FLOAT_COMPLEX: Datatype = CXX_FLOAT_COMPLEX Datatype CXX_FLOAT_COMPLEX mpi4py.MPI.CXX_DOUBLE_COMPLEX mpi4py.MPI.CXX_DOUBLE_COMPLEX: Datatype = CXX_DOUBLE_COMPLEX Datatype CXX_DOUBLE_COMPLEX mpi4py.MPI.CXX_LONG_DOUBLE_COMPLEX mpi4py.MPI.CXX_LONG_DOUBLE_COMPLEX: Datatype = CXX_LONG_DOUBLE_COMPLEX Datatype CXX_LONG_DOUBLE_COMPLEX mpi4py.MPI.SHORT_INT mpi4py.MPI.SHORT_INT: Datatype = SHORT_INT Datatype SHORT_INT mpi4py.MPI.INT_INT mpi4py.MPI.INT_INT: Datatype = INT_INT Datatype INT_INT mpi4py.MPI.TWOINT mpi4py.MPI.TWOINT: Datatype = TWOINT Datatype TWOINT mpi4py.MPI.LONG_INT mpi4py.MPI.LONG_INT: Datatype = LONG_INT Datatype LONG_INT mpi4py.MPI.FLOAT_INT mpi4py.MPI.FLOAT_INT: Datatype = FLOAT_INT Datatype FLOAT_INT mpi4py.MPI.DOUBLE_INT mpi4py.MPI.DOUBLE_INT: Datatype = DOUBLE_INT Datatype DOUBLE_INT mpi4py.MPI.LONG_DOUBLE_INT mpi4py.MPI.LONG_DOUBLE_INT: Datatype = LONG_DOUBLE_INT Datatype LONG_DOUBLE_INT mpi4py.MPI.CHARACTER mpi4py.MPI.CHARACTER: Datatype = CHARACTER Datatype CHARACTER mpi4py.MPI.LOGICAL mpi4py.MPI.LOGICAL: Datatype = LOGICAL Datatype LOGICAL mpi4py.MPI.INTEGER mpi4py.MPI.INTEGER: Datatype = INTEGER Datatype INTEGER mpi4py.MPI.REAL mpi4py.MPI.REAL: Datatype = REAL Datatype REAL mpi4py.MPI.DOUBLE_PRECISION mpi4py.MPI.DOUBLE_PRECISION: Datatype = DOUBLE_PRECISION Datatype DOUBLE_PRECISION mpi4py.MPI.COMPLEX mpi4py.MPI.COMPLEX: Datatype = COMPLEX Datatype COMPLEX mpi4py.MPI.DOUBLE_COMPLEX mpi4py.MPI.DOUBLE_COMPLEX: Datatype = DOUBLE_COMPLEX Datatype DOUBLE_COMPLEX mpi4py.MPI.LOGICAL1 mpi4py.MPI.LOGICAL1: Datatype = LOGICAL1 Datatype LOGICAL1 mpi4py.MPI.LOGICAL2 mpi4py.MPI.LOGICAL2: Datatype = LOGICAL2 Datatype LOGICAL2 mpi4py.MPI.LOGICAL4 mpi4py.MPI.LOGICAL4: Datatype = LOGICAL4 Datatype LOGICAL4 mpi4py.MPI.LOGICAL8 mpi4py.MPI.LOGICAL8: Datatype = LOGICAL8 Datatype LOGICAL8 mpi4py.MPI.INTEGER1 mpi4py.MPI.INTEGER1: Datatype = INTEGER1 Datatype INTEGER1 mpi4py.MPI.INTEGER2 mpi4py.MPI.INTEGER2: Datatype = INTEGER2 Datatype INTEGER2 mpi4py.MPI.INTEGER4 mpi4py.MPI.INTEGER4: Datatype = INTEGER4 Datatype INTEGER4 mpi4py.MPI.INTEGER8 mpi4py.MPI.INTEGER8: Datatype = INTEGER8 Datatype INTEGER8 mpi4py.MPI.INTEGER16 mpi4py.MPI.INTEGER16: Datatype = INTEGER16 Datatype INTEGER16 mpi4py.MPI.REAL2 mpi4py.MPI.REAL2: Datatype = REAL2 Datatype REAL2 mpi4py.MPI.REAL4 mpi4py.MPI.REAL4: Datatype = REAL4 Datatype REAL4 mpi4py.MPI.REAL8 mpi4py.MPI.REAL8: Datatype = REAL8 Datatype REAL8 mpi4py.MPI.REAL16 mpi4py.MPI.REAL16: Datatype = REAL16 Datatype REAL16 mpi4py.MPI.COMPLEX4 mpi4py.MPI.COMPLEX4: Datatype = COMPLEX4 Datatype COMPLEX4 mpi4py.MPI.COMPLEX8 mpi4py.MPI.COMPLEX8: Datatype = COMPLEX8 Datatype COMPLEX8 mpi4py.MPI.COMPLEX16 mpi4py.MPI.COMPLEX16: Datatype = COMPLEX16 Datatype COMPLEX16 mpi4py.MPI.COMPLEX32 mpi4py.MPI.COMPLEX32: Datatype = COMPLEX32 Datatype COMPLEX32 mpi4py.MPI.UNSIGNED_INT mpi4py.MPI.UNSIGNED_INT: Datatype = UNSIGNED_INT Datatype UNSIGNED_INT mpi4py.MPI.SIGNED_SHORT mpi4py.MPI.SIGNED_SHORT: Datatype = SIGNED_SHORT Datatype SIGNED_SHORT mpi4py.MPI.SIGNED_INT mpi4py.MPI.SIGNED_INT: Datatype = SIGNED_INT Datatype SIGNED_INT mpi4py.MPI.SIGNED_LONG mpi4py.MPI.SIGNED_LONG: Datatype = SIGNED_LONG Datatype SIGNED_LONG mpi4py.MPI.SIGNED_LONG_LONG mpi4py.MPI.SIGNED_LONG_LONG: Datatype = SIGNED_LONG_LONG Datatype SIGNED_LONG_LONG mpi4py.MPI.BOOL mpi4py.MPI.BOOL: Datatype = BOOL Datatype BOOL mpi4py.MPI.SINT8_T