dwww Home | Manual pages | Find package

i.landsat.toar(1grass)      GRASS GIS User's Manual     i.landsat.toar(1grass)

NAME
       i.landsat.toar   - Calculates top-of-atmosphere radiance or reflectance
       and temperature for Landsat MSS/TM/ETM+/OLI

KEYWORDS
       imagery, radiometric conversion, radiance, reflectance, brightness tem-
       perature, atmospheric correction, satellite, Landsat

SYNOPSIS
       i.landsat.toar
       i.landsat.toar --help
       i.landsat.toar  [-rnp]  input=basename  output=basename  [metfile=name]
       [sensor=string]    [method=string]    [date=yyyy-mm-dd]     [sun_eleva-
       tion=float]      [product_date=yyyy-mm-dd]      [gain=string]     [per-
       cent=float]       [pixel=integer]        [rayleigh=float]        [lsat-
       met=string[,string,...]]     [scale=float]     [--overwrite]   [--help]
       [--verbose]  [--quiet]  [--ui]

   Flags:
       -r
           Output at-sensor radiance instead of reflectance for all bands

       -n
           Input raster maps use as extension the number of the  band  instead
           the code

       -p
           Print output metadata info

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=basename [required]
           Base name of input raster bands
           Example: ’B.’ for B.1, B.2, ...

       output=basename [required]
           Prefix for output raster maps
           Example: ’B.toar.’ generates B.toar.1, B.toar.2, ...

       metfile=name
           Name of Landsat metadata file (.met or MTL.txt)

       sensor=string
           Spacecraft sensor
           Required only if ’metfile’ not given (recommended for sanity)
           Options: mss1, mss2, mss3, mss4, mss5, tm4, tm5, tm7, oli8
           mss1: Landsat-1 MSS
           mss2: Landsat-2 MSS
           mss3: Landsat-3 MSS
           mss4: Landsat-4 MSS
           mss5: Landsat-5 MSS
           tm4: Landsat-4 TM
           tm5: Landsat-5 TM
           tm7: Landsat-7 ETM+
           oli8: Landsat_8 OLI/TIRS

       method=string
           Atmospheric correction method
           Options: uncorrected, dos1, dos2, dos2b, dos3, dos4
           Default: uncorrected

       date=yyyy-mm-dd
           Image acquisition date (yyyy-mm-dd)
           Required only if ’metfile’ not given

       sun_elevation=float
           Sun elevation in degrees
           Required only if ’metfile’ not given

       product_date=yyyy-mm-dd
           Image creation date (yyyy-mm-dd)
           Required only if ’metfile’ not given

       gain=string
           Gain (H/L) of all Landsat ETM+ bands (1-5,61,62,7,8)
           Required only if ’metfile’ not given

       percent=float
           Percent of solar radiance in path radiance
           Required only if ’method’ is any DOS
           Default: 0.01

       pixel=integer
           Minimum pixels to consider digital number as dark object
           Required only if ’method’ is any DOS
           Default: 1000

       rayleigh=float
           Rayleigh atmosphere (diffuse sky irradiance)
           Required only if ’method’ is DOS3
           Default: 0.0

       lsatmet=string[,string,...]
           return value stored for a given metadata
           Required only if ’metfile’ and -p given
           Options:  number,  creation,  date, sun_elev, sensor, bands, sunaz,
           time
           number: Landsat Number
           creation: Creation timestamp
           date: Date
           sun_elev: Sun Elevation
           sensor: Sensor
           bands: Bands count
           sunaz: Sun Azimuth Angle
           time: Time

       scale=float
           Scale factor for output
           Default: 1.0

DESCRIPTION
       i.landsat.toar is used to transform the calibrated  digital  number  of
       Landsat imagery products to top-of-atmosphere radiance or top-of-atmos-
       phere reflectance and temperature (band 6 of the sensors TM and  ETM+).
       Optionally,  it can be used to calculate the at-surface radiance or re-
       flectance with atmospheric correction (DOS method).

       Usually, to do so the production date, the acquisition  date,  and  the
       solar  elevation  are  needed.  Moreover, for Landsat-7 ETM+ it is also
       needed the gain (high or low) of the nine respective bands.

       Optionally (recommended), the data can be read from metadata file (.met
       or MTL.txt) for all Landsat MSS, TM, ETM+ and OLI/TIRS. However, if the
       solar elevation is given the value of the metadata file is overwritten.
       This  is  necessary  when the data in the .met file is incorrect or not
       accurate. Also, if acquisition or production dates are not found in the
       metadata file then the command line values are used.

       Attention:  Any  null value or smaller than QCALmin in the input raster
       is set to null in the output raster and it is not included in the equa-
       tions.

Uncorrected at-sensor values (method=uncorrected, default)
       The  standard  geometric  and radiometric corrections result in a cali-
       brated digital number (QCAL = DN) images. To  further  standardize  the
       impact  of  illumination  geometry, the QCAL images are first converted
       first to at-sensor radiance and  then  to  at-sensor  reflectance.  The
       thermal  band  is  first converted from QCAL to at-sensor radiance, and
       then to effective at-sensor temperature in Kelvin degrees.

