dwww Home | Manual pages | Find package

PCREAPI(3)                 Library Functions Manual                 PCREAPI(3)

NAME
       PCRE - Perl-compatible regular expressions

       #include <pcre.h>

PCRE NATIVE API BASIC FUNCTIONS

       pcre *pcre_compile(const char *pattern, int options,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre *pcre_compile2(const char *pattern, int options,
            int *errorcodeptr,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre_extra *pcre_study(const pcre *code, int options,
            const char **errptr);

       void pcre_free_study(pcre_extra *extra);

       int pcre_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize);

       int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize,
            int *workspace, int wscount);

PCRE NATIVE API STRING EXTRACTION FUNCTIONS

       int pcre_copy_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            char *buffer, int buffersize);

       int pcre_copy_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber, char *buffer,
            int buffersize);

       int pcre_get_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            const char **stringptr);

       int pcre_get_stringnumber(const pcre *code,
            const char *name);

       int pcre_get_stringtable_entries(const pcre *code,
            const char *name, char **first, char **last);

       int pcre_get_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber,
            const char **stringptr);

       int pcre_get_substring_list(const char *subject,
            int *ovector, int stringcount, const char ***listptr);

       void pcre_free_substring(const char *stringptr);

       void pcre_free_substring_list(const char **stringptr);

PCRE NATIVE API AUXILIARY FUNCTIONS

       int pcre_jit_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize,
            pcre_jit_stack *jstack);

       pcre_jit_stack *pcre_jit_stack_alloc(int startsize, int maxsize);

       void pcre_jit_stack_free(pcre_jit_stack *stack);

       void pcre_assign_jit_stack(pcre_extra *extra,
            pcre_jit_callback callback, void *data);

       const unsigned char *pcre_maketables(void);

       int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
            int what, void *where);

       int pcre_refcount(pcre *code, int adjust);

       int pcre_config(int what, void *where);

       const char *pcre_version(void);

       int pcre_pattern_to_host_byte_order(pcre *code,
            pcre_extra *extra, const unsigned char *tables);

PCRE NATIVE API INDIRECTED FUNCTIONS

       void *(*pcre_malloc)(size_t);

       void (*pcre_free)(void *);

       void *(*pcre_stack_malloc)(size_t);

       void (*pcre_stack_free)(void *);

       int (*pcre_callout)(pcre_callout_block *);

       int (*pcre_stack_guard)(void);

PCRE 8-BIT, 16-BIT, AND 32-BIT LIBRARIES

       As  well  as  support  for  8-bit character strings, PCRE also supports
       16-bit strings (from release 8.30) and  32-bit  strings  (from  release
       8.32),  by means of two additional libraries. They can be built as well
       as, or instead of, the 8-bit library. To avoid too  much  complication,
       this  document describes the 8-bit versions of the functions, with only
       occasional references to the 16-bit and 32-bit libraries.

       The 16-bit and 32-bit functions operate in the same way as their  8-bit
       counterparts;  they  just  use different data types for their arguments
       and results, and their names start with pcre16_ or pcre32_  instead  of
       pcre_.  For  every  option  that  has  UTF8  in  its name (for example,
       PCRE_UTF8), there are corresponding 16-bit and 32-bit names  with  UTF8
       replaced by UTF16 or UTF32, respectively. This facility is in fact just
       cosmetic; the 16-bit and 32-bit option names define the same  bit  val-
       ues.

       References to bytes and UTF-8 in this document should be read as refer-
       ences to 16-bit data units and UTF-16 when using the 16-bit library, or
       32-bit  data  units  and  UTF-32  when using the 32-bit library, unless
       specified otherwise.  More details of the specific differences for  the
       16-bit and 32-bit libraries are given in the pcre16 and pcre32 pages.

PCRE API OVERVIEW

       PCRE has its own native API, which is described in this document. There
       are also some wrapper functions (for the 8-bit library only) that  cor-
       respond  to  the POSIX regular expression API, but they do not give ac-
       cess to all the functionality. They are described in the pcreposix doc-
       umentation.  Both of these APIs define a set of C function calls. A C++
       wrapper (again for the 8-bit library only)  is  also  distributed  with
       PCRE. It is documented in the pcrecpp page.

       The  native  API  C  function prototypes are defined in the header file
       pcre.h, and on Unix-like systems the (8-bit) library itself  is  called
       libpcre.  It  can  normally be accessed by adding -lpcre to the command
       for linking an application that uses PCRE. The header file defines  the
       macros PCRE_MAJOR and PCRE_MINOR to contain the major and minor release
       numbers for the library. Applications can use these to include  support
       for different releases of PCRE.

       In a Windows environment, if you want to statically link an application
       program against a non-dll pcre.a file, you must define PCRE_STATIC  be-
       fore including pcre.h or pcrecpp.h, because otherwise the pcre_malloc()
       and pcre_free() exported  functions  will  be  declared  __declspec(dl-
       limport), with unwanted results.

       The   functions   pcre_compile(),  pcre_compile2(),  pcre_study(),  and
       pcre_exec() are used for compiling and matching regular expressions  in
       a  Perl-compatible  manner. A sample program that demonstrates the sim-
       plest way of using them is provided in the file  called  pcredemo.c  in
       the PCRE source distribution. A listing of this program is given in the
       pcredemo documentation, and the pcresample documentation describes  how
       to compile and run it.

       Just-in-time  compiler  support is an optional feature of PCRE that can
       be built in appropriate hardware environments. It greatly speeds up the
       matching  performance  of many patterns. Simple programs can easily re-
       quest that it be used if available, by setting an option  that  is  ig-
       nored  when it is not relevant. More complicated programs might need to
       make     use     of     the      functions      pcre_jit_stack_alloc(),
       pcre_jit_stack_free(),  and pcre_assign_jit_stack() in order to control
       the JIT code's memory usage.

       From release 8.32 there is also a direct interface for  JIT  execution,
       which  gives  improved performance. The JIT-specific functions are dis-
       cussed in the pcrejit documentation.

       A second matching function, pcre_dfa_exec(), which is not Perl-compati-
       ble,  is  also provided. This uses a different algorithm for the match-
       ing. The alternative algorithm finds all possible matches (at  a  given
       point  in  the  subject), and scans the subject just once (unless there
       are lookbehind assertions). However, this  algorithm  does  not  return
       captured  substrings.  A description of the two matching algorithms and
       their advantages and disadvantages is given in the  pcrematching  docu-
       mentation.

       In  addition  to  the  main compiling and matching functions, there are
       convenience functions for extracting captured substrings from a subject
       string that is matched by pcre_exec(). They are:

         pcre_copy_substring()
         pcre_copy_named_substring()
         pcre_get_substring()
         pcre_get_named_substring()
         pcre_get_substring_list()
         pcre_get_stringnumber()
         pcre_get_stringtable_entries()

       pcre_free_substring() and pcre_free_substring_list() are also provided,
       to free the memory used for extracted strings.

       The function pcre_maketables() is used to build a set of character  ta-
       bles  in the current locale for passing to pcre_compile(), pcre_exec(),
       or pcre_dfa_exec(). This is an optional facility that is  provided  for
       specialist  use.  Most commonly, no special tables are passed, in which
       case internal tables that are generated when PCRE is built are used.

       The function pcre_fullinfo() is used to find out  information  about  a
       compiled  pattern.  The  function pcre_version() returns a pointer to a
       string containing the version of PCRE and its date of release.

       The function pcre_refcount() maintains a  reference  count  in  a  data
       block  containing  a compiled pattern. This is provided for the benefit
       of object-oriented applications.

       The global variables pcre_malloc and pcre_free  initially  contain  the
       entry  points  of  the  standard malloc() and free() functions, respec-
       tively. PCRE calls the memory management functions via these variables,
       so  a  calling  program  can replace them if it wishes to intercept the
       calls. This should be done before calling any PCRE functions.

       The global variables pcre_stack_malloc and pcre_stack_free are also in-
       directions  to memory management functions. These special functions are
       used only when PCRE is compiled to use the heap for  remembering  data,
       instead of recursive function calls, when running the pcre_exec() func-
       tion. See the pcrebuild documentation for details of how to do this. It
       is  a  non-standard  way of building PCRE, for use in environments that
       have limited stacks. Because of the greater use of  memory  management,
       it  runs  more slowly. Separate functions are provided so that special-
       purpose external code can be used for this case. When used, these func-
       tions  always  allocate memory blocks of the same size. There is a dis-
       cussion about PCRE's stack usage in the pcrestack documentation.

       The global variable pcre_callout initially contains NULL. It can be set
       by  the  caller  to  a "callout" function, which PCRE will then call at
       specified points during a matching operation. Details are given in  the
       pcrecallout documentation.

       The global variable pcre_stack_guard initially contains NULL. It can be
       set by the caller to a function that is  called  by  PCRE  whenever  it
       starts  to  compile a parenthesized part of a pattern. When parentheses
       are nested, PCRE uses recursive function calls, which use up the system
       stack.  This  function is provided so that applications with restricted
       stacks can force a compilation error if the stack runs out.  The  func-
       tion should return zero if all is well, or non-zero to force an error.

NEWLINES

       PCRE  supports five different conventions for indicating line breaks in
       strings: a single CR (carriage return) character, a  single  LF  (line-
       feed) character, the two-character sequence CRLF, any of the three pre-
       ceding, or any Unicode newline sequence. The Unicode newline  sequences
       are  the  three just mentioned, plus the single characters VT (vertical
       tab, U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line
       separator, U+2028), and PS (paragraph separator, U+2029).

       Each  of  the first three conventions is used by at least one operating
       system as its standard newline sequence. When PCRE is built, a  default
       can  be  specified.  The default default is LF, which is the Unix stan-
       dard. When PCRE is run, the default can be overridden,  either  when  a
       pattern is compiled, or when it is matched.

       At compile time, the newline convention can be specified by the options
       argument of pcre_compile(), or it can be specified by special  text  at
       the start of the pattern itself; this overrides any other settings. See
       the pcrepattern page for details of the special character sequences.

       In the PCRE documentation the word "newline" is used to mean "the char-
       acter  or pair of characters that indicate a line break". The choice of
       newline convention affects the handling of  the  dot,  circumflex,  and
       dollar metacharacters, the handling of #-comments in /x mode, and, when
       CRLF is a recognized line ending sequence, the match position  advance-
       ment for a non-anchored pattern. There is more detail about this in the
       section on pcre_exec() options below.

       The choice of newline convention does not affect the interpretation  of
       the  \n  or  \r  escape  sequences, nor does it affect what \R matches,
       which is controlled in a similar way, but by separate options.