mpi4py.MPI.SINT8_T: Datatype = SINT8_T Datatype SINT8_T mpi4py.MPI.SINT16_T mpi4py.MPI.SINT16_T: Datatype = SINT16_T Datatype SINT16_T mpi4py.MPI.SINT32_T mpi4py.MPI.SINT32_T: Datatype = SINT32_T Datatype SINT32_T mpi4py.MPI.SINT64_T mpi4py.MPI.SINT64_T: Datatype = SINT64_T Datatype SINT64_T mpi4py.MPI.F_BOOL mpi4py.MPI.F_BOOL: Datatype = F_BOOL Datatype F_BOOL mpi4py.MPI.F_INT mpi4py.MPI.F_INT: Datatype = F_INT Datatype F_INT mpi4py.MPI.F_FLOAT mpi4py.MPI.F_FLOAT: Datatype = F_FLOAT Datatype F_FLOAT mpi4py.MPI.F_DOUBLE mpi4py.MPI.F_DOUBLE: Datatype = F_DOUBLE Datatype F_DOUBLE mpi4py.MPI.F_COMPLEX mpi4py.MPI.F_COMPLEX: Datatype = F_COMPLEX Datatype F_COMPLEX mpi4py.MPI.F_FLOAT_COMPLEX mpi4py.MPI.F_FLOAT_COMPLEX: Datatype = F_FLOAT_COMPLEX Datatype F_FLOAT_COMPLEX mpi4py.MPI.F_DOUBLE_COMPLEX mpi4py.MPI.F_DOUBLE_COMPLEX: Datatype = F_DOUBLE_COMPLEX Datatype F_DOUBLE_COMPLEX mpi4py.MPI.REQUEST_NULL mpi4py.MPI.REQUEST_NULL: Request = REQUEST_NULL Request REQUEST_NULL mpi4py.MPI.MESSAGE_NULL mpi4py.MPI.MESSAGE_NULL: Message = MESSAGE_NULL Message MESSAGE_NULL mpi4py.MPI.MESSAGE_NO_PROC mpi4py.MPI.MESSAGE_NO_PROC: Message = MESSAGE_NO_PROC Message MESSAGE_NO_PROC mpi4py.MPI.OP_NULL mpi4py.MPI.OP_NULL: Op = OP_NULL Op OP_NULL Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.MAX mpi4py.MPI.MAX: Op = MAX Op MAX Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.MIN mpi4py.MPI.MIN: Op = MIN Op MIN Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.SUM mpi4py.MPI.SUM: Op = SUM Op SUM Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.PROD mpi4py.MPI.PROD: Op = PROD Op PROD Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.LAND mpi4py.MPI.LAND: Op = LAND Op LAND Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.BAND mpi4py.MPI.BAND: Op = BAND Op BAND Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.LOR mpi4py.MPI.LOR: Op = LOR Op LOR Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.BOR mpi4py.MPI.BOR: Op = BOR Op BOR Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.LXOR mpi4py.MPI.LXOR: Op = LXOR Op LXOR Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.BXOR mpi4py.MPI.BXOR: Op = BXOR Op BXOR Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.MAXLOC mpi4py.MPI.MAXLOC: Op = MAXLOC Op MAXLOC Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.MINLOC mpi4py.MPI.MINLOC: Op = MINLOC Op MINLOC Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.REPLACE mpi4py.MPI.REPLACE: Op = REPLACE Op REPLACE Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.NO_OP mpi4py.MPI.NO_OP: Op = NO_OP Op NO_OP Parameters • x (Any) – • y (Any) – Return type Any mpi4py.MPI.GROUP_NULL mpi4py.MPI.GROUP_NULL: Group = GROUP_NULL Group GROUP_NULL mpi4py.MPI.GROUP_EMPTY mpi4py.MPI.GROUP_EMPTY: Group = GROUP_EMPTY Group GROUP_EMPTY mpi4py.MPI.INFO_NULL mpi4py.MPI.INFO_NULL: Info = INFO_NULL Info INFO_NULL mpi4py.MPI.INFO_ENV mpi4py.MPI.INFO_ENV: Info = INFO_ENV Info INFO_ENV mpi4py.MPI.ERRHANDLER_NULL mpi4py.MPI.ERRHANDLER_NULL: Errhandler = ERRHANDLER_NULL Errhandler ERRHANDLER_NULL mpi4py.MPI.ERRORS_RETURN mpi4py.MPI.ERRORS_RETURN: Errhandler = ERRORS_RETURN Errhandler ERRORS_RETURN mpi4py.MPI.ERRORS_ARE_FATAL mpi4py.MPI.ERRORS_ARE_FATAL: Errhandler = ERRORS_ARE_FATAL Errhandler ERRORS_ARE_FATAL mpi4py.MPI.COMM_NULL mpi4py.MPI.COMM_NULL: Comm = COMM_NULL Comm COMM_NULL mpi4py.MPI.COMM_SELF mpi4py.MPI.COMM_SELF: