Tk_CreateImageType(3tk) Tk Library Procedures Tk_CreateImageType(3tk) ______________________________________________________________________________ NAME Tk_CreateImageType, Tk_GetImageMasterData, Tk_GetImageModelData, Tk_InitImageArgs - define new kind of image SYNOPSIS #include <tk.h> Tk_CreateImageType(typePtr) ClientData Tk_GetImageMasterData(interp, name, typePtrPtr) ClientData │ Tk_GetImageModelData(interp, name, typePtrPtr) │ Tk_InitImageArgs(interp, argc, argvPtr) ARGUMENTS const Tk_ImageType *typePtr (in) Structure that defines the new type of image. For Tk 8.4 and earlier this must be static: a pointer to this structure is retained by the image code. In Tk 8.5, this limitation was relaxed. Tcl_Interp *interp (in) Interpreter in which image was created. const char *name (in) Name of existing image. Tk_ImageType **typePtrPtr (out) Points to word in which to store a pointer to type information for the given image, if it exists. int argc (in) Number of arguments char ***argvPtr (in/out) Pointer to argument list ______________________________________________________________________________ DESCRIPTION Tk_CreateImageType is invoked to define a new kind of image. An image type corresponds to a particular value of the type argument for the im- age create command. There may exist any number of different image types, and new types may be defined dynamically by calling Tk_CreateIm- ageType. For example, there might be one type for 2-color bitmaps, an- other for multi-color images, another for dithered images, another for video, and so on. The code that implements a new image type is called an image manager. It consists of a collection of procedures plus three different kinds of data structures. The first data structure is a Tk_ImageType structure, which contains the name of the image type and pointers to five proce- dures provided by the image manager to deal with images of this type: typedef struct Tk_ImageType { const char *name; Tk_ImageCreateProc *createProc; Tk_ImageGetProc *getProc; Tk_ImageDisplayProc *displayProc; Tk_ImageFreeProc *freeProc; Tk_ImageDeleteProc *deleteProc; } Tk_ImageType; The fields of this structure will be described in later subsections of this entry. The second major data structure manipulated by an image manager is called an image model; it contains overall information about a partic- ular image, such as the values of the configuration options specified in an image create command. There will usually be one of these struc- tures for each invocation of the image create command. The third data structure related to images is an image instance. There will usually be one of these structures for each usage of an image in a particular widget. It is possible for a single image to appear simul- taneously in multiple widgets, or even multiple times in the same wid- get. Furthermore, different instances may be on different screens or displays. The image instance data structure describes things that may vary from instance to instance, such as colors and graphics contexts for redisplay. There is usually one instance structure for each -image option specified for a widget or canvas item. The following subsections describe the fields of a Tk_ImageType in more detail. NAME typePtr->name provides a name for the image type. Once Tk_CreateIm- ageType returns, this name may be used in image create commands to cre- ate images of the new type. If there already existed an image type by this name then the new image type replaces the old one. CREATEPROC typePtr->createProc provides the address of a procedure for Tk to call whenever image create is invoked to create an image of the new type. typePtr->createProc must match the following prototype: typedef int Tk_ImageCreateProc( Tcl_Interp *interp, const char *name, int objc, Tcl_Obj *const objv[], const Tk_ImageType *typePtr, Tk_ImageMaster model, ClientData *modelDataPtr); The interp argument is the interpreter in which the image command was invoked, and name is the name for the new image, which was either spec- ified explicitly in the image command or generated automatically by the image command. The objc and objv arguments describe all the configura- tion options for the new image (everything after the name argument to image). The model argument is a token that refers to Tk's information about this image; the image manager must return this token to Tk when invoking the Tk_ImageChanged procedure. Typically createProc will parse objc and objv and create an image model data structure for the new image. createProc may store an arbitrary one-word value at *model- DataPtr, which will be passed back to the image manager when other callbacks are invoked. Typically the value is a pointer to the model data structure for the image. If createProc encounters an error, it should leave an error message in the interpreter result and return TCL_ERROR; otherwise it should re- turn TCL_OK. createProc should call Tk_ImageChanged in order to set the size of the image and request an initial redisplay. GETPROC typePtr->getProc is invoked by Tk whenever a widget calls Tk_GetImage to use a particular image. This procedure must match the following prototype: typedef ClientData Tk_ImageGetProc( Tk_Window tkwin, ClientData modelData); The tkwin argument identifies the window in which the image will be used and modelData is the value