MULTITHREADING

       The PCRE functions can be used in  multi-threading  applications,  with
       the  proviso  that  the  memory  management  functions  pointed  to  by
       pcre_malloc, pcre_free, pcre_stack_malloc, and pcre_stack_free, and the
       callout  and  stack-checking  functions  pointed to by pcre_callout and
       pcre_stack_guard, are shared by all threads.

       The compiled form of a regular expression is not altered during  match-
       ing, so the same compiled pattern can safely be used by several threads
       at once.

       If the just-in-time optimization feature is being used, it needs  sepa-
       rate  memory stack areas for each thread. See the pcrejit documentation
       for more details.

SAVING PRECOMPILED PATTERNS FOR LATER USE

       The compiled form of a regular expression can be saved and re-used at a
       later  time,  possibly by a different program, and even on a host other
       than the one on which  it  was  compiled.  Details  are  given  in  the
       pcreprecompile  documentation,  which  includes  a  description  of the
       pcre_pattern_to_host_byte_order() function. However, compiling a  regu-
       lar  expression  with one version of PCRE for use with a different ver-
       sion is not guaranteed to work and may cause crashes.

CHECKING BUILD-TIME OPTIONS

       int pcre_config(int what, void *where);

       The function pcre_config() makes it possible for a PCRE client to  dis-
       cover which optional features have been compiled into the PCRE library.
       The pcrebuild documentation has more details about these optional  fea-
       tures.

       The  first  argument  for pcre_config() is an integer, specifying which
       information is required; the second argument is a pointer to a variable
       into  which  the  information  is placed. The returned value is zero on
       success, or the negative error code PCRE_ERROR_BADOPTION if  the  value
       in  the  first argument is not recognized. The following information is
       available:

         PCRE_CONFIG_UTF8

       The output is an integer that is set to one if UTF-8 support is  avail-
       able;  otherwise it is set to zero. This value should normally be given
       to the 8-bit version of this function, pcre_config(). If it is given to
       the  16-bit  or 32-bit version of this function, the result is PCRE_ER-
       ROR_BADOPTION.

         PCRE_CONFIG_UTF16

       The output is an integer that is set to one if UTF-16 support is avail-
       able;  otherwise it is set to zero. This value should normally be given
       to the 16-bit version of this function, pcre16_config(). If it is given
       to the 8-bit or 32-bit version of this function, the result is PCRE_ER-
       ROR_BADOPTION.

         PCRE_CONFIG_UTF32

       The output is an integer that is set to one if UTF-32 support is avail-
       able;  otherwise it is set to zero. This value should normally be given
       to the 32-bit version of this function, pcre32_config(). If it is given
       to the 8-bit or 16-bit version of this function, the result is PCRE_ER-
       ROR_BADOPTION.

         PCRE_CONFIG_UNICODE_PROPERTIES

       The output is an integer that is set to  one  if  support  for  Unicode
       character properties is available; otherwise it is set to zero.

         PCRE_CONFIG_JIT

       The output is an integer that is set to one if support for just-in-time
       compiling is available; otherwise it is set to zero.

         PCRE_CONFIG_JITTARGET

       The output is a pointer to a zero-terminated "const char *" string.  If
       JIT support is available, the string contains the name of the architec-
       ture for which the JIT compiler is configured, for example  "x86  32bit
       (little  endian + unaligned)". If JIT support is not available, the re-
       sult is NULL.

         PCRE_CONFIG_NEWLINE

       The output is an integer whose value specifies  the  default  character
       sequence  that  is recognized as meaning "newline". The values that are
       supported in ASCII/Unicode environments are: 10 for LF, 13 for CR, 3338
       for  CRLF,  -2 for ANYCRLF, and -1 for ANY. In EBCDIC environments, CR,
       ANYCRLF, and ANY yield the same values. However, the value  for  LF  is
       normally  21, though some EBCDIC environments use 37. The corresponding
       values for CRLF are 3349 and 3365. The default should  normally  corre-
       spond to the standard sequence for your operating system.

         PCRE_CONFIG_BSR

       The output is an integer whose value indicates what character sequences
       the \R escape sequence matches by default. A value of 0 means  that  \R
       matches  any  Unicode  line ending sequence; a value of 1 means that \R
       matches only CR, LF, or CRLF. The default can be overridden when a pat-
       tern is compiled or matched.

         PCRE_CONFIG_LINK_SIZE

       The output is an integer that contains the number of bytes used for in-
       ternal linkage in compiled regular expressions. For the 8-bit  library,
       the  value  can be 2, 3, or 4. For the 16-bit library, the value is ei-
       ther 2 or 4 and is still a number of bytes. For the 32-bit library, the
       value  is  either  2  or  4 and is still a number of bytes. The default
       value of 2 is sufficient for all but the most massive  patterns,  since
       it  allows  the compiled pattern to be up to 64K in size. Larger values
       allow larger regular expressions to be  compiled,  at  the  expense  of
       slower matching.

         PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

       The  output  is  an integer that contains the threshold above which the
       POSIX interface uses malloc() for output vectors. Further  details  are
       given in the pcreposix documentation.

         PCRE_CONFIG_PARENS_LIMIT

       The output is a long integer that gives the maximum depth of nesting of
       parentheses (of any kind) in a pattern. This limit is  imposed  to  cap
       the amount of system stack used when a pattern is compiled. It is spec-
       ified when PCRE is built; the default is 250. This limit does not  take
       into account the stack that may already be used by the calling applica-
       tion. For finer control over compilation stack usage,  you  can  set  a
       pointer to an external checking function in pcre_stack_guard.

         PCRE_CONFIG_MATCH_LIMIT

       The  output is a long integer that gives the default limit for the num-
       ber of internal matching function calls  in  a  pcre_exec()  execution.
       Further details are given with pcre_exec() below.

         PCRE_CONFIG_MATCH_LIMIT_RECURSION

       The output is a long integer that gives the default limit for the depth
       of  recursion  when  calling  the  internal  matching  function  in   a
       pcre_exec()  execution.  Further details are given with pcre_exec() be-
       low.

         PCRE_CONFIG_STACKRECURSE

       The output is an integer that is set to one if internal recursion  when
       running pcre_exec() is implemented by recursive function calls that use
       the stack to remember their state. This is the usual way that  PCRE  is
       compiled. The output is zero if PCRE was compiled to use blocks of data
       on the  heap  instead  of  recursive  function  calls.  In  this  case,
       pcre_stack_malloc  and  pcre_stack_free  are  called  to  manage memory
       blocks on the heap, thus avoiding the use of the stack.

COMPILING A PATTERN

       pcre *pcre_compile(const char *pattern, int options,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre *pcre_compile2(const char *pattern, int options,
            int *errorcodeptr,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       Either of the functions pcre_compile() or pcre_compile2() can be called
       to compile a pattern into an internal form. The only difference between
       the two interfaces is that pcre_compile2() has an additional  argument,
       errorcodeptr,  via  which  a  numerical  error code can be returned. To
       avoid too much repetition, we refer just to pcre_compile()  below,  but
       the information applies equally to pcre_compile2().

       The pattern is a C string terminated by a binary zero, and is passed in
       the pattern argument. A pointer to a single block of memory that is ob-
       tained via pcre_malloc is returned. This contains the compiled code and
       related data. The pcre type is defined for the returned block; this  is
       a typedef for a structure whose contents are not externally defined. It
       is up to the caller to free the memory (via pcre_free) when  it  is  no
       longer required.

       Although  the compiled code of a PCRE regex is relocatable, that is, it
       does not depend on memory location, the complete pcre data block is not
       fully  relocatable, because it may contain a copy of the tableptr argu-
       ment, which is an address (see below).

       The options argument contains various bit settings that affect the com-
       pilation.  It  should be zero if no options are required. The available
       options are described below. Some of them (in  particular,  those  that
       are  compatible with Perl, but some others as well) can also be set and
       unset from within the pattern (see  the  detailed  description  in  the
       pcrepattern  documentation). For those options that can be different in
       different parts of the pattern, the contents of  the  options  argument
       specifies their settings at the start of compilation and execution. The
       PCRE_ANCHORED, PCRE_BSR_xxx, PCRE_NEWLINE_xxx, PCRE_NO_UTF8_CHECK,  and
       PCRE_NO_START_OPTIMIZE  options  can  be set at the time of matching as
       well as at compile time.

       If errptr is NULL, pcre_compile() returns NULL immediately.  Otherwise,
       if  compilation  of  a  pattern fails, pcre_compile() returns NULL, and
       sets the variable pointed to by errptr to point to a textual error mes-
       sage. This is a static string that is part of the library. You must not
       try to free it. Normally, the offset from the start of the  pattern  to
       the data unit that was being processed when the error was discovered is
       placed in the variable pointed to by erroffset, which must not be  NULL
       (if  it is, an immediate error is given). However, for an invalid UTF-8
       or UTF-16 string, the offset is that of the  first  data  unit  of  the
       failing character.

       Some  errors are not detected until the whole pattern has been scanned;
       in these cases, the offset passed back is the length  of  the  pattern.
       Note  that  the  offset is in data units, not characters, even in a UTF
       mode. It may sometimes point into the middle of a UTF-8 or UTF-16 char-
       acter.

       If  pcre_compile2()  is  used instead of pcre_compile(), and the error-
       codeptr argument is not NULL, a non-zero error code number is  returned
       via  this argument in the event of an error. This is in addition to the
       textual error message. Error codes and messages are listed below.

       If the final argument, tableptr, is NULL, PCRE uses a  default  set  of
       character  tables  that  are built when PCRE is compiled, using the de-
       fault C locale. Otherwise, tableptr must be an address that is the  re-
       sult of a call to pcre_maketables(). This value is stored with the com-
       piled pattern, and used again by pcre_exec() and  pcre_dfa_exec()  when
       the  pattern is matched. For more discussion, see the section on locale
       support below.

       This code fragment shows a typical straightforward  call  to  pcre_com-
       pile():

         pcre *re;
         const char *error;
         int erroffset;
         re = pcre_compile(
           "^A.*Z",          /* the pattern */
           0,                /* default options */
           &error,           /* for error message */
           &erroffset,       /* for error offset */
           NULL);            /* use default character tables */

       The  following  names  for option bits are defined in the pcre.h header
       file:

         PCRE_ANCHORED

       If this bit is set, the pattern is forced to be "anchored", that is, it
       is  constrained to match only at the first matching point in the string
       that is being searched (the "subject string"). This effect can also  be
       achieved  by appropriate constructs in the pattern itself, which is the
       only way to do it in Perl.

         PCRE_AUTO_CALLOUT

       If this bit is set, pcre_compile() automatically inserts callout items,
       all  with  number  255, before each pattern item. For discussion of the
       callout facility, see the pcrecallout documentation.

