dwww Home | Manual pages | Find package

t.rast.accumulate(1grass)   GRASS GIS User's Manual  t.rast.accumulate(1grass)

NAME
       t.rast.accumulate   -  Computes  cyclic  accumulations  of a space time
       raster dataset.

KEYWORDS
       temporal, accumulation, raster, time

SYNOPSIS
       t.rast.accumulate
       t.rast.accumulate --help
       t.rast.accumulate [-nr]  input=name  output=name   [lower=name]    [up-
       per=name]   start=string   [stop=string]  cycle=string  [offset=string]
       [granularity=string]     basename=string      [suffix=string]      lim-
       its=lower,upper     [scale=float]     [shift=float]     [method=string]
       [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -n
           Register empty maps in the output space time raster dataset, other-
           wise they will be deleted

       -r
           Reverse time direction in cyclic accumulation

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       output=name [required]
           Name of the output space time raster dataset

       lower=name
           Input  space  time raster dataset that defines the lower threshold,
           values lower than this threshold are excluded from accumulation

       upper=name
           Input space time raster dataset that defines the  upper  threshold,
           values higher than this threshold are excluded from accumulation

       start=string [required]
           The   temporal   starting  point  to  begin  the  accumulation,  eg
           ’2001-01-01’

       stop=string
           The temporal date to stop the accumulation, eg ’2009-01-01’

       cycle=string [required]
           The temporal cycle to restart the accumulation, eg ’12 months’

       offset=string
           The temporal offset to the beginning  of  the  next  cycle,  eg  ’6
           months’

       granularity=string
           The granularity for accumulation ’1 day’
           Default: 1 day

       basename=string [required]
           Basename of the new generated output maps
           A  numerical  suffix separated by an underscore will be attached to
           create a unique identifier

       suffix=string
           Suffix to add to the basename. Set ’gran’ for  granularity,  ’time’
           for  the  full  time format, ’num’ for numerical suffix with a spe-
           cific number of digits (default %05)
           Default: gran

       limits=lower,upper [required]
           Use these limits in case lower and/or upper input space time raster
           datasets are not defined or contain NULL values

       scale=float
           Scale factor for input space time raster dataset

       shift=float
           Shift factor for input space time raster dataset

       method=string
           This method will be applied to compute the accumulative values from
           the input maps in a single granule
           Growing Degree Days or Winkler indices; Mean: sum(input maps)/(num-
           ber  of input maps); Biologically Effective Degree Days; Huglin He-
           liothermal index
           Options: mean, gdd, bedd, huglin
           Default: mean

DESCRIPTION
       t.rast.accumulate is designed  to  perform  temporal  accumulations  of
       space  time  raster  datasets.  This module expects a space time raster
       dataset as input that will be sampled by a given granularity. All  maps
       that  have the start time during the actual granule will be accumulated
       with the predecessor granule accumulation result using the raster  mod-
       ule r.series.accumulate. The default granularity is 1 day, but any tem-
       poral granularity can be set.

       The start time and the end time of the  accumulation  process  must  be
       set, eg. start="2000-03-01" end="2011-01-01". In addition, a cycle, eg.
       cycle="8 months", can be specified, that defines after  which  interval
       of  time the accumulation process restarts. The offset option specifies
       the time that should be  skipped  between  two  cycles,  eg.  offset="4
       months".

       The  lower and upper limits of the accumulation process can be set, ei-
       ther by using space time raster datasets or by using fixed  values  for
       all raster cells and time steps. The raster maps that specify the lower
       and upper limits of the actual granule will be detected using the  fol-
       lowing  temporal  relations:  equals,  during, overlaps, overlapped and
       contains. First, all maps with time stamps equal to the current granule
       will  be  detected,  the  first lower map and the first upper map found
       will be used as limit definitions.  If no equal maps  are  found,  then
       maps  with a temporal during relation are detected, then maps that tem-
       porally overlap the actual granules, until maps that  have  a  temporal
       contain  relation  are  detected.  If  no maps are found or lower/upper
       STRDS are not defined,  then  the  limits  option  is  used,  eg.  lim-
       its=10,30.

       The  upper limit is only used in the Biologically Effective Degree Days
       calculation.

       The options shift, scale and method are passed to  r.series.accumulate.
       Please refer to the manual page of r.series.accumulate for detailed op-
       tion description.

       The output is a new space time raster dataset with the  provided  start
       time,  end time and granularity containing the accumulated raster maps.
       The base name of the generated maps must always  be  set.   The  output
       space  time  raster dataset can then be analyzed using t.rast.accdetect
       to detect specific accumulation patterns.