returned by createProc when the image model was created. getProc will usually create a data structure for the new instance, including such things as the resources needed to dis- play the image in the given window. getProc returns a one-word token for the instance, which is typically the address of the instance data structure. Tk will pass this value back to the image manager when in- voking its displayProc and freeProc procedures. DISPLAYPROC typePtr->displayProc is invoked by Tk whenever an image needs to be displayed (i.e., whenever a widget calls Tk_RedrawImage). displayProc must match the following prototype: typedef void Tk_ImageDisplayProc( ClientData instanceData, Display *display, Drawable drawable, int imageX, int imageY, int width, int height, int drawableX, int drawableY); The instanceData will be the same as the value returned by getProc when the instance was created. display and drawable indicate where to dis- play the image; drawable may be a pixmap rather than the window speci- fied to getProc (this is usually the case, since most widgets double- buffer their redisplay to get smoother visual effects). imageX, im- ageY, width, and height identify the region of the image that must be redisplayed. This region will always be within the size of the image as specified in the most recent call to Tk_ImageChanged. drawableX and drawableY indicate where in drawable the image should be displayed; displayProc should display the given region of the image so that point (imageX, imageY) in the image appears at (drawableX, drawableY) in drawable. FREEPROC typePtr->freeProc contains the address of a procedure that Tk will in- voke when an image instance is released (i.e., when Tk_FreeImage is in- voked). This can happen, for example, when a widget is deleted or a image item in a canvas is deleted, or when the image displayed in a widget or canvas item is changed. freeProc must match the following prototype: typedef void Tk_ImageFreeProc( ClientData instanceData, Display *display); The instanceData will be the same as the value returned by getProc when the instance was created, and display is the display containing the window for the instance. freeProc should release any resources associ- ated with the image instance, since the instance will never be used again. DELETEPROC typePtr->deleteProc is a procedure that Tk invokes when an image is be- ing deleted (i.e. when the image delete command is invoked). Before invoking deleteProc Tk will invoke freeProc for each of the image's in- stances. deleteProc must match the following prototype: typedef void Tk_ImageDeleteProc( ClientData modelData); The modelData argument will be the same as the value stored in *model- DataPtr by createProc when the image was created. deleteProc should release any resources associated with the image. TK_GETIMAGEMODELDATA The procedure Tk_GetImageMasterData may be invoked to retrieve informa- tion about an image. For example, an image manager can use this proce- dure to locate its image model data for an image. If there exists an image named name in the interpreter given by interp, then *typePtrPtr is filled in with type information for the image (the typePtr value passed to Tk_CreateImageType when the image type was registered) and the return value is the ClientData value returned by the createProc when the image was created (this is typically a pointer to the image model data structure). If no such image exists then NULL is returned and NULL is stored at *typePtrPtr. Tk_GetImageModelData is synonym for Tk_GetImageMasterData │ LEGACY INTERFACE SUPPORT In Tk 8.2 and earlier, the definition of Tk_ImageCreateProc was incom- patibly different, with the following prototype: typedef int Tk_ImageCreateProc( Tcl_Interp *interp, char *name, int argc, char **argv, Tk_ImageType *typePtr, Tk_ImageMaster model, ClientData *modelDataPtr); Legacy programs and libraries dating from those days may still contain code that defines extended Tk image types using the old interface. The Tk header file will still support this legacy interface if the code is compiled with the macro USE_OLD_IMAGE defined. Tk_ImageModel is synonym for Tk_ImageMaster │ When the USE_OLD_IMAGE legacy support is enabled, you may see the rou- tine Tk_InitImageArgs in use. This was a migration tool used to create stub-enabled extensions that could be loaded into interps containing all versions of Tk 8.1 and later. Tk 8.5 no longer provides this rou- tine, but uses a macro to convert any attempted calls of this routine into an empty comment. Any stub-enabled extension providing an ex- tended image type via the legacy interface that is compiled against Tk 8.5 headers and linked against the Tk 8.5 stub library will produce a file that can be loaded only into interps with Tk 8.5 or later; that is, the normal stub-compatibility rules. If a developer needs to gen- erate from such code a file that is loadable into interps with Tk 8.4 or earlier, they must use Tk 8.4 headers and stub libraries to do so. Any new code written today should not make use of the legacy inter- faces. Expect their support to go away in Tk 9. SEE ALSO Tk_ImageChanged, Tk_GetImage, Tk_FreeImage, Tk_RedrawImage, Tk_Size- OfImage KEYWORDS image manager, image type, instance, model Tk 8.5 Tk_CreateImageType(3tk)
Generated by dwww version 1.14 on Fri Jan 24 06:13:17 CET 2025.