         PCRE_BSR_ANYCRLF
         PCRE_BSR_UNICODE

       These options (which are mutually exclusive) control what the \R escape
       sequence  matches.  The choice is either to match only CR, LF, or CRLF,
       or to match any Unicode newline sequence. The default is specified when
       PCRE is built. It can be overridden from within the pattern, or by set-
       ting an option when a compiled pattern is matched.

         PCRE_CASELESS

       If this bit is set, letters in the pattern match both upper  and  lower
       case  letters.  It  is  equivalent  to  Perl's /i option, and it can be
       changed within a pattern by a (?i) option setting. In UTF-8 mode,  PCRE
       always  understands the concept of case for characters whose values are
       less than 128, so caseless matching is always possible. For  characters
       with  higher  values,  the concept of case is supported if PCRE is com-
       piled with Unicode property support, but not otherwise. If you want  to
       use  caseless  matching  for  characters 128 and above, you must ensure
       that PCRE is compiled with Unicode property support  as  well  as  with
       UTF-8 support.

         PCRE_DOLLAR_ENDONLY

       If  this bit is set, a dollar metacharacter in the pattern matches only
       at the end of the subject string. Without this option,  a  dollar  also
       matches  immediately before a newline at the end of the string (but not
       before any other newlines). The PCRE_DOLLAR_ENDONLY option  is  ignored
       if  PCRE_MULTILINE  is  set.   There is no equivalent to this option in
       Perl, and no way to set it within a pattern.

         PCRE_DOTALL

       If this bit is set, a dot metacharacter in the pattern matches a  char-
       acter of any value, including one that indicates a newline. However, it
       only ever matches one character, even if newlines are  coded  as  CRLF.
       Without  this option, a dot does not match when the current position is
       at a newline. This option is equivalent to Perl's /s option, and it can
       be  changed within a pattern by a (?s) option setting. A negative class
       such as [^a] always matches newline characters, independent of the set-
       ting of this option.

         PCRE_DUPNAMES

       If  this  bit is set, names used to identify capturing subpatterns need
       not be unique. This can be helpful for certain types of pattern when it
       is  known  that  only  one instance of the named subpattern can ever be
       matched. There are more details of named subpatterns  below;  see  also
       the pcrepattern documentation.

         PCRE_EXTENDED

       If  this bit is set, most white space characters in the pattern are to-
       tally ignored except when escaped or inside a character class. However,
       white  space is not allowed within sequences such as (?> that introduce
       various parenthesized subpatterns, nor within  a  numerical  quantifier
       such  as {1,3}.  However, ignorable white space is permitted between an
       item and a following quantifier and between a quantifier and a  follow-
       ing + that indicates possessiveness.

       White space did not used to include the VT character (code 11), because
       Perl did not treat this character as white space. However, Perl changed
       at  release  5.18,  so  PCRE  followed  at  release 8.34, and VT is now
       treated as white space.

       PCRE_EXTENDED also causes characters between an unescaped #  outside  a
       character  class  and  the  next  newline,  inclusive,  to  be ignored.
       PCRE_EXTENDED is equivalent to Perl's /x option, and it can be  changed
       within a pattern by a (?x) option setting.

       Which  characters  are interpreted as newlines is controlled by the op-
       tions passed to pcre_compile() or by a special sequence at the start of
       the pattern, as described in the section entitled "Newline conventions"
       in the pcrepattern documentation. Note that the end  of  this  type  of
       comment  is a literal newline sequence in the pattern; escape sequences
       that happen to represent a newline do not count.

       This option makes it possible to include  comments  inside  complicated
       patterns.   Note,  however,  that this applies only to data characters.
       White space characters may never appear within  special  character  se-
       quences  in  a pattern, for example within the sequence (?( that intro-
       duces a conditional subpattern.

         PCRE_EXTRA

       This option was invented in order to turn on  additional  functionality
       of  PCRE  that  is  incompatible with Perl, but it is currently of very
       little use. When set, any backslash in a pattern that is followed by  a
       letter  that  has  no  special  meaning causes an error, thus reserving
       these combinations for future expansion. By  default,  as  in  Perl,  a
       backslash  followed by a letter with no special meaning is treated as a
       literal. (Perl can, however, be persuaded to give an error for this, by
       running  it with the -w option.) There are at present no other features
       controlled by this option. It can also be set by a (?X) option  setting
       within a pattern.

         PCRE_FIRSTLINE

       If  this  option is set, an unanchored pattern is required to match be-
       fore or at the first newline in the subject string, though the  matched
       text may continue over the newline.

         PCRE_JAVASCRIPT_COMPAT

       If this option is set, PCRE's behaviour is changed in some ways so that
       it is compatible with JavaScript rather than Perl. The changes  are  as
       follows:

       (1)  A  lone  closing square bracket in a pattern causes a compile-time
       error, because this is illegal in JavaScript (by default it is  treated
       as a data character). Thus, the pattern AB]CD becomes illegal when this
       option is set.

       (2) At run time, a back reference to an unset subpattern group  matches
       an  empty  string (by default this causes the current matching alterna-
       tive to fail). A pattern such as (\1)(a) succeeds when this  option  is
       set  (assuming  it can find an "a" in the subject), whereas it fails by
       default, for Perl compatibility.

       (3) \U matches an upper case "U" character; by default \U causes a com-
       pile time error (Perl uses \U to upper case subsequent characters).

       (4) \u matches a lower case "u" character unless it is followed by four
       hexadecimal digits, in which case the hexadecimal  number  defines  the
       code  point  to match. By default, \u causes a compile time error (Perl
       uses it to upper case the following character).

       (5) \x matches a lower case "x" character unless it is followed by  two
       hexadecimal  digits,  in  which case the hexadecimal number defines the
       code point to match. By default, as in Perl, a  hexadecimal  number  is
       always expected after \x, but it may have zero, one, or two digits (so,
       for example, \xz matches a binary zero character followed by z).

         PCRE_MULTILINE

       By default, for the purposes of matching "start of line"  and  "end  of
       line", PCRE treats the subject string as consisting of a single line of
       characters, even if it actually contains newlines. The "start of  line"
       metacharacter (^) matches only at the start of the string, and the "end
       of line" metacharacter ($) matches only at the end of  the  string,  or
       before  a terminating newline (except when PCRE_DOLLAR_ENDONLY is set).
       Note, however, that unless PCRE_DOTALL  is  set,  the  "any  character"
       metacharacter  (.)  does not match at a newline. This behaviour (for ^,
       $, and dot) is the same as Perl.

       When PCRE_MULTILINE it is set, the "start of line" and  "end  of  line"
       constructs  match  immediately following or immediately before internal
       newlines in the subject string, respectively, as well as  at  the  very
       start  and  end.  This is equivalent to Perl's /m option, and it can be
       changed within a pattern by a (?m) option setting. If there are no new-
       lines  in  a  subject string, or no occurrences of ^ or $ in a pattern,
       setting PCRE_MULTILINE has no effect.

         PCRE_NEVER_UTF

       This option locks out interpretation of the pattern as UTF-8 (or UTF-16
       or  UTF-32  in the 16-bit and 32-bit libraries). In particular, it pre-
       vents the creator of the pattern from switching to  UTF  interpretation
       by starting the pattern with (*UTF). This may be useful in applications
       that  process  patterns  from  external  sources.  The  combination  of
       PCRE_UTF8 and PCRE_NEVER_UTF also causes an error.

         PCRE_NEWLINE_CR
         PCRE_NEWLINE_LF
         PCRE_NEWLINE_CRLF
         PCRE_NEWLINE_ANYCRLF
         PCRE_NEWLINE_ANY

       These  options  override the default newline definition that was chosen
       when PCRE was built. Setting the first or the second specifies  that  a
       newline  is  indicated  by a single character (CR or LF, respectively).
       Setting PCRE_NEWLINE_CRLF specifies that a newline is indicated by  the
       two-character  CRLF  sequence.  Setting  PCRE_NEWLINE_ANYCRLF specifies
       that any of the three preceding sequences should be recognized. Setting
       PCRE_NEWLINE_ANY  specifies that any Unicode newline sequence should be
       recognized.

       In an ASCII/Unicode environment, the Unicode newline sequences are  the
       three  just  mentioned,  plus  the  single characters VT (vertical tab,
       U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line sep-
       arator,  U+2028),  and  PS (paragraph separator, U+2029). For the 8-bit
       library, the last two are recognized only in UTF-8 mode.

       When PCRE is compiled to run in an EBCDIC (mainframe) environment,  the
       code for CR is 0x0d, the same as ASCII. However, the character code for
       LF is normally 0x15, though in some EBCDIC environments 0x25  is  used.
       Whichever  of  these  is  not LF is made to correspond to Unicode's NEL
       character. EBCDIC codes are all less than 256. For  more  details,  see
       the pcrebuild documentation.

       The  newline  setting  in  the  options  word  uses three bits that are
       treated as a number, giving eight possibilities. Currently only six are
       used  (default  plus the five values above). This means that if you set
       more than one newline option, the combination may or may not be  sensi-
       ble. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to
       PCRE_NEWLINE_CRLF, but other combinations may yield unused numbers  and
       cause an error.

       The  only  time  that a line break in a pattern is specially recognized
       when compiling is when PCRE_EXTENDED is set. CR and LF are white  space
       characters,  and so are ignored in this mode. Also, an unescaped # out-
       side a character class indicates a comment that lasts until  after  the
       next  line break sequence. In other circumstances, line break sequences
       in patterns are treated as literal data.

       The newline option that is set at compile time becomes the default that
       is used for pcre_exec() and pcre_dfa_exec(), but it can be overridden.

         PCRE_NO_AUTO_CAPTURE

       If this option is set, it disables the use of numbered capturing paren-
       theses in the pattern. Any opening parenthesis that is not followed  by
       ?  behaves as if it were followed by ?: but named parentheses can still
       be used for capturing (and they acquire  numbers  in  the  usual  way).
       There is no equivalent of this option in Perl.

         PCRE_NO_AUTO_POSSESS

       If  this option is set, it disables "auto-possessification". This is an
       optimization that, for example, turns a+b into a++b in order  to  avoid
       backtracks  into  a+ that can never be successful. However, if callouts
       are in use, auto-possessification means that some  of  them  are  never
       taken. You can set this option if you want the matching functions to do
       a full unoptimized search and run all the callouts, but  it  is  mainly
       provided for testing purposes.