EXAMPLE
       This is an example how to accumulate the daily mean temperature of  Eu-
       rope  from  1990  to 2000 using the growing-degree-day method to detect
       grass hopper reproduction cycles that are critical to agriculture.
       # Get the temperature data
       wget http://www-pool.math.tu-berlin.de/~soeren/grass/temperature_mean_1990_2000_daily_celsius.tar.gz
       # Create a temporary location directory
       mkdir -p /tmp/grassdata/LL
       # Start GRASS and create a new location with PERMANENT mapset
       grass78 -c EPSG:4326 /tmp/grassdata/LL/PERMANENT
       # Import the temperature data
       t.rast.import input=temperature_mean_1990_2000_daily_celsius.tar.gz \
             output=temperature_mean_1990_2000_daily_celsius directory=/tmp
       # We need to set the region correctly
       g.region -p raster=`t.rast.list input=temperature_mean_1990_2000_daily_celsius column=name | tail -1`
       # We can zoom to the raster map
       g.region -p zoom=`t.rast.list input=temperature_mean_1990_2000_daily_celsius column=name | tail -1`
       #############################################################################
       #### ACCUMULATION USING GDD METHOD ##########################################
       #############################################################################
       # The computation of grashopper pest control cycles is based on:
       #
       #   Using Growing Degree Days For Insect Management
       #   Nancy E. Adams
       #   Extension Educator, Agricultural Resources
       #
       # available here: http://extension.unh.edu/agric/gddays/docs/growch.pdf
       # Now we compute the Biologically Effective Degree Days
       # from 1990 - 2000 for each year (12 month cycle) with
       # a granularity of one day. Base temperature is 10°C, upper limit is 30°C.
       # Hence the accumulation starts at 10°C and does not accumulate values above 30°C.
       t.rast.accumulate input="temperature_mean_1990_2000_daily_celsius" \
             output="temperature_mean_1990_2000_daily_celsius_accumulated_10_30" \
             limits="10,30" start="1990-01-01" stop="2000-01-01" cycle="12 months" \
             basename="temp_acc_daily_10_30" method="bedd"
       #############################################################################
       #### ACCUMULATION PATTERN DETECTION #########################################
       #############################################################################
       # Now we detect the three grasshopper pest control cycles
       # First cycle at 325°C - 427°C GDD
       t.rast.accdetect input=temperature_mean_1990_2000_daily_celsius_accumulated_10_30@PERMANENT \
             occ=leafhopper_occurrence_c1_1990_2000 start="1990-01-01" stop="2000-01-01" \
             cycle="12 months" range=325,427 basename=lh_c1 indicator=leafhopper_indicator_c1_1990_2000
       # Second cycle at 685°C - 813°C GDD
       t.rast.accdetect input=temperature_mean_1990_2000_daily_celsius_accumulated_10_30@PERMANENT \
             occ=leafhopper_occurrence_c2_1990_2000 start="1990-01-01" stop="2000-01-01" \
             cycle="12 months" range=685,813 basename=lh_c2 indicator=leafhopper_indicator_c2_1990_2000
       # Third cycle at 1047°C - 1179°C GDD
       t.rast.accdetect input=temperature_mean_1990_2000_daily_celsius_accumulated_10_30@PERMANENT \
             occ=leafhopper_occurrence_c3_1990_2000 start="1990-01-01" stop="2000-01-01" \
             cycle="12 months" range=1047,1179 basename=lh_c3 indicator=leafhopper_indicator_c3_1990_2000
       #############################################################################
       #### YEARLY SPATIAL OCCURRENCE COMPUTATION OF ALL CYCLES ####################
       #############################################################################
       # Extract the areas that have full cycles
       t.rast.aggregate input=leafhopper_indicator_c1_1990_2000 gran="1 year" \
             output=leafhopper_cycle_1_1990_2000_yearly method=maximum basename=li_c1
       t.rast.mapcalc input=leafhopper_cycle_1_1990_2000_yearly basename=lh_clean_c1 \
                      output=leafhopper_cycle_1_1990_2000_yearly_clean \
                      expression="if(leafhopper_cycle_1_1990_2000_yearly == 3, 1, null())"
       t.rast.aggregate input=leafhopper_indicator_c2_1990_2000 gran="1 year" \
             output=leafhopper_cycle_2_1990_2000_yearly method=maximum basename=li_c2
       t.rast.mapcalc input=leafhopper_cycle_2_1990_2000_yearly basename=lh_clean_c2 \
