CANONICAL(5) File Formats Manual CANONICAL(5) NAME canonical - Postfix canonical table format SYNOPSIS postmap /etc/postfix/canonical postmap -q "string" /etc/postfix/canonical postmap -q - /etc/postfix/canonical <inputfile DESCRIPTION The optional canonical(5) table specifies an address mapping for local and non-local addresses. The mapping is used by the cleanup(8) daemon, before mail is stored into the queue. The address mapping is recur- sive. Normally, the canonical(5) table is specified as a text file that serves as input to the postmap(1) command. The result, an indexed file in dbm or db format, is used for fast searching by the mail system. Ex- ecute the command "postmap /etc/postfix/canonical" to rebuild an in- dexed file after changing the corresponding text file. When the table is provided via other means such as NIS, LDAP or SQL, the same lookups are done as for ordinary indexed files. Alternatively, the table can be provided as a regular-expression map where patterns are given as regular expressions, or lookups can be di- rected to TCP-based server. In those cases, the lookups are done in a slightly different way as described below under "REGULAR EXPRESSION TA- BLES" or "TCP-BASED TABLES". By default the canonical(5) mapping affects both message header ad- dresses (i.e. addresses that appear inside messages) and message enve- lope addresses (for example, the addresses that are used in SMTP proto- col commands). This is controlled with the canonical_classes parameter. NOTE: Postfix versions 2.2 and later rewrite message headers from re- mote SMTP clients only if the client matches the local_header_re- write_clients parameter, or if the remote_header_rewrite_domain config- uration parameter specifies a non-empty value. To get the behavior be- fore Postfix 2.2, specify "local_header_rewrite_clients = static:all". Typically, one would use the canonical(5) table to replace login names by Firstname.Lastname, or to clean up addresses produced by legacy mail systems. The canonical(5) mapping is not to be confused with virtual alias sup- port or with local aliasing. To change the destination but not the headers, use the virtual(5) or aliases(5) map instead. CASE FOLDING The search string is folded to lowercase before database lookup. As of Postfix 2.3, the search string is not case folded with database types such as regexp: or pcre: whose lookup fields can match both upper and lower case. TABLE FORMAT The input format for the postmap(1) command is as follows: pattern address When pattern matches a mail address, replace it by the corre- sponding address. blank lines and comments Empty lines and whitespace-only lines are ignored, as are lines whose first non-whitespace character is a `#'. multi-line text A logical line starts with non-whitespace text. A line that starts with whitespace continues a logical line. TABLE SEARCH ORDER With lookups from indexed files such as DB or DBM, or from networked tables such as NIS, LDAP or SQL, each user@domain query produces a se- quence of query patterns as described below. Each query pattern is sent to each specified lookup table before trying the next query pattern, until a match is found. user@domain address Replace user@domain by address. This form has the highest prece- dence. This is useful to clean up addresses produced by legacy mail systems. It can also be used to produce Firstname.Lastname style addresses, but see below for a simpler solution. user address Replace user@site by address when site is equal to $myorigin, when site is listed in $mydestination, or when it is listed in $inet_interfaces or $proxy_interfaces. This form is useful for replacing login names by Firstname.Last- name. @domain address Replace other addresses in domain by address. This form has the lowest precedence. Note: @domain is a wild-card. When this form is applied to re- cipient addresses, the Postfix SMTP server accepts mail for any recipient in domain, regardless of whether that recipient ex- ists. This may turn your mail system into a backscatter source: Postfix first accepts mail for non-existent recipients and then tries to return that mail as "undeliverable" to the often forged sender address. To avoid backscatter with mail for a wild-card domain, replace the wild-card mapping with explicit 1:1 mappings, or add a re- ject_unverified_recipient restriction for that domain: smtpd_recipient_restrictions = ... reject_unauth_destination check_recipient_access inline:{example.com=reject_unverified_recipient} unverified_recipient_reject_code = 550 In the above example, Postfix may contact a remote server if the recipient is rewritten to a remote address. RESULT ADDRESS REWRITING The lookup result is subject to address rewriting: • When the result has the form @otherdomain, the result becomes the same user in otherdomain. • When "append_at_myorigin=yes", append "@$myorigin" to addresses without "@domain". • When "append_dot_mydomain=yes", append ".