         PCRE_NO_START_OPTIMIZE

       This  is an option that acts at matching time; that is, it is really an
       option for pcre_exec() or pcre_dfa_exec(). If  it  is  set  at  compile
       time,  it is remembered with the compiled pattern and assumed at match-
       ing time. This is necessary if you want to use JIT  execution,  because
       the  JIT  compiler needs to know whether or not this option is set. For
       details see the discussion of PCRE_NO_START_OPTIMIZE below.

         PCRE_UCP

       This option changes the way PCRE processes \B, \b, \D, \d, \S, \s,  \W,
       \w,  and  some  of  the POSIX character classes. By default, only ASCII
       characters are recognized, but if PCRE_UCP is set,  Unicode  properties
       are  used instead to classify characters. More details are given in the
       section on generic character types in the pcrepattern page. If you  set
       PCRE_UCP,  matching  one of the items it affects takes much longer. The
       option is available only if PCRE has been compiled with  Unicode  prop-
       erty support.

         PCRE_UNGREEDY

       This  option  inverts  the "greediness" of the quantifiers so that they
       are not greedy by default, but become greedy if followed by "?". It  is
       not  compatible  with Perl. It can also be set by a (?U) option setting
       within the pattern.

         PCRE_UTF8

       This option causes PCRE to regard both the pattern and the  subject  as
       strings of UTF-8 characters instead of single-byte strings. However, it
       is available only when PCRE is built to include UTF  support.  If  not,
       the  use  of  this option provokes an error. Details of how this option
       changes the behaviour of PCRE are given in the pcreunicode page.

         PCRE_NO_UTF8_CHECK

       When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
       automatically  checked.  There  is  a  discussion about the validity of
       UTF-8 strings in the pcreunicode page. If an invalid UTF-8 sequence  is
       found,  pcre_compile()  returns an error. If you already know that your
       pattern is valid, and you want to skip this check for performance  rea-
       sons,  you  can set the PCRE_NO_UTF8_CHECK option.  When it is set, the
       effect of passing an invalid UTF-8 string as a pattern is undefined. It
       may cause your program to crash or loop. Note that this option can also
       be passed to pcre_exec() and pcre_dfa_exec(), to suppress the  validity
       checking  of  subject strings only. If the same string is being matched
       many times, the option can be safely set for the second and  subsequent
       matchings to improve performance.

COMPILATION ERROR CODES

       The  following  table  lists  the  error  codes than may be returned by
       pcre_compile2(), along with the error messages that may be returned  by
       both  compiling  functions.  Note  that error messages are always 8-bit
       ASCII strings, even in 16-bit or 32-bit mode. As  PCRE  has  developed,
       some  error codes have fallen out of use. To avoid confusion, they have
       not been re-used.

          0  no error
          1  \ at end of pattern
          2  \c at end of pattern
          3  unrecognized character follows \
          4  numbers out of order in {} quantifier
          5  number too big in {} quantifier
          6  missing terminating ] for character class
          7  invalid escape sequence in character class
          8  range out of order in character class
          9  nothing to repeat
         10  [this code is not in use]
         11  internal error: unexpected repeat
         12  unrecognized character after (? or (?-
         13  POSIX named classes are supported only within a class
         14  missing )
         15  reference to non-existent subpattern
         16  erroffset passed as NULL
         17  unknown option bit(s) set
         18  missing ) after comment
         19  [this code is not in use]
         20  regular expression is too large
         21  failed to get memory
         22  unmatched parentheses
         23  internal error: code overflow
         24  unrecognized character after (?<
         25  lookbehind assertion is not fixed length
         26  malformed number or name after (?(
         27  conditional group contains more than two branches
         28  assertion expected after (?(
         29  (?R or (?[+-]digits must be followed by )
         30  unknown POSIX class name
         31  POSIX collating elements are not supported
         32  this version of PCRE is compiled without UTF support
         33  [this code is not in use]
         34  character value in \x{} or \o{} is too large
         35  invalid condition (?(0)
         36  \C not allowed in lookbehind assertion
         37  PCRE does not support \L, \l, \N{name}, \U, or \u
         38  number after (?C is > 255
         39  closing ) for (?C expected
         40  recursive call could loop indefinitely
         41  unrecognized character after (?P
         42  syntax error in subpattern name (missing terminator)
         43  two named subpatterns have the same name
         44  invalid UTF-8 string (specifically UTF-8)
         45  support for \P, \p, and \X has not been compiled
         46  malformed \P or \p sequence
         47  unknown property name after \P or \p
         48  subpattern name is too long (maximum 32 characters)
         49  too many named subpatterns (maximum 10000)
         50  [this code is not in use]
         51  octal value is greater than \377 in 8-bit non-UTF-8 mode
         52  internal error: overran compiling workspace
         53  internal error: previously-checked referenced subpattern
               not found
         54  DEFINE group contains more than one branch
         55  repeating a DEFINE group is not allowed
         56  inconsistent NEWLINE options
         57  \g is not followed by a braced, angle-bracketed, or quoted
               name/number or by a plain number
         58  a numbered reference must not be zero
         59  an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)
         60  (*VERB) not recognized or malformed
         61  number is too big
         62  subpattern name expected
         63  digit expected after (?+
         64  ] is an invalid data character in JavaScript compatibility mode
         65  different names for subpatterns of the same number are
               not allowed
         66  (*MARK) must have an argument
         67  this version of PCRE is not compiled with Unicode property
               support
         68  \c must be followed by an ASCII character
         69  \k is not followed by a braced, angle-bracketed, or quoted name
         70  internal error: unknown opcode in find_fixedlength()
         71  \N is not supported in a class
         72  too many forward references
         73  disallowed Unicode code point (>= 0xd800 && <= 0xdfff)
         74  invalid UTF-16 string (specifically UTF-16)
         75  name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)
         76  character value in \u.... sequence is too large
         77  invalid UTF-32 string (specifically UTF-32)
         78  setting UTF is disabled by the application
         79  non-hex character in \x{} (closing brace missing?)
         80  non-octal character in \o{} (closing brace missing?)
         81  missing opening brace after \o
         82  parentheses are too deeply nested
         83  invalid range in character class
         84  group name must start with a non-digit
         85  parentheses are too deeply nested (stack check)

       The numbers 32 and 10000 in errors 48 and 49  are  defaults;  different
       values may be used if the limits were changed when PCRE was built.

STUDYING A PATTERN

       pcre_extra *pcre_study(const pcre *code, int options,
            const char **errptr);

       If  a  compiled  pattern is going to be used several times, it is worth
       spending more time analyzing it in order to speed up the time taken for
       matching.  The function pcre_study() takes a pointer to a compiled pat-
       tern as its first argument. If studying the pattern produces additional
       information  that  will  help speed up matching, pcre_study() returns a
       pointer to a pcre_extra block, in which the study_data field points  to
       the results of the study.

       The  returned  value  from  pcre_study()  can  be  passed  directly  to
       pcre_exec() or pcre_dfa_exec(). However, a pcre_extra block  also  con-
       tains  other  fields  that can be set by the caller before the block is
       passed; these are described below in the section on matching a pattern.

       If studying the  pattern  does  not  produce  any  useful  information,
       pcre_study()  returns  NULL  by  default.  In that circumstance, if the
       calling program wants to pass any of the other fields to pcre_exec() or
       pcre_dfa_exec(),  it  must set up its own pcre_extra block. However, if
       pcre_study() is called with the PCRE_STUDY_EXTRA_NEEDED option, it  re-
       turns  a  pcre_extra block even if studying did not find any additional
       information. It may still return NULL, however, if an error  occurs  in
       pcre_study().

       The  second  argument  of  pcre_study() contains option bits. There are
       three further options in addition to PCRE_STUDY_EXTRA_NEEDED:

         PCRE_STUDY_JIT_COMPILE
         PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
         PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE

       If any of these are set, and the just-in-time  compiler  is  available,
       the  pattern  is  further compiled into machine code that executes much
       faster than the pcre_exec()  interpretive  matching  function.  If  the
       just-in-time  compiler is not available, these options are ignored. All
       undefined bits in the options argument must be zero.

       JIT compilation is a heavyweight optimization. It can  take  some  time
       for  patterns  to  be analyzed, and for one-off matches and simple pat-
       terns the benefit of faster execution might be offset by a much  slower
       study time.  Not all patterns can be optimized by the JIT compiler. For
       those that cannot be handled, matching automatically falls back to  the
       pcre_exec()  interpreter.  For more details, see the pcrejit documenta-
       tion.

       The third argument for pcre_study() is a pointer for an error  message.
       If  studying  succeeds  (even  if no data is returned), the variable it
       points to is set to NULL. Otherwise it is set to point to a textual er-
       ror  message.  This is a static string that is part of the library. You
       must not try to free it. You should test the error pointer for NULL af-
       ter calling pcre_study(), to be sure that it has run successfully.

       When  you are finished with a pattern, you can free the memory used for
       the study data by calling pcre_free_study(). This function was added to
       the  API  for  release  8.20. For earlier versions, the memory could be
       freed with pcre_free(), just like the pattern itself. This  will  still
       work  in  cases where JIT optimization is not used, but it is advisable
       to change to the new function when convenient.

       This is a typical way in which pcre_study() is used (except that  in  a
       real application there should be tests for errors):

         int rc;
         pcre *re;
         pcre_extra *sd;
         re = pcre_compile("pattern", 0, &error, &erroroffset, NULL);
         sd = pcre_study(
           re,             /* result of pcre_compile() */
           0,              /* no options */
           &error);        /* set to NULL or points to a message */
         rc = pcre_exec(   /* see below for details of pcre_exec() options */
           re, sd, "subject", 7, 0, 0, ovector, 30);
         ...
         pcre_free_study(sd);
         pcre_free(re);

       Studying a pattern does two things: first, a lower bound for the length
       of subject string that is needed to match the pattern is computed. This
       does not mean that there are any strings of that length that match, but
       it does guarantee that no shorter strings match. The value is  used  to
       avoid wasting time by trying to match strings that are shorter than the
       lower bound. You can find out the value in a calling  program  via  the
       pcre_fullinfo() function.

       Studying a pattern is also useful for non-anchored patterns that do not
       have a single fixed starting character. A bitmap of  possible  starting
       bytes  is  created. This speeds up finding a position in the subject at
       which to start matching. (In 16-bit mode, the bitmap is used for 16-bit
       values  less  than  256.  In 32-bit mode, the bitmap is used for 32-bit
       values less than 256.)

       These two optimizations apply to both pcre_exec() and  pcre_dfa_exec(),
       and  the  information  is also used by the JIT compiler.  The optimiza-
       tions can be disabled by  setting  the  PCRE_NO_START_OPTIMIZE  option.
       You  might want to do this if your pattern contains callouts or (*MARK)
       and you want to make use of these facilities in  cases  where  matching
       fails.