                      output=leafhopper_cycle_2_1990_2000_yearly_clean \
                      expression="if(leafhopper_cycle_2_1990_2000_yearly == 3, 2, null())"
       t.rast.aggregate input=leafhopper_indicator_c3_1990_2000 gran="1 year" \
             output=leafhopper_cycle_3_1990_2000_yearly method=maximum basename=li_c3
       t.rast.mapcalc input=leafhopper_cycle_3_1990_2000_yearly basename=lh_clean_c3 \
                      output=leafhopper_cycle_3_1990_2000_yearly_clean \
                      expression="if(leafhopper_cycle_3_1990_2000_yearly == 3, 3, null())"
       t.rast.mapcalc input=leafhopper_cycle_1_1990_2000_yearly_clean,leafhopper_cycle_2_1990_2000_yearly_clean,leafhopper_cycle_3_1990_2000_yearly_clean \
                      basename=lh_cleann_all_cycles \
                      output=leafhopper_all_cycles_1990_2000_yearly_clean \
                      expression="if(isnull(leafhopper_cycle_3_1990_2000_yearly_clean), \
                     if(isnull(leafhopper_cycle_2_1990_2000_yearly_clean), \
                  if(isnull(leafhopper_cycle_1_1990_2000_yearly_clean), \
                  null() ,1),2),3)"
       cat > color.table << EOF
       3 yellow
       2 blue
       1 red
       EOF
       t.rast.colors input=leafhopper_cycle_1_1990_2000_yearly_clean rules=color.table
       t.rast.colors input=leafhopper_cycle_2_1990_2000_yearly_clean rules=color.table
       t.rast.colors input=leafhopper_cycle_3_1990_2000_yearly_clean rules=color.table
       t.rast.colors input=leafhopper_all_cycles_1990_2000_yearly_clean rules=color.table
       #############################################################################
       ################ DURATION COMPUTATION #######################################
       #############################################################################
       # Extract the duration in days of the first cycle
       t.rast.aggregate input=leafhopper_occurrence_c1_1990_2000 gran="1 year" \
             output=leafhopper_min_day_c1_1990_2000 method=minimum basename=occ_min_day_c1
       t.rast.aggregate input=leafhopper_occurrence_c1_1990_2000 gran="1 year" \
             output=leafhopper_max_day_c1_1990_2000 method=maximum basename=occ_max_day_c1
       t.rast.mapcalc input=leafhopper_min_day_c1_1990_2000,leafhopper_max_day_c1_1990_2000 \
                      basename=occ_duration_c1 \
                      output=leafhopper_duration_c1_1990_2000 \
                      expression="leafhopper_max_day_c1_1990_2000 - leafhopper_min_day_c1_1990_2000"
       # Extract the duration in days of the second cycle
       t.rast.aggregate input=leafhopper_occurrence_c2_1990_2000 gran="1 year" \
             output=leafhopper_min_day_c2_1990_2000 method=minimum basename=occ_min_day_c2
       t.rast.aggregate input=leafhopper_occurrence_c2_1990_2000 gran="1 year" \
             output=leafhopper_max_day_c2_1990_2000 method=maximum basename=occ_max_day_c2
       t.rast.mapcalc input=leafhopper_min_day_c2_1990_2000,leafhopper_max_day_c2_1990_2000 \
                      basename=occ_duration_c2 \
                      output=leafhopper_duration_c2_1990_2000 \
                      expression="leafhopper_max_day_c2_1990_2000 - leafhopper_min_day_c2_1990_2000"
       # Extract the duration in days of the third cycle
       t.rast.aggregate input=leafhopper_occurrence_c3_1990_2000 gran="1 year" \
             output=leafhopper_min_day_c3_1990_2000 method=minimum basename=occ_min_day_c3
       t.rast.aggregate input=leafhopper_occurrence_c3_1990_2000 gran="1 year" \
             output=leafhopper_max_day_c3_1990_2000 method=maximum basename=occ_max_day_c3
       t.rast.mapcalc input=leafhopper_min_day_c3_1990_2000,leafhopper_max_day_c3_1990_2000 \
                      basename=occ_duration_c3 \
                      output=leafhopper_duration_c3_1990_2000 \
                      expression="leafhopper_max_day_c3_1990_2000 - leafhopper_min_day_c3_1990_2000"
       t.rast.colors input=leafhopper_duration_c1_1990_2000 color=rainbow
       t.rast.colors input=leafhopper_duration_c2_1990_2000 color=rainbow
       t.rast.colors input=leafhopper_duration_c3_1990_2000 color=rainbow
       #############################################################################
       ################ MONTHLY CYCLES OCCURRENCE ##################################
       #############################################################################
       # Extract the monthly indicator that shows the start and end of a cycle
       # First cycle
       t.rast.aggregate input=leafhopper_indicator_c1_1990_2000 gran="1 month" \