$mydomain" to addresses without ".domain". ADDRESS EXTENSION When a mail address localpart contains the optional recipient delimiter (e.g., user+foo@domain), the lookup order becomes: user+foo@domain, user@domain, user+foo, user, and @domain. The propagate_unmatched_extensions parameter controls whether an un- matched address extension (+foo) is propagated to the result of table lookup. REGULAR EXPRESSION TABLES This section describes how the table lookups change when the table is given in the form of regular expressions. For a description of regular expression lookup table syntax, see regexp_table(5) or pcre_table(5). Each pattern is a regular expression that is applied to the entire ad- dress being looked up. Thus, user@domain mail addresses are not broken up into their user and @domain constituent parts, nor is user+foo bro- ken up into user and foo. Patterns are applied in the order as specified in the table, until a pattern is found that matches the search string. Results are the same as with indexed file lookups, with the additional feature that parenthesized substrings from the pattern can be interpo- lated as $1, $2 and so on. TCP-BASED TABLES This section describes how the table lookups change when lookups are directed to a TCP-based server. For a description of the TCP client/server lookup protocol, see tcp_table(5). This feature is not available up to and including Postfix version 2.4. Each lookup operation uses the entire address once. Thus, user@domain mail addresses are not broken up into their user and @domain con- stituent parts, nor is user+foo broken up into user and foo. Results are the same as with indexed file lookups. BUGS The table format does not understand quoting conventions. CONFIGURATION PARAMETERS The following main.cf parameters are especially relevant. The text be- low provides only a parameter summary. See postconf(5) for more details including examples. canonical_classes (envelope_sender, envelope_recipient, header_sender, header_recipient) What addresses are subject to canonical_maps address mapping. canonical_maps (empty) Optional address mapping lookup tables for message headers and envelopes. recipient_canonical_maps (empty) Optional address mapping lookup tables for envelope and header recipient addresses. sender_canonical_maps (empty) Optional address mapping lookup tables for envelope and header sender addresses. propagate_unmatched_extensions (canonical, virtual) What address lookup tables copy an address extension from the lookup key to the lookup result. Other parameters of interest: inet_interfaces (all) The network interface addresses that this mail system receives mail on. local_header_rewrite_clients (permit_inet_interfaces) Rewrite message header addresses in mail from these clients and update incomplete addresses with the domain name in $myorigin or $mydomain; either don't rewrite message headers from other clients at all, or rewrite message headers and update incomplete addresses with the domain specified in the remote_header_re- write_domain parameter. proxy_interfaces (empty) The network interface addresses that this mail system receives mail on by way of a proxy or network address translation unit. masquerade_classes (envelope_sender, header_sender, header_recipient) What addresses are subject to address masquerading. masquerade_domains (empty) Optional list of domains whose subdomain structure will be stripped off in email addresses. masquerade_exceptions (empty) Optional list of user names that are not subjected to address masquerading, even when their address matches $masquerade_do- mains. mydestination ($myhostname, localhost.$mydomain, localhost) The list of domains that are delivered via the $local_transport mail delivery transport. myorigin ($myhostname) The domain name that locally-posted mail appears to come from, and that locally posted mail is delivered to. owner_request_special (yes) Enable special treatment for owner-listname entries in the aliases(5) file, and don't split owner-listname and listname-re- quest address localparts when the recipient_delimiter is set to "-". remote_header_rewrite_domain (empty) Don't rewrite message headers from remote clients at all when this parameter is empty; otherwise, rewrite message headers and append the specified domain name to incomplete addresses. SEE ALSO cleanup(8), canonicalize and enqueue mail postmap(1), Postfix lookup table manager postconf(5), configuration parameters virtual(5), virtual aliasing README FILES Use "postconf readme_directory" or "postconf html_directory" to locate this information. DATABASE_README, Postfix lookup table overview ADDRESS_REWRITING_README, address rewriting guide LICENSE The Secure Mailer license must be distributed with this software. AUTHOR(S) Wietse Venema IBM T.J. Watson Research P.O. Box 704 Yorktown Heights, NY 10598, USA Wietse Venema Google, Inc. 111 8th Avenue New York, NY 10011, USA CANONICAL(5)
Generated by dwww version 1.14 on Fri Jan 24 14:09:09 CET 2025.