       Radiometric calibration converts QCAL to at-sensor radiance,  a  radio-
       metric quantity measured in W/(m² * sr * µm) using the equations:

           •   gain = (Lmax - Lmin) / (QCALmax - QCALmin)

           •   bias = Lmin - gain * QCALmin

           •   radiance = gain * QCAL + bias
       where,  Lmax  and  Lmin  are the calibration constants, and QCALmax and
       QCALmin are the highest and the lowest points of the range of  rescaled
       radiance in QCAL.

       Then, to calculate at-sensor reflectance the equations are:

           •   sun_radiance = [Esun * sin(e)] / (PI * d^2)

           •   reflectance = radiance / sun_radiance
       where,  d is the earth-sun distance in astronomical units, e is the so-
       lar elevation angle, and Esun is the mean solar exoatmospheric  irradi-
       ance in W/(m² * µm).

Simplified at-surface values (method=dos[1-4])
       Atmospheric  correction and reflectance calibration remove the path ra-
       diance, i.e. the stray light from the atmosphere, and the spectral  ef-
       fect  of solar illumination. To output these simple at-surface radiance
       and at-surface reflectance, the equations are (not for thermal bands):

           •   sun_radiance = TAUv * [Esun * sin(e) * TAUz +  Esky]  /  (PI  *
               d^2)

           •   radiance_path = radiance_dark - percent * sun_radiance

           •   radiance = (at-sensor_radiance - radiance_path)

           •   reflectance = radiance / sun_radiance
       where,  percent  is a value between 0.0 and 1.0 (usually 0.01), Esky is
       the diffuse sky irradiance, TAUz is the atmospheric transmittance along
       the  path  from  the  sun  to the ground surface, and TAUv is the atmo-
       spheric transmittance along the path from the  ground  surface  to  the
       sensor.  radiance_dark  is  the  at-sensor radiance calculated from the
       darkest object, i.e. DN with a least  ’dark_parameter’  (usually  1000)
       pixels for the entire image.  The values are,

           •   DOS1: TAUv = 1.0, TAUz = 1.0 and Esky = 0.0

           •   DOS2:  TAUv  = 1.0, Esky = 0.0, and TAUz = sin(e) for all bands
               with maximum wave length less than 1. (i.e. bands 4-6 MSS,  1-4
               TM, and 1-4 ETM+) other bands TAUz = 1.0

           •   DOS3:  TAUv  =  exp[-t/cos(sat_zenith)], TAUz = exp[-t/sin(e)],
               Esky = rayleigh

           •   DOS4: TAUv = exp[-t/cos(sat_zenith)],  TAUz  =  exp[-t/sin(e)],
               Esky = PI * radiance_dark
       Attention: Output radiance remain untouched (i.e. no set to 0.0 when it
       is negative) then they are possible negative  values.  However,  output
       reflectance is set to 0.0 when is obtained a negative value.

NOTES
       The  output raster cell values can be rescaled with the scale parameter
       (e.g., with 100 in case of using reflectance output in i.gensigset).

   On Landsat-8 metadata file
       NASA reports a structure of the L1G Metadata  file  (LDCM-DFCB-004.pdf)
       for Landsat Data Continuity Mission (i.e. Landsat-8).

       NASA  retains  in  MIN_MAX_RADIANCE  group the necessary information to
       transform Digital Numbers (DN) in radiance values. Then, i.landsat.toar
       replaces the possible standard values with the metadata values. The re-
       sults match with the values reported by the metada  file  in  RADIOMET-
       RIC_RESCALING group.

       Also,  NASA  reports  the  same  values of reflectance for all bands in
       max-min values and in gain-bias values. This is strange that all  bands
       have the same range of reflectance. Also, they wrote in the web page as
       to  calculate  reflectance  directly  from  DN,  first  with  RADIOMET-
       RIC_RESCALING values and second divided by sin(sun_elevation).

       This is a simple rescaling

           •   reflectance  =  radiance / sun_radiance = (DN * RADIANCE_MULT +
               RADIANCE_ADD) / sun_radiance

           •   now reflectance = DN * REFLECTANCE_MULT + REFLECTANCE_ADD

           •   then REFLECTANCE_MULT = RADIANCE_MULT / sun_radiance

           •   and REFLECTANCE_ADD = RADIANCE_ADD / sun_radiance

       The problem arises when we need ESUN values (not provided)  to  compute
       sun_radiance and DOS. We assume that REFLECTANCE_MAXIMUM corresponds to
       the RADIANCE_MAXIMUM, then

           •   REFLECTANCE_MAXIMUM / sin(e) = RADIANCE_MAXIMUM / sun_radiance

           •   Esun = (PI * d^2) * RADIANCE_MAXIMUM / REFLECTANCE_MAXIMUM
       where d is the earth-sun distance provided by metadata file or computed
       inside the program.

       The  i.landsat.toar  reverts  back the NASA rescaling to continue using
       Lmax, Lmin, and Esun values to compute the constant to  convert  DN  to
       radiance  and  radiance to reflectance with the "traditional" equations
       and simple atmospheric corrections.  Attention: When MAXIMUM values are
       not  provided,  i.landsat.toar  tries to calculate Lmax, Lmin, and Esun
       from RADIOMETRIC_RESCALING (in tests the results were the same).