       PCRE_NO_START_OPTIMIZE  can be specified at either compile time or exe-
       cution  time.  However,  if   PCRE_NO_START_OPTIMIZE   is   passed   to
       pcre_exec(), (that is, after any JIT compilation has happened) JIT exe-
       cution is disabled. For JIT execution to work with  PCRE_NO_START_OPTI-
       MIZE, the option must be set at compile time.

       There is a longer discussion of PCRE_NO_START_OPTIMIZE below.

LOCALE SUPPORT

       PCRE  handles  caseless matching, and determines whether characters are
       letters, digits, or whatever, by reference to a set of tables,  indexed
       by  character  code point. When running in UTF-8 mode, or in the 16- or
       32-bit libraries, this applies only to characters with code points less
       than  256.  By  default,  higher-valued code points never match escapes
       such as \w or \d. However, if PCRE is built with Unicode property  sup-
       port,  all  characters can be tested with \p and \P, or, alternatively,
       the PCRE_UCP option can be set when a pattern is compiled; this  causes
       \w  and friends to use Unicode property support instead of the built-in
       tables.

       The use of locales with Unicode is discouraged.  If  you  are  handling
       characters  with  code  points  greater than 128, you should either use
       Unicode support, or use locales, but not try to mix the two.

       PCRE contains an internal set of tables that are used  when  the  final
       argument  of  pcre_compile() is NULL. These are sufficient for many ap-
       plications.  Normally, the internal tables recognize only ASCII charac-
       ters. However, when PCRE is built, it is possible to cause the internal
       tables to be rebuilt in the default "C" locale  of  the  local  system,
       which may cause them to be different.

       The  internal tables can always be overridden by tables supplied by the
       application that calls PCRE. These may be created in a different locale
       from  the  default.  As more and more applications change to using Uni-
       code, the need for this locale support is expected to die away.

       External tables are built by calling  the  pcre_maketables()  function,
       which  has no arguments, in the relevant locale. The result can then be
       passed to pcre_compile() as often as necessary. For example,  to  build
       and  use  tables  that are appropriate for the French locale (where ac-
       cented characters with values greater than 128 are treated as letters),
       the following code could be used:

         setlocale(LC_CTYPE, "fr_FR");
         tables = pcre_maketables();
         re = pcre_compile(..., tables);

       The  locale  name "fr_FR" is used on Linux and other Unix-like systems;
       if you are using Windows, the name for the French locale is "french".

       When pcre_maketables() runs, the tables are built in memory that is ob-
       tained  via  pcre_malloc.  It  is the caller's responsibility to ensure
       that the memory containing the tables remains available for as long  as
       it is needed.

       The pointer that is passed to pcre_compile() is saved with the compiled
       pattern, and the same tables are used via this pointer by  pcre_study()
       and  also by pcre_exec() and pcre_dfa_exec(). Thus, for any single pat-
       tern, compilation, studying and matching all happen in the same locale,
       but different patterns can be processed in different locales.

       It  is  possible to pass a table pointer or NULL (indicating the use of
       the internal tables) to pcre_exec() or pcre_dfa_exec() (see the discus-
       sion below in the section on matching a pattern). This facility is pro-
       vided for use with pre-compiled  patterns  that  have  been  saved  and
       reloaded.   Character  tables are not saved with patterns, so if a non-
       standard table was used at compile time, it must be provided again when
       the  reloaded  pattern  is  matched. Attempting to use this facility to
       match a pattern in a different locale from the one in which it was com-
       piled is likely to lead to anomalous (usually incorrect) results.

INFORMATION ABOUT A PATTERN

       int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
            int what, void *where);

       The  pcre_fullinfo() function returns information about a compiled pat-
       tern. It replaces the pcre_info() function, which was removed from  the
       library at version 8.30, after more than 10 years of obsolescence.

       The  first  argument  for  pcre_fullinfo() is a pointer to the compiled
       pattern. The second argument is the result of pcre_study(), or NULL  if
       the  pattern  was not studied. The third argument specifies which piece
       of information is required, and the fourth argument is a pointer  to  a
       variable  to  receive  the  data. The yield of the function is zero for
       success, or one of the following negative numbers:

         PCRE_ERROR_NULL           the argument code was NULL
                                   the argument where was NULL
         PCRE_ERROR_BADMAGIC       the "magic number" was not found
         PCRE_ERROR_BADENDIANNESS  the pattern was compiled with different
                                   endianness
         PCRE_ERROR_BADOPTION      the value of what was invalid
         PCRE_ERROR_UNSET          the requested field is not set

       The "magic number" is placed at the start of each compiled  pattern  as
       an  simple check against passing an arbitrary memory pointer. The endi-
       anness error can occur if a compiled pattern is saved and reloaded on a
       different  host.  Here  is a typical call of pcre_fullinfo(), to obtain
       the length of the compiled pattern:

         int rc;
         size_t length;
         rc = pcre_fullinfo(
           re,               /* result of pcre_compile() */
           sd,               /* result of pcre_study(), or NULL */
           PCRE_INFO_SIZE,   /* what is required */
           &length);         /* where to put the data */

       The possible values for the third argument are defined in  pcre.h,  and
       are as follows:

         PCRE_INFO_BACKREFMAX

       Return  the  number  of  the highest back reference in the pattern. The
       fourth argument should point to an int variable. Zero  is  returned  if
       there are no back references.

         PCRE_INFO_CAPTURECOUNT

       Return  the  number of capturing subpatterns in the pattern. The fourth
       argument should point to an int variable.

         PCRE_INFO_DEFAULT_TABLES

       Return a pointer to the internal default character tables within  PCRE.
       The  fourth  argument should point to an unsigned char * variable. This
       information call is provided for internal use by the pcre_study() func-
       tion.  External  callers  can  cause PCRE to use its internal tables by
       passing a NULL table pointer.

         PCRE_INFO_FIRSTBYTE (deprecated)

       Return information about the first data unit of any matched string, for
       a non-anchored pattern. The name of this option refers to the 8-bit li-
       brary, where data units are bytes. The fourth argument should point  to
       an  int  variable. Negative values are used for special cases. However,
       this means that when the 32-bit library is in non-UTF-32 mode, the full
       32-bit  range  of  characters cannot be returned. For this reason, this
       value   is   deprecated;    use    PCRE_INFO_FIRSTCHARACTERFLAGS    and
       PCRE_INFO_FIRSTCHARACTER instead.

       If  there  is  a  fixed first value, for example, the letter "c" from a
       pattern such as (cat|cow|coyote), its value is returned. In  the  8-bit
       library,  the  value is always less than 256. In the 16-bit library the
       value can be up to 0xffff. In the 32-bit library the value can be up to
       0x10ffff.

       If there is no fixed first value, and if either

       (a)  the pattern was compiled with the PCRE_MULTILINE option, and every
       branch starts with "^", or

       (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
       set (if it were set, the pattern would be anchored),

       -1  is  returned, indicating that the pattern matches only at the start
       of a subject string or after any newline within the  string.  Otherwise
       -2 is returned. For anchored patterns, -2 is returned.

         PCRE_INFO_FIRSTCHARACTER

       Return  the  value  of  the  first data unit (non-UTF character) of any
       matched string in the situation where PCRE_INFO_FIRSTCHARACTERFLAGS re-
       turns  1;  otherwise  return  0. The fourth argument should point to an
       uint_t variable.

       In the 8-bit library, the value is always less than 256. In the  16-bit
       library  the value can be up to 0xffff. In the 32-bit library in UTF-32
       mode the value can be up to 0x10ffff, and up to 0xffffffff when not us-
       ing UTF-32 mode.

         PCRE_INFO_FIRSTCHARACTERFLAGS

       Return information about the first data unit of any matched string, for
       a non-anchored pattern. The fourth argument  should  point  to  an  int
       variable.

       If  there  is  a  fixed first value, for example, the letter "c" from a
       pattern such as (cat|cow|coyote), 1  is  returned,  and  the  character
       value  can  be retrieved using PCRE_INFO_FIRSTCHARACTER. If there is no
       fixed first value, and if either

       (a) the pattern was compiled with the PCRE_MULTILINE option, and  every
       branch starts with "^", or

       (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
       set (if it were set, the pattern would be anchored),

       2 is returned, indicating that the pattern matches only at the start of
       a subject string or after any newline within the string. Otherwise 0 is
       returned. For anchored patterns, 0 is returned.

         PCRE_INFO_FIRSTTABLE

       If the pattern was studied, and this resulted in the construction of  a
       256-bit  table indicating a fixed set of values for the first data unit
       in any matching string, a pointer to the table is  returned.  Otherwise
       NULL  is returned. The fourth argument should point to an unsigned char
       * variable.

         PCRE_INFO_HASCRORLF

       Return 1 if the pattern contains any explicit  matches  for  CR  or  LF
       characters,  otherwise  0.  The  fourth argument should point to an int
       variable. An explicit match is either a literal CR or LF character,  or
       \r or \n.

         PCRE_INFO_JCHANGED

       Return  1  if  the (?J) or (?-J) option setting is used in the pattern,
       otherwise 0. The fourth argument should point to an int variable.  (?J)
       and (?-J) set and unset the local PCRE_DUPNAMES option, respectively.

         PCRE_INFO_JIT

       Return  1  if  the pattern was studied with one of the JIT options, and
       just-in-time compiling was successful. The fourth argument should point
       to  an  int variable. A return value of 0 means that JIT support is not
       available in this version of PCRE, or that the pattern was not  studied
       with  a JIT option, or that the JIT compiler could not handle this par-
       ticular pattern. See the pcrejit documentation for details of what  can
       and cannot be handled.

         PCRE_INFO_JITSIZE

       If  the  pattern was successfully studied with a JIT option, return the
       size of the JIT compiled code, otherwise return zero. The fourth  argu-
       ment should point to a size_t variable.

         PCRE_INFO_LASTLITERAL

       Return  the value of the rightmost literal data unit that must exist in
       any matched string, other than at its start, if such a value  has  been
       recorded. The fourth argument should point to an int variable. If there
       is no such value, -1 is returned. For anchored patterns, a last literal
       value  is recorded only if it follows something of variable length. For
       example, for the pattern /^a\d+z\d+/ the returned value is "z", but for
       /^a\dz\d/ the returned value is -1.

       Since  for  the 32-bit library using the non-UTF-32 mode, this function
       is unable to return the full 32-bit range of characters, this value  is
       deprecated;  instead  the PCRE_INFO_REQUIREDCHARFLAGS and PCRE_INFO_RE-
       QUIREDCHAR values should be used.