             output=leafhopper_indi_min_month_c1_1990_2000 method=minimum basename=occ_indi_min_month_c1
       t.rast.aggregate input=leafhopper_indicator_c1_1990_2000 gran="1 month" \
             output=leafhopper_indi_max_month_c1_1990_2000 method=maximum basename=occ_indi_max_month_c1
       t.rast.mapcalc input=leafhopper_indi_min_month_c1_1990_2000,leafhopper_indi_max_month_c1_1990_2000 \
                      basename=indicator_monthly_c1 \
                      output=leafhopper_monthly_indicator_c1_1990_2000 \
                      expression="if(leafhopper_indi_min_month_c1_1990_2000 == 1, 1, if(leafhopper_indi_max_month_c1_1990_2000 == 3, 3, 2))"
       # Second cycle
       t.rast.aggregate input=leafhopper_indicator_c2_1990_2000 gran="1 month" \
             output=leafhopper_indi_min_month_c2_1990_2000 method=minimum basename=occ_indi_min_month_c2
       t.rast.aggregate input=leafhopper_indicator_c2_1990_2000 gran="1 month" \
             output=leafhopper_indi_max_month_c2_1990_2000 method=maximum basename=occ_indi_max_month_c2
       t.rast.mapcalc input=leafhopper_indi_min_month_c2_1990_2000,leafhopper_indi_max_month_c2_1990_2000 \
                      basename=indicator_monthly_c2 \
                      output=leafhopper_monthly_indicator_c2_1990_2000 \
                      expression="if(leafhopper_indi_min_month_c2_1990_2000 == 1, 1, if(leafhopper_indi_max_month_c2_1990_2000 == 3, 3, 2))"
       # Third cycle
       t.rast.aggregate input=leafhopper_indicator_c3_1990_2000 gran="1 month" \
             output=leafhopper_indi_min_month_c3_1990_2000 method=minimum basename=occ_indi_min_month_c3
       t.rast.aggregate input=leafhopper_indicator_c3_1990_2000 gran="1 month" \
             output=leafhopper_indi_max_month_c3_1990_2000 method=maximum basename=occ_indi_max_month_c3
       t.rast.mapcalc input=leafhopper_indi_min_month_c3_1990_2000,leafhopper_indi_max_month_c3_1990_2000 \
                      basename=indicator_monthly_c3 \
                      output=leafhopper_monthly_indicator_c3_1990_2000 \
                      expression="if(leafhopper_indi_min_month_c3_1990_2000 == 1, 1, if(leafhopper_indi_max_month_c3_1990_2000 == 3, 3, 2))"
       cat > color.table << EOF
       3 red
       2 yellow
       1 green
       EOF
       t.rast.colors input=leafhopper_monthly_indicator_c1_1990_2000 rules=color.table
       t.rast.colors input=leafhopper_monthly_indicator_c2_1990_2000 rules=color.table
       t.rast.colors input=leafhopper_monthly_indicator_c3_1990_2000 rules=color.table
       #############################################################################
       ################ VISUALIZATION ##############################################
       #############################################################################
       # Now we use g.gui.animation to visualize the yearly occurrence, the duration and the monthly occurrence
       # Yearly occurrence of all reproduction cycles
       g.gui.animation strds=leafhopper_all_cycles_1990_2000_yearly_clean
       # Yearly duration of reproduction cycle 1
       g.gui.animation strds=leafhopper_duration_c1_1990_2000
       # Yearly duration of reproduction cycle 2
       g.gui.animation strds=leafhopper_duration_c2_1990_2000
       # Yearly duration of reproduction cycle 3
       g.gui.animation strds=leafhopper_duration_c3_1990_2000
       # Monthly occurrence of reproduction cycle 1
       g.gui.animation strds=leafhopper_monthly_indicator_c1_1990_2000
       # Monthly occurrence of reproduction cycle 2
       g.gui.animation strds=leafhopper_monthly_indicator_c2_1990_2000
       # Monthly occurrence of reproduction cycle 3
       g.gui.animation strds=leafhopper_monthly_indicator_c3_1990_2000

SEE ALSO
        t.rast.accdetect, t.rast.aggregate, t.rast.mapcalc, t.info,  g.region,
       r.series.accumulate

REFERENCES
           •   Jones,  G.V., Duff, A.A., Hall, A., Myers, J.W., 2010.  Spatial
               Analysis of Climate in Winegrape Growing Regions in the Western
               United States. Am. J. Enol. Vitic. 61, 313-326.

AUTHOR
       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE
       Available at: t.rast.accumulate source code (history)

       Accessed: unknown

       Main index | Temporal index | Topics index | Keywords index | Graphical
       index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual

GRASS 7.8.7                                          t.rast.accumulate(1grass)

Generated by dwww version 1.14 on Sun Dec 29 19:31:59 CET 2024.