Intracomm = COMM_SELF Intracomm COMM_SELF mpi4py.MPI.COMM_WORLD mpi4py.MPI.COMM_WORLD: Intracomm = COMM_WORLD Intracomm COMM_WORLD mpi4py.MPI.WIN_NULL mpi4py.MPI.WIN_NULL: Win = WIN_NULL Win WIN_NULL mpi4py.MPI.FILE_NULL mpi4py.MPI.FILE_NULL: File = FILE_NULL File FILE_NULL mpi4py.MPI.pickle mpi4py.MPI.pickle: Pickle = <mpi4py.MPI.Pickle object> Pickle pickle CITATION If MPI for Python been significant to a project that leads to an aca- demic publication, please acknowledge that fact by citing the project. • L. Dalcin and Y.-L. L. Fang, mpi4py: Status Update After 12 Years of Development, Computing in Science & Engineering, 23(4):47-54, 2021. https://doi.org/10.1109/MCSE.2021.3083216 • L. Dalcin, P. Kler, R. Paz, and A. Cosimo, Parallel Distributed Com- puting using Python, Advances in Water Resources, 34(9):1124-1139, 2011. https://doi.org/10.1016/j.advwatres.2011.04.013 • L. Dalcin, R. Paz, M. Storti, and J. D’Elia, MPI for Python: perfor- mance improvements and MPI-2 extensions, Journal of Parallel and Dis- tributed Computing, 68(5):655-662, 2008. https://doi.org/10.1016/j.jpdc.2007.09.005 • L. Dalcin, R. Paz, and M. Storti, MPI for Python, Journal of Parallel and Distributed Computing, 65(9):1108-1115, 2005. https://doi.org/10.1016/j.jpdc.2005.03.010 INSTALLATION Requirements You need to have the following software properly installed in order to build MPI for Python: • A working MPI implementation, preferably supporting MPI-3 and built with shared/dynamic libraries. NOTE: If you want to build some MPI implementation from sources, check the instructions at building-mpi in the appendix. • Python 2.7, 3.5 or above. NOTE: Some MPI-1 implementations do require the actual command line ar- guments to be passed in MPI_Init(). In this case, you will need to use a rebuilt, MPI-enabled, Python interpreter executable. MPI for Python has some support for alleviating you from this task. Check the instructions at python-mpi in the appendix. Using pip If you already have a working MPI (either if you installed it from sources or by using a pre-built package from your favourite GNU/Linux distribution) and the mpicc compiler wrapper is on your search path, you can use pip: $ python -m pip install mpi4py NOTE: If the mpicc compiler wrapper is not on your search path (or if it has a different name) you can use env to pass the environment vari- able MPICC providing the full path to the MPI compiler wrapper exe- cutable: $ env MPICC=/path/to/mpicc python -m pip install mpi4py WARNING: pip keeps previouly built wheel files on its cache for future reuse. If you want to reinstall the mpi4py package using a different or up- dated MPI implementation, you have to either first remove the cached wheel file with: $ python -m pip cache remove mpi4py or ask pip to disable the cache: $ python -m pip install --no-cache-dir mpi4py Using distutils The MPI for Python package is available for download at the project website generously hosted by GitHub. You can use curl or wget to get a release tarball. • Using curl: $ curl -O https://github.com/mpi4py/mpi4py/releases/download/X.Y.Z/mpi4py-X.Y.Z.tar.gz • Using wget: $ wget https://github.com/mpi4py/mpi4py/releases/download/X.Y.Z/mpi4py-X.Y.Z.tar.gz After unpacking the release tarball: $ tar -zxf mpi4py-X.Y.Z.tar.gz $ cd mpi4py-X.Y.Z the package is ready for building. MPI for Python uses