         PCRE_INFO_MATCH_EMPTY

       Return 1 if the pattern can match an empty  string,  otherwise  0.  The
       fourth argument should point to an int variable.

         PCRE_INFO_MATCHLIMIT

       If  the  pattern  set  a  match  limit by including an item of the form
       (*LIMIT_MATCH=nnnn) at the start, the value is returned. The fourth ar-
       gument should point to an unsigned 32-bit integer. If no such value has
       been set, the call to pcre_fullinfo() returns the error  PCRE_ERROR_UN-
       SET.

         PCRE_INFO_MAXLOOKBEHIND

       Return  the  number  of  characters  (NB not data units) in the longest
       lookbehind assertion in the pattern. This information  is  useful  when
       doing  multi-segment  matching  using  the partial matching facilities.
       Note that the simple assertions \b and \B require a one-character look-
       behind.  \A  also  registers a one-character lookbehind, though it does
       not actually inspect the previous character. This is to ensure that  at
       least one character from the old segment is retained when a new segment
       is processed. Otherwise, if there are no lookbehinds in the pattern, \A
       might match incorrectly at the start of a new segment.

         PCRE_INFO_MINLENGTH

       If  the  pattern  was studied and a minimum length for matching subject
       strings was computed, its value is  returned.  Otherwise  the  returned
       value is -1. The value is a number of characters, which in UTF mode may
       be different from the number of data units. The fourth argument  should
       point  to an int variable. A non-negative value is a lower bound to the
       length of any matching string. There may not be  any  strings  of  that
       length  that  do actually match, but every string that does match is at
       least that long.

         PCRE_INFO_NAMECOUNT
         PCRE_INFO_NAMEENTRYSIZE
         PCRE_INFO_NAMETABLE

       PCRE supports the use of named as well as numbered capturing  parenthe-
       ses.  The names are just an additional way of identifying the parenthe-
       ses, which still acquire numbers. Several convenience functions such as
       pcre_get_named_substring()  are  provided  for extracting captured sub-
       strings by name. It is also possible to extract the data  directly,  by
       first  converting  the  name to a number in order to access the correct
       pointers in the output vector (described with pcre_exec() below). To do
       the  conversion,  you  need to use the name-to-number map, which is de-
       scribed by these three values.

       The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT
       gives the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size
       of each entry; both of these return an int value. The  entry  size  de-
       pends  on the length of the longest name. PCRE_INFO_NAMETABLE returns a
       pointer to the first entry of the table. This is a pointer to  char  in
       the 8-bit library, where the first two bytes of each entry are the num-
       ber of the capturing parenthesis, most significant byte first.  In  the
       16-bit  library,  the pointer points to 16-bit data units, the first of
       which contains the parenthesis  number.  In  the  32-bit  library,  the
       pointer  points  to  32-bit data units, the first of which contains the
       parenthesis number. The rest of the entry is  the  corresponding  name,
       zero terminated.

       The  names are in alphabetical order. If (?| is used to create multiple
       groups with the same number, as described in the section  on  duplicate
       subpattern numbers in the pcrepattern page, the groups may be given the
       same name, but there is only one entry in the  table.  Different  names
       for  groups  of the same number are not permitted.  Duplicate names for
       subpatterns with different numbers are permitted, but only if PCRE_DUP-
       NAMES  is set. They appear in the table in the order in which they were
       found in the pattern. In the absence of (?| this is the  order  of  in-
       creasing  number; when (?| is used this is not necessarily the case be-
       cause later subpatterns may have lower numbers.

       As a simple example of the name/number table,  consider  the  following
       pattern after compilation by the 8-bit library (assume PCRE_EXTENDED is
       set, so white space - including newlines - is ignored):

         (?<date> (?<year>(\d\d)?\d\d) -
         (?<month>\d\d) - (?<day>\d\d) )

       There are four named subpatterns, so the table has  four  entries,  and
       each  entry  in the table is eight bytes long. The table is as follows,
       with non-printing bytes shows in hexadecimal, and undefined bytes shown
       as ??:

         00 01 d  a  t  e  00 ??
         00 05 d  a  y  00 ?? ??
         00 04 m  o  n  t  h  00
         00 02 y  e  a  r  00 ??

       When  writing  code  to  extract  data from named subpatterns using the
       name-to-number map, remember that the length of the entries  is  likely
       to be different for each compiled pattern.

         PCRE_INFO_OKPARTIAL

       Return  1  if  the  pattern  can  be  used  for  partial  matching with
       pcre_exec(), otherwise 0. The fourth argument should point  to  an  int
       variable.  From  release  8.00,  this always returns 1, because the re-
       strictions that  previously  applied  to  partial  matching  have  been
       lifted.  The  pcrepartial documentation gives details of partial match-
       ing.

         PCRE_INFO_OPTIONS

       Return a copy of the options with which the pattern was  compiled.  The
       fourth  argument  should  point to an unsigned long int variable. These
       option bits are those specified in the call to pcre_compile(), modified
       by any top-level option settings at the start of the pattern itself. In
       other words, they are the options that will be in force  when  matching
       starts.  For  example, if the pattern /(?im)abc(?-i)d/ is compiled with
       the PCRE_EXTENDED option, the result is PCRE_CASELESS,  PCRE_MULTILINE,
       and PCRE_EXTENDED.

       A pattern is automatically anchored by PCRE if all of its top-level al-
       ternatives begin with one of the following:

         ^     unless PCRE_MULTILINE is set
         \A    always
         \G    always
         .*    if PCRE_DOTALL is set and there are no back
                 references to the subpattern in which .* appears

       For such patterns, the PCRE_ANCHORED bit is set in the options returned
       by pcre_fullinfo().

         PCRE_INFO_RECURSIONLIMIT

       If  the  pattern set a recursion limit by including an item of the form
       (*LIMIT_RECURSION=nnnn) at the start, the value is returned. The fourth
       argument  should  point to an unsigned 32-bit integer. If no such value
       has been set, the call to pcre_fullinfo() returns  the  error  PCRE_ER-
       ROR_UNSET.

         PCRE_INFO_SIZE

       Return  the  size  of  the compiled pattern in bytes (for all three li-
       braries). The fourth argument should point to a size_t  variable.  This
       value  does not include the size of the pcre structure that is returned
       by pcre_compile().  The  value  that  is  passed  as  the  argument  to
       pcre_malloc()  when  pcre_compile() is getting memory in which to place
       the compiled data is the value returned by this option plus the size of
       the  pcre  structure. Studying a compiled pattern, with or without JIT,
       does not alter the value returned by this option.

         PCRE_INFO_STUDYSIZE

       Return the size in bytes (for all three libraries) of  the  data  block
       pointed to by the study_data field in a pcre_extra block. If pcre_extra
       is NULL, or there is no study data, zero is returned. The fourth  argu-
       ment  should point to a size_t variable. The study_data field is set by
       pcre_study() to record information that will speed up matching (see the
       section  entitled  "Studying  a  pattern"  above).  The  format  of the
       study_data block is private, but its length is made available via  this
       option  so  that  it  can be saved and restored (see the pcreprecompile
       documentation for details).

         PCRE_INFO_REQUIREDCHARFLAGS

       Returns 1 if there is a rightmost literal data unit that must exist  in
       any matched string, other than at its start. The fourth argument should
       point to an int variable. If there is no such value, 0 is returned.  If
       returning  1,  the  character  value  itself  can  be  retrieved  using
       PCRE_INFO_REQUIREDCHAR.

       For anchored patterns, a last literal value is recorded only if it fol-
       lows  something  of  variable  length.  For  example,  for  the pattern
       /^a\d+z\d+/ the returned value 1 (with "z" returned from  PCRE_INFO_RE-
       QUIREDCHAR), but for /^a\dz\d/ the returned value is 0.

         PCRE_INFO_REQUIREDCHAR

       Return  the value of the rightmost literal data unit that must exist in
       any matched string, other than at its start, if such a value  has  been
       recorded.  The fourth argument should point to an uint32_t variable. If
       there is no such value, 0 is returned.

REFERENCE COUNTS

       int pcre_refcount(pcre *code, int adjust);

       The pcre_refcount() function is used to maintain a reference  count  in
       the data block that contains a compiled pattern. It is provided for the
       benefit of applications that  operate  in  an  object-oriented  manner,
       where different parts of the application may be using the same compiled
       pattern, but you want to free the block when they are all done.

       When a pattern is compiled, the reference count field is initialized to
       zero.   It is changed only by calling this function, whose action is to
       add the adjust value (which may be positive or  negative)  to  it.  The
       yield of the function is the new value. However, the value of the count
       is constrained to lie between 0 and 65535, inclusive. If the new  value
       is outside these limits, it is forced to the appropriate limit value.

       Except  when it is zero, the reference count is not correctly preserved
       if a pattern is compiled on one host and then  transferred  to  a  host
       whose byte-order is different. (This seems a highly unlikely scenario.)

MATCHING A PATTERN: THE TRADITIONAL FUNCTION

       int pcre_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize);

       The  function pcre_exec() is called to match a subject string against a
       compiled pattern, which is passed in the code argument. If the  pattern
       was  studied, the result of the study should be passed in the extra ar-
       gument. You can call pcre_exec() with the same code and extra arguments
       as  many times as you like, in order to match different subject strings
       with the same pattern.

       This function is the main matching facility of the library, and it  op-
       erates  in  a Perl-like manner. For specialist use there is also an al-
       ternative matching function, which is described below  in  the  section
       about the pcre_dfa_exec() function.

       In  most applications, the pattern will have been compiled (and option-
       ally studied) in the same process that calls pcre_exec().  However,  it
       is possible to save compiled patterns and study data, and then use them
       later in different processes, possibly even on different hosts.  For  a
       discussion about this, see the pcreprecompile documentation.

       Here is an example of a simple call to pcre_exec():

         int rc;
         int ovector[30];
         rc = pcre_exec(
           re,             /* result of pcre_compile() */
           NULL,           /* we didn't study the pattern */
           "some string",  /* the subject string */
           11,             /* the length of the subject string */
           0,              /* start at offset 0 in the subject */
           0,              /* default options */
           ovector,        /* vector of integers for substring information */
           30);            /* number of elements (NOT size in bytes) */

   Extra data for pcre_exec()

       If  the  extra argument is not NULL, it must point to a pcre_extra data
       block. The pcre_study() function returns such a block (when it  doesn't
       return  NULL), but you can also create one for yourself, and pass addi-
       tional information in it. The pcre_extra block contains  the  following
       fields (not necessarily in this order):

         unsigned long int flags;
         void *study_data;
         void *executable_jit;
         unsigned long int match_limit;
         unsigned long int match_limit_recursion;
         void *callout_data;
         const unsigned char *tables;
         unsigned char **mark;

       In  the  16-bit  version  of  this  structure,  the mark field has type
       "PCRE_UCHAR16 **".