   Calibration constants
       In verbose mode (flag --verbose), the  program  write  basic  satellite
       data and the parameters used in the transformations.

       Production date is not an exact value but it is necessary to apply cor-
       rect calibration constants, which were changed in the dates:

           •   Landsat-1 MSS: never

           •   Landsat-2 MSS: July 16, 1975

           •   Landsat-3 MSS: June 1, 1978

           •   Landsat-4 MSS: August 26, 1982 and April 1, 1983

           •   Landsat-4 TM:  August 1, 1983 and January 15, 1984

           •   Landsat-5 MSS: April 6, 1984 and November 9, 1984

           •   Landsat-5 TM:  May 4, 2003 and April, 2 2007

           •   Landsat-7 ETM+: July 1, 2000

           •   Landsat-8 OLI/TIRS: launched in 2013

EXAMPLES
   Metadata file examples
       Transform digital numbers of Landsat-7 ETM+ in band  rasters  203_30.1,
       203_30.2  [...]  to  uncorrected  at-sensor reflectance in output files
       203_30.1_toar, 203_30.2_toar [...] and at-sensor temperature in  output
       files 293_39.61_toar and 293_39.62_toar:
       i.landsat.toar input=203_30. output=_toar \
         metfile=p203r030_7x20010620.met
       or
       i.landsat.toar input=L5121060_06020060714. \
         output=L5121060_06020060714_toar \
         metfile=L5121060_06020060714_MTL.txt
       or
       i.landsat.toar input=LC80160352013134LGN03_B output=toar \
         metfile=LC80160352013134LGN03_MTL.txt sensor=oli8 date=2013-05-14

   DOS1 example
       DN to reflectance using DOS1:
       # rename channels or make a copy to match i.landsat.toar’s input scheme:
       g.copy raster=lsat7_2002_10,lsat7_2002.1
       g.copy raster=lsat7_2002_20,lsat7_2002.2
       g.copy raster=lsat7_2002_30,lsat7_2002.3
       g.copy raster=lsat7_2002_40,lsat7_2002.4
       g.copy raster=lsat7_2002_50,lsat7_2002.5
       g.copy raster=lsat7_2002_61,lsat7_2002.61
       g.copy raster=lsat7_2002_62,lsat7_2002.62
       g.copy raster=lsat7_2002_70,lsat7_2002.7
       g.copy raster=lsat7_2002_80,lsat7_2002.8
       Calculation of reflectance values from DN using DOS1 (metadata obtained
       from p016r035_7x20020524.met.gz):
       i.landsat.toar input=lsat7_2002. output=lsat7_2002_toar. sensor=tm7 \
         method=dos1 date=2002-05-24 sun_elevation=64.7730999 \
         product_date=2004-02-12 gain=HHHLHLHHL
       The  resulting  Landsat  channels  are   named   lsat7_2002_toar.1   ..
       lsat7_2002_toar.8.

REFERENCES
           •   Chander  G., B.L. Markham and D.L. Helder, 2009: Remote Sensing
               of Environment, vol. 113

           •   Chander G.H. and B. Markham, 2003: IEEE  Transactions  On  Geo-
               science And Remote Sensing, vol. 41, no. 11.

           •   Chavez  P.S.,  jr.  1996: Image-based atmospheric corrections -
               Revisited and Improved. Photogrammetric Engineering and  Remote
               Sensing 62(9): 1025-1036.

           •   Huang et al: At-Satellite Reflectance, 2002: A First Order Nor-
               malization Of Landsat 7 ETM+ Images.

           •   R. Irish: Landsat 7. Science Data Users Handbook. February  17,
               2007; 15 May 2011.

           •   Markham  B.L.  and  J.L.  Barker,  1986:  Landsat  MSS  and  TM
               Post-Calibration Dynamic  Ranges,  Exoatmospheric  Reflectances
               and  At-Satellite  Temperatures. EOSAT Landsat Technical Notes,
               No. 1.

           •   Moran M.S., R.D. Jackson, P.N. Slater and P.M.  Teillet,  1992:
               Remote Sensing of Environment, vol. 41.

           •   Song  et  al,  2001:  Classification and Change Detection Using
               Landsat TM Data, When and How to Correct  Atmospheric  Effects?
               Remote Sensing of Environment, vol. 75.

SEE ALSO
        i.atcorr, i.colors.enhance, r.mapcalc, r.in.gdal

       Landsat Data Dictionary by USGS

AUTHOR
       E.  Jorge  Tizado  (ej.tizado unileon es), Dept. Biodiversity and Envi-
       ronmental Management, University of León, Spain

SOURCE CODE
       Available at: i.landsat.toar source code (history)

       Accessed: unknown

       Main index | Imagery index | Topics index | Keywords index |  Graphical
       index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual

GRASS 7.8.7                                             i.landsat.toar(1grass)

Generated by dwww version 1.14 on Fri Jan 24 14:02:53 CET 2025.