a standard distutils-based build system. However, some distutils commands (like build) have additional options: --mpicc= Lets you specify a special location or name for the mpicc com- piler wrapper. --mpi= Lets you pass a section with MPI configuration within a special configuration file. --configure Runs exhaustive tests for checking about missing MPI types, con- stants, and functions. This option should be passed in order to build MPI for Python against old MPI-1 or MPI-2 implementations, possibly providing a subset of MPI-3. If you use a MPI implementation providing a mpicc compiler wrapper (e.g., MPICH, Open MPI), it will be used for compilation and linking. This is the preferred and easiest way of building MPI for Python. If mpicc is located somewhere in your search path, simply run the build command: $ python setup.py build If mpicc is not in your search path or the compiler wrapper has a dif- ferent name, you can run the build command specifying its location: $ python setup.py build --mpicc=/where/you/have/mpicc Alternatively, you can provide all the relevant information about your MPI implementation by editing the file called mpi.cfg. You can use the default section [mpi] or add a new, custom section, for example [other_mpi] (see the examples provided in the mpi.cfg file as a start- ing point to write your own section): [mpi] include_dirs = /usr/local/mpi/include libraries = mpi library_dirs = /usr/local/mpi/lib runtime_library_dirs = /usr/local/mpi/lib [other_mpi] include_dirs = /opt/mpi/include ... libraries = mpi ... library_dirs = /opt/mpi/lib ... runtime_library_dirs = /op/mpi/lib ... ... and then run the build command, perhaps specifying you custom configu- ration section: $ python setup.py build --mpi=other_mpi After building, the package is ready for install. If you have root privileges (either by log-in as the root user of by using sudo) and you want to install MPI for Python in your system for all users, just do: $ python setup.py install The previous steps will install the mpi4py package at standard location prefix/lib/pythonX.X/site-packages. If you do not have root privileges or you want to install MPI for Python for your private use, just do: $ python setup.py install --user Testing To quickly test the installation: $ mpiexec -n 5 python -m mpi4py.bench helloworld Hello, World! I am process 0 of 5 on localhost. Hello, World! I am process 1 of 5 on localhost. Hello, World! I am process 2 of 5 on localhost. Hello, World! I am process 3 of 5 on localhost. Hello, World! I am process 4 of 5 on localhost. If you installed from source, issuing at the command line: $ mpiexec -n 5 python demo/helloworld.py or (in the case of ancient MPI-1 implementations): $ mpirun -np 5 python `pwd`/demo/helloworld.py will launch a five-process run of the Python interpreter and run the test script demo/helloworld.py from the source distribution. You can also run all the unittest scripts: $ mpiexec -n 5 python test/runtests.py or, if you have nose unit testing framework installed: $ mpiexec -n 5 nosetests -w test or, if you have py.test unit testing framework installed: $ mpiexec -n 5 py.test test/ APPENDIX MPI-enabled Python interpreter WARNING: These days it is no longer required to use the MPI-enabled Python interpreter in most cases, and, therefore, it is not built by default anymore because it is too