       In the 32-bit version of  this  structure,  the  mark  field  has  type
       "PCRE_UCHAR32 **".

       The  flags  field is used to specify which of the other fields are set.
       The flag bits are:

         PCRE_EXTRA_CALLOUT_DATA
         PCRE_EXTRA_EXECUTABLE_JIT
         PCRE_EXTRA_MARK
         PCRE_EXTRA_MATCH_LIMIT
         PCRE_EXTRA_MATCH_LIMIT_RECURSION
         PCRE_EXTRA_STUDY_DATA
         PCRE_EXTRA_TABLES

       Other flag bits should be set to zero. The study_data field  and  some-
       times  the executable_jit field are set in the pcre_extra block that is
       returned by pcre_study(), together with the appropriate flag bits.  You
       should  not set these yourself, but you may add to the block by setting
       other fields and their corresponding flag bits.

       The match_limit field provides a means of preventing PCRE from using up
       a  vast amount of resources when running patterns that are not going to
       match, but which have a very large number  of  possibilities  in  their
       search  trees. The classic example is a pattern that uses nested unlim-
       ited repeats.

       Internally, pcre_exec() uses a function called match(), which it  calls
       repeatedly (sometimes recursively). The limit set by match_limit is im-
       posed on the number of times this function is called  during  a  match,
       which  has  the  effect of limiting the amount of backtracking that can
       take place. For patterns that are not anchored, the count restarts from
       zero for each position in the subject string.

       When pcre_exec() is called with a pattern that was successfully studied
       with a JIT option, the way that the matching is  executed  is  entirely
       different.  However, there is still the possibility of runaway matching
       that goes on for a very long time, and so the match_limit value is also
       used in this case (but in a different way) to limit how long the match-
       ing can continue.

       The default value for the limit can be set when PCRE is built; the  de-
       fault  default  is  10  million, which handles all but the most extreme
       cases. You can override the default  by  suppling  pcre_exec()  with  a
       pcre_extra   block   in   which   match_limit   is  set,  and  PCRE_EX-
       TRA_MATCH_LIMIT is set in the flags field. If the  limit  is  exceeded,
       pcre_exec() returns PCRE_ERROR_MATCHLIMIT.

       A  value  for  the  match  limit may also be supplied by an item at the
       start of a pattern of the form

         (*LIMIT_MATCH=d)

       where d is a decimal number. However, such a setting is ignored  unless
       d  is  less  than  the limit set by the caller of pcre_exec() or, if no
       such limit is set, less than the default.

       The match_limit_recursion field is similar to match_limit, but  instead
       of limiting the total number of times that match() is called, it limits
       the depth of recursion. The recursion depth is a  smaller  number  than
       the  total number of calls, because not all calls to match() are recur-
       sive.  This limit is of use only if it is set smaller than match_limit.

       Limiting the recursion depth limits the amount of  machine  stack  that
       can  be used, or, when PCRE has been compiled to use memory on the heap
       instead of the stack, the amount of heap memory that can be used.  This
       limit  is not relevant, and is ignored, when matching is done using JIT
       compiled code.

       The default value for match_limit_recursion can be  set  when  PCRE  is
       built;  the  default  default  is  the  same  value  as the default for
       match_limit. You can override the default by suppling pcre_exec()  with
       a  pcre_extra block in which match_limit_recursion is set, and PCRE_EX-
       TRA_MATCH_LIMIT_RECURSION is set in the flags field. If  the  limit  is
       exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.

       A  value for the recursion limit may also be supplied by an item at the
       start of a pattern of the form

         (*LIMIT_RECURSION=d)

       where d is a decimal number. However, such a setting is ignored  unless
       d  is  less  than  the limit set by the caller of pcre_exec() or, if no
       such limit is set, less than the default.

       The callout_data field is used in conjunction with the  "callout"  fea-
       ture, and is described in the pcrecallout documentation.

       The  tables field is provided for use with patterns that have been pre-
       compiled using custom character tables, saved to disc or elsewhere, and
       then  reloaded,  because the tables that were used to compile a pattern
       are not saved with it. See the pcreprecompile documentation for a  dis-
       cussion  of  saving  compiled patterns for later use. If NULL is passed
       using this mechanism, it forces PCRE's internal tables to be used.

       Warning: The tables that pcre_exec() uses must be  the  same  as  those
       that  were used when the pattern was compiled. If this is not the case,
       the behaviour of pcre_exec() is undefined. Therefore, when a pattern is
       compiled  and  matched  in the same process, this field should never be
       set. In this (the most common) case, the correct table pointer is auto-
       matically  passed  with  the  compiled  pattern  from pcre_compile() to
       pcre_exec().

       If PCRE_EXTRA_MARK is set in the flags field, the mark  field  must  be
       set  to point to a suitable variable. If the pattern contains any back-
       tracking control verbs such as (*MARK:NAME), and the execution ends  up
       with  a  name  to  pass back, a pointer to the name string (zero termi-
       nated) is placed in the variable pointed to  by  the  mark  field.  The
       names  are  within  the  compiled pattern; if you wish to retain such a
       name you must copy it before freeing the memory of a compiled  pattern.
       If  there  is no name to pass back, the variable pointed to by the mark
       field is set to NULL. For details of the  backtracking  control  verbs,
       see the section entitled "Backtracking control" in the pcrepattern doc-
       umentation.

   Option bits for pcre_exec()

       The unused bits of the options argument for pcre_exec() must  be  zero.
       The  only  bits  that  may  be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
       PCRE_NOTBOL,   PCRE_NOTEOL,    PCRE_NOTEMPTY,    PCRE_NOTEMPTY_ATSTART,
       PCRE_NO_START_OPTIMIZE,   PCRE_NO_UTF8_CHECK,   PCRE_PARTIAL_HARD,  and
       PCRE_PARTIAL_SOFT.

       If the pattern was successfully studied with one  of  the  just-in-time
       (JIT) compile options, the only supported options for JIT execution are
       PCRE_NO_UTF8_CHECK,    PCRE_NOTBOL,     PCRE_NOTEOL,     PCRE_NOTEMPTY,
       PCRE_NOTEMPTY_ATSTART,  PCRE_PARTIAL_HARD, and PCRE_PARTIAL_SOFT. If an
       unsupported option is used, JIT execution is disabled  and  the  normal
       interpretive code in pcre_exec() is run.

         PCRE_ANCHORED

       The  PCRE_ANCHORED  option  limits pcre_exec() to matching at the first
       matching position. If a pattern was  compiled  with  PCRE_ANCHORED,  or
       turned  out to be anchored by virtue of its contents, it cannot be made
       unachored at matching time.

         PCRE_BSR_ANYCRLF
         PCRE_BSR_UNICODE

       These options (which are mutually exclusive) control what the \R escape
       sequence  matches.  The choice is either to match only CR, LF, or CRLF,
       or to match any Unicode newline sequence. These  options  override  the
       choice that was made or defaulted when the pattern was compiled.

         PCRE_NEWLINE_CR
         PCRE_NEWLINE_LF
         PCRE_NEWLINE_CRLF
         PCRE_NEWLINE_ANYCRLF
         PCRE_NEWLINE_ANY

       These  options  override  the newline definition that was chosen or de-
       faulted when the pattern was compiled. For details, see the description
       of  pcre_compile()  above.  During matching, the newline choice affects
       the behaviour of the dot, circumflex, and dollar metacharacters. It may
       also alter the way the match position is advanced after a match failure
       for an unanchored pattern.

       When PCRE_NEWLINE_CRLF, PCRE_NEWLINE_ANYCRLF,  or  PCRE_NEWLINE_ANY  is
       set,  and a match attempt for an unanchored pattern fails when the cur-
       rent position is at a CRLF sequence, and the pattern  contains  no  ex-
       plicit  matches for CR or LF characters, the match position is advanced
       by two characters instead of one, in other words, to after the CRLF.

       The above rule is a compromise that makes the most common cases work as
       expected.  For  example, if the pattern is .+A (and the PCRE_DOTALL op-
       tion is not set), it does not match the string "\r\nA"  because,  after
       failing  at the start, it skips both the CR and the LF before retrying.
       However, the pattern [\r\n]A does match that string,  because  it  con-
       tains an explicit CR or LF reference, and so advances only by one char-
       acter after the first failure.

       An explicit match for CR of LF is either a literal appearance of one of
       those  characters,  or  one  of the \r or \n escape sequences. Implicit
       matches such as [^X] do not count, nor does \s (which includes  CR  and
       LF in the characters that it matches).

       Notwithstanding  the above, anomalous effects may still occur when CRLF
       is a valid newline sequence and explicit \r or \n escapes appear in the
       pattern.

         PCRE_NOTBOL

       This option specifies that first character of the subject string is not
       the beginning of a line, so the  circumflex  metacharacter  should  not
       match  before it. Setting this without PCRE_MULTILINE (at compile time)
       causes circumflex never to match. This option affects only  the  behav-
       iour of the circumflex metacharacter. It does not affect \A.

         PCRE_NOTEOL

       This option specifies that the end of the subject string is not the end
       of a line, so the dollar metacharacter should not match it nor  (except
       in  multiline mode) a newline immediately before it. Setting this with-
       out PCRE_MULTILINE (at compile time) causes dollar never to match. This
       option  affects only the behaviour of the dollar metacharacter. It does
       not affect \Z or \z.

         PCRE_NOTEMPTY

       An empty string is not considered to be a valid match if this option is
       set.  If  there are alternatives in the pattern, they are tried. If all
       the alternatives match the empty string, the entire  match  fails.  For
       example, if the pattern

         a?b?

       is  applied  to  a  string not beginning with "a" or "b", it matches an
       empty string at the start of the subject. With PCRE_NOTEMPTY set,  this
       match is not valid, so PCRE searches further into the string for occur-
       rences of "a" or "b".

         PCRE_NOTEMPTY_ATSTART

       This is like PCRE_NOTEMPTY, except that an empty string match  that  is
       not  at  the  start  of the subject is permitted. If the pattern is an-
       chored, such a match can occur only if the pattern contains \K.

       Perl has no direct equivalent  of  PCRE_NOTEMPTY  or  PCRE_NOTEMPTY_AT-
       START,  but it does make a special case of a pattern match of the empty
       string within its split() function, and when using the /g modifier.  It
       is possible to emulate Perl's behaviour after matching a null string by
       first trying the match again at the same offset with  PCRE_NOTEMPTY_AT-
       START  and  PCRE_ANCHORED,  and  then  if  that fails, by advancing the
       starting offset (see below) and trying an ordinary match  again.  There
       is  some  code  that demonstrates how to do this in the pcredemo sample
       program. In the most general case, you have to check to see if the new-
       line  convention  recognizes CRLF as a newline, and if so, and the cur-
       rent character is CR followed by LF, advance the starting offset by two
       characters instead of one.

