i.pca(1grass) GRASS GIS User's Manual i.pca(1grass) NAME i.pca - Principal components analysis (PCA) for image processing. KEYWORDS imagery, transformation, PCA, principal components analysis SYNOPSIS i.pca i.pca --help i.pca [-nf] input=name[,name,...] output=basename [rescale=min,max] [percent=integer] [--overwrite] [--help] [--verbose] [--quiet] [--ui] Flags: -n Normalize (center and scale) input maps Default: center only -f Output will be filtered input bands Apply inverse PCA after PCA --overwrite Allow output files to overwrite existing files --help Print usage summary --verbose Verbose module output --quiet Quiet module output --ui Force launching GUI dialog Parameters: input=name[,name,...] [required] Name of two or more input raster maps or imagery group output=basename [required] Name for output basename raster map(s) A numerical suffix will be added for each component map rescale=min,max Rescaling range for output maps For no rescaling use 0,0 Default: 0,255 percent=integer Cumulative percent importance for filtering Options: 50-99 Default: 99 DESCRIPTION i.pca is an image processing program based on the algorithm provided by Vali (1990), that processes n (n >= 2) input raster map layers and pro- duces n output raster map layers containing the principal components of the input data in decreasing order of variance ("contrast"). The out- put raster map layers are assigned names with .1, .2, ... .n suffixes. The numbers used as suffix correspond to percent importance with .1 be- ing the scores of the principal component with the highest importance. The current geographic region definition and MASK settings are re- spected when reading the input raster map layers. When the rescale op- tion is used, the output files are rescaled to fit the min,max range. The order of the input bands does not matter for the output maps (PC scores), but does matter for the vectors (loadings), since each loading refers to a specific input band. If the output is not rescaled (rescale=0,0, the output raster maps will be of type DCELL, otherwise the output raster maps will be of type CELL. By default, the values of the input raster maps are centered for each map separately with x - mean. With -n, the input raster maps are nor- malized for each map separately with (x - mean) / stddev. Normalizing is highly recommended when the input raster maps have different units, e.g. represent different environmental parameters. The -f flag, together with the percent option, can be used to remove noise from input bands. Input bands will be recalculated from a subset of the principal components (inverse PCA). The subset is selected by using only the most important (highest eigenvalue) principal components which explain together percent percent variance observed in the input bands. NOTES Richards (1986) gives a good example of the application of principal components analysis (PCA) to a time series of LANDSAT images of a burned region in Australia. Eigenvalue and eigenvector information is stored in the output maps’ history files. View with r.info. EXAMPLE PCA calculation using Landsat7 imagery in the North Carolina sample dataset: g.region raster=lsat7_2002_10 -p i.pca in=lsat7_2002_10,lsat7_2002_20,lsat7_2002_30,lsat7_2002_40,lsat7_2002_50,lsat7_2002_70 \ out=lsat7_2002_pca r.info -h lsat7_2002_pca.1 Eigen values, (vectors), and [percent importance]: PC1 4334.35 ( 0.2824, 0.3342, 0.5092,-0.0087, 0.5264, 0.5217) [83.04%] PC2 588.31 ( 0.2541, 0.1885, 0.2923,-0.7428,-0.5110,-0.0403) [11.27%] PC3 239.22 ( 0.3801, 0.3819, 0.2681, 0.6238,-0.4000,-0.2980) [ 4.58%] PC4 32.85 ( 0.1752,-0.0191,-0.4053, 0.1593,-0.4435, 0.7632) [ 0.63%] PC5 20.73 (-0.6170,-0.2514, 0.6059, 0.1734,-0.3235, 0.2330) [ 0.40%] PC6 4.08 (-0.5475, 0.8021,-0.2282,-0.0607,-0.0208, 0.0252) [ 0.08%] d.mon wx0 d.rast lsat7_2002_pca.1 # ... d.rast lsat7_2002_pca.6 In this example, the first two PCAs (PCA1 and PCA2) already explain 94.31% of the variance in the six input channels. Resulting PCA maps calculated from the Landsat7 imagery (NC, USA) SEE ALSO Richards, John A., Remote Sensing Digital Image Analysis, Springer-Ver- lag, 1986. Vali, Ali R., Personal communication, Space Research Center, University of Texas, Austin, 1990. i.cca, g.gui.iclass, i.fft, i.ifft, m.eigensystem, r.covar, r.mapcalc Principal Components Analysis article (GRASS Wiki) AUTHORS David Satnik, GIS Laboratory Major modifications for GRASS 4.1 were made by Olga Waupotitsch and Michael Shapiro, U.S.Army Construction Engineering Research Laboratory Rewritten for GRASS 6.x and major modifications by Brad Douglas SOURCE CODE Available at: i.pca source code (history) Accessed: unknown Main index | Imagery index | Topics index | Keywords index | Graphical index | Full index © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual GRASS 7.8.7 i.pca(1grass)
Generated by dwww version 1.14 on Sun Dec 29 18:11:09 CET 2024.