difficult to reliably build a Python interpreter across different distributions. If you know that you still really need it, see below on how to use the build_exe and install_exe commands. Some MPI-1 implementations (notably, MPICH 1) do require the actual command line arguments to be passed at the time MPI_Init() is called. In this case, you will need to use a re-built, MPI-enabled, Python in- terpreter binary executable. A basic implementation (targeting Python 2.X) of what is required is shown below: #include <Python.h> #include <mpi.h> int main(int argc, char *argv[]) { int status, flag; MPI_Init(&argc, &argv); status = Py_Main(argc, argv); MPI_Finalized(&flag); if (!flag) MPI_Finalize(); return status; } The source code above is straightforward; compiling it should also be. However, the linking step is more tricky: special flags have to be passed to the linker depending on your platform. In order to alleviate you for such low-level details, MPI for Python provides some pure-dis- tutils based support to build and install an MPI-enabled Python inter- preter executable: $ cd mpi4py-X.X.X $ python setup.py build_exe [--mpi=<name>|--mpicc=/path/to/mpicc] $ [sudo] python setup.py install_exe [--install-dir=$HOME/bin] After the above steps you should have the MPI-enabled interpreter in- stalled as prefix/bin/pythonX.X-mpi (or $HOME/bin/pythonX.X-mpi). As- suming that prefix/bin (or $HOME/bin) is listed on your PATH, you should be able to enter your MPI-enabled Python interactively, for ex- ample: $ python2.7-mpi Python 2.7.8 (default, Nov 10 2014, 08:19:18) [GCC 4.9.2 20141101 (Red Hat 4.9.2-1)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import sys >>> sys.executable '/usr/bin/python2.7-mpi' >>> Building MPI from sources In the list below you have some executive instructions for building some of the open-source MPI implementations out there with support for shared/dynamic libraries on POSIX environments. • MPICH $ tar -zxf mpich-X.X.X.tar.gz $ cd mpich-X.X.X $ ./configure --enable-shared --prefix=/usr/local/mpich $ make $ make install • Open MPI $ tar -zxf openmpi-X.X.X tar.gz $ cd openmpi-X.X.X $ ./configure --prefix=/usr/local/openmpi $ make all $ make install • MPICH 1 $ tar -zxf mpich-X.X.X.tar.gz $ cd mpich-X.X.X $ ./configure --enable-sharedlib --prefix=/usr/local/mpich1 $ make $ make install Perhaps you will need to set the LD_LIBRARY_PATH environment variable (using export, setenv or what applies to your system) pointing to the directory containing the MPI libraries . In case of getting runtime linking errors when running MPI programs, the following lines can be added to the user login shell script (.profile, .bashrc, etc.). • MPICH MPI_DIR=/usr/local/mpich export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH • Open MPI MPI_DIR=/usr/local/openmpi export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH • MPICH 1 MPI_DIR=/usr/local/mpich1 export LD_LIBRARY_PATH=$MPI_DIR/lib/shared:$LD_LIBRARY_PATH: export MPICH_USE_SHLIB=yes WARNING: MPICH 1 support for dynamic libraries is not completely transpar- ent. Users should set the environment variable MPICH_USE_SHLIB to yes in order to avoid link problems when using the mpicc compiler wrapper. AUTHOR Lisandro Dalcin COPYRIGHT 2022, Lisandro Dalcin 3.1 March 16, 2022 MPI4PY(1)
Generated by dwww version 1.14 on Fri Jan 24 06:14:54 CET 2025.