         PCRE_NO_START_OPTIMIZE

       There  are a number of optimizations that pcre_exec() uses at the start
       of a match, in order to speed up the process. For  example,  if  it  is
       known that an unanchored match must start with a specific character, it
       searches the subject for that character, and fails  immediately  if  it
       cannot  find  it,  without actually running the main matching function.
       This means that a special item such as (*COMMIT) at the start of a pat-
       tern  is  not  considered until after a suitable starting point for the
       match has been found. Also, when callouts or (*MARK) items are in  use,
       these "start-up" optimizations can cause them to be skipped if the pat-
       tern is never actually used. The start-up optimizations are in effect a
       pre-scan of the subject that takes place before the pattern is run.

       The  PCRE_NO_START_OPTIMIZE option disables the start-up optimizations,
       possibly causing performance to suffer,  but  ensuring  that  in  cases
       where  the  result is "no match", the callouts do occur, and that items
       such as (*COMMIT) and (*MARK) are considered at every possible starting
       position  in  the  subject  string. If PCRE_NO_START_OPTIMIZE is set at
       compile time,  it  cannot  be  unset  at  matching  time.  The  use  of
       PCRE_NO_START_OPTIMIZE  at  matching  time  (that  is,  passing  it  to
       pcre_exec()) disables JIT execution; in this situation, matching is al-
       ways done using interpretively.

       Setting PCRE_NO_START_OPTIMIZE can change the outcome of a matching op-
       eration.  Consider the pattern

         (*COMMIT)ABC

       When this is compiled, PCRE records the fact that a  match  must  start
       with  the  character  "A".  Suppose the subject string is "DEFABC". The
       start-up optimization scans along the subject, finds "A" and  runs  the
       first  match attempt from there. The (*COMMIT) item means that the pat-
       tern must match the current starting position, which in this  case,  it
       does.  However,  if  the  same match is run with PCRE_NO_START_OPTIMIZE
       set, the initial scan along the subject string  does  not  happen.  The
       first  match  attempt  is  run  starting  from "D" and when this fails,
       (*COMMIT) prevents any further matches being tried, so the overall  re-
       sult  is "no match". If the pattern is studied, more start-up optimiza-
       tions may be used. For example, a minimum length for the subject may be
       recorded. Consider the pattern

         (*MARK:A)(X|Y)

       The  minimum  length  for  a  match is one character. If the subject is
       "ABC", there will be attempts to match "ABC", "BC", "C", and  then  fi-
       nally  an  empty  string.  If the pattern is studied, the final attempt
       does not take place, because PCRE knows that the subject is too  short,
       and  so  the  (*MARK) is never encountered.  In this case, studying the
       pattern does not affect the overall match result, which  is  still  "no
       match", but it does affect the auxiliary information that is returned.

         PCRE_NO_UTF8_CHECK

       When PCRE_UTF8 is set at compile time, the validity of the subject as a
       UTF-8 string is automatically checked when pcre_exec() is  subsequently
       called.  The entire string is checked before any other processing takes
       place. The value of startoffset is  also  checked  to  ensure  that  it
       points  to  the start of a UTF-8 character. There is a discussion about
       the validity of UTF-8 strings in the pcreunicode page.  If  an  invalid
       sequence  of  bytes  is  found,  pcre_exec() returns the error PCRE_ER-
       ROR_BADUTF8 or, if PCRE_PARTIAL_HARD is set and the problem is a  trun-
       cated  character  at  the  end of the subject, PCRE_ERROR_SHORTUTF8. In
       both cases, information about the precise nature of the error may  also
       be  returned (see the descriptions of these errors in the section enti-
       tled Error return values from pcre_exec() below).  If startoffset  con-
       tains a value that does not point to the start of a UTF-8 character (or
       to the end of the subject), PCRE_ERROR_BADUTF8_OFFSET is returned.

       If you already know that your subject is valid, and you  want  to  skip
       these    checks    for   performance   reasons,   you   can   set   the
       PCRE_NO_UTF8_CHECK option when calling pcre_exec(). You might  want  to
       do  this  for the second and subsequent calls to pcre_exec() if you are
       making repeated calls to find all  the  matches  in  a  single  subject
       string.  However,  you  should  be  sure  that the value of startoffset
       points to the start of a character (or the end of  the  subject).  When
       PCRE_NO_UTF8_CHECK is set, the effect of passing an invalid string as a
       subject or an invalid value of startoffset is undefined.  Your  program
       may crash or loop.

         PCRE_PARTIAL_HARD
         PCRE_PARTIAL_SOFT

       These  options turn on the partial matching feature. For backwards com-
       patibility, PCRE_PARTIAL is a synonym for PCRE_PARTIAL_SOFT. A  partial
       match  occurs if the end of the subject string is reached successfully,
       but there are not enough subject characters to complete the  match.  If
       this happens when PCRE_PARTIAL_SOFT (but not PCRE_PARTIAL_HARD) is set,
       matching continues by testing any remaining alternatives.  Only  if  no
       complete  match  can be found is PCRE_ERROR_PARTIAL returned instead of
       PCRE_ERROR_NOMATCH. In other words,  PCRE_PARTIAL_SOFT  says  that  the
       caller  is  prepared to handle a partial match, but only if no complete
       match can be found.

       If PCRE_PARTIAL_HARD is set, it overrides  PCRE_PARTIAL_SOFT.  In  this
       case,  if  a  partial  match  is found, pcre_exec() immediately returns
       PCRE_ERROR_PARTIAL, without  considering  any  other  alternatives.  In
       other  words, when PCRE_PARTIAL_HARD is set, a partial match is consid-
       ered to be more important that an alternative complete match.

       In both cases, the portion of the string that was  inspected  when  the
       partial match was found is set as the first matching string. There is a
       more detailed discussion of partial and  multi-segment  matching,  with
       examples, in the pcrepartial documentation.

   The string to be matched by pcre_exec()

       The  subject string is passed to pcre_exec() as a pointer in subject, a
       length in length, and a starting offset in startoffset. The  units  for
       length  and  startoffset  are  bytes for the 8-bit library, 16-bit data
       items for the 16-bit library, and 32-bit data items for the 32-bit  li-
       brary.

       If  startoffset  is negative or greater than the length of the subject,
       pcre_exec() returns PCRE_ERROR_BADOFFSET. When the starting  offset  is
       zero,  the  search  for a match starts at the beginning of the subject,
       and this is by far the most common case. In UTF-8 or UTF-16  mode,  the
       offset  must  point to the start of a character, or the end of the sub-
       ject (in UTF-32 mode, one data unit equals one character, so  all  off-
       sets are valid). Unlike the pattern string, the subject may contain bi-
       nary zeroes.

       A non-zero starting offset is useful when searching for  another  match
       in  the same subject by calling pcre_exec() again after a previous suc-
       cess.  Setting startoffset differs from just passing over  a  shortened
       string  and  setting  PCRE_NOTBOL  in the case of a pattern that begins
       with any kind of lookbehind. For example, consider the pattern

         \Biss\B

       which finds occurrences of "iss" in the middle of  words.  (\B  matches
       only  if  the  current position in the subject is not a word boundary.)
       When applied to the string "Mississipi" the first call  to  pcre_exec()
       finds  the  first  occurrence. If pcre_exec() is called again with just
       the remainder of the subject, namely "issipi", it does not  match,  be-
       cause  \B  is always false at the start of the subject, which is deemed
       to be a word boundary. However, if pcre_exec()  is  passed  the  entire
       string again, but with startoffset set to 4, it finds the second occur-
       rence of "iss" because it is able to look behind the starting point  to
       discover that it is preceded by a letter.

       Finding  all  the  matches  in a subject is tricky when the pattern can
       match an empty string. It is possible to emulate Perl's /g behaviour by
       first   trying   the   match   again  at  the  same  offset,  with  the
       PCRE_NOTEMPTY_ATSTART and  PCRE_ANCHORED  options,  and  then  if  that
       fails,  advancing  the  starting  offset  and  trying an ordinary match
       again. There is some code that demonstrates how to do this in the pcre-
       demo sample program. In the most general case, you have to check to see
       if the newline convention recognizes CRLF as a newline, and if so,  and
       the current character is CR followed by LF, advance the starting offset
       by two characters instead of one.

       If a non-zero starting offset is passed when the pattern  is  anchored,
       one attempt to match at the given offset is made. This can only succeed
       if the pattern does not require the match to be at  the  start  of  the
       subject.

   How pcre_exec() returns captured substrings

       In  general, a pattern matches a certain portion of the subject, and in
       addition, further substrings from the subject  may  be  picked  out  by
       parts  of  the  pattern.  Following the usage in Jeffrey Friedl's book,
       this is called "capturing" in what follows, and the  phrase  "capturing
       subpattern"  is  used for a fragment of a pattern that picks out a sub-
       string. PCRE supports several other kinds of  parenthesized  subpattern
       that do not cause substrings to be captured.

       Captured substrings are returned to the caller via a vector of integers
       whose address is passed in ovector. The number of elements in the  vec-
       tor  is  passed in ovecsize, which must be a non-negative number. Note:
       this argument is NOT the size of ovector in bytes.

       The first two-thirds of the vector is used to pass back  captured  sub-
       strings,  each  substring using a pair of integers. The remaining third
       of the vector is used as workspace by pcre_exec() while  matching  cap-
       turing  subpatterns, and is not available for passing back information.
       The number passed in ovecsize should always be a multiple of three.  If
       it is not, it is rounded down.

       When  a  match  is successful, information about captured substrings is
       returned in pairs of integers, starting at the  beginning  of  ovector,
       and  continuing  up  to two-thirds of its length at the most. The first
       element of each pair is set to the offset of the first character  in  a
       substring,  and  the second is set to the offset of the first character
       after the end of a substring. These values are always  data  unit  off-
       sets,  even  in  UTF  mode. They are byte offsets in the 8-bit library,
       16-bit data item offsets in the 16-bit library, and  32-bit  data  item
       offsets in the 32-bit library. Note: they are not character counts.

       The  first  pair  of  integers, ovector[0] and ovector[1], identify the
       portion of the subject string matched by the entire pattern.  The  next
       pair  is  used for the first capturing subpattern, and so on. The value
       returned by pcre_exec() is one more than the highest numbered pair that
       has  been  set.  For example, if two substrings have been captured, the
       returned value is 3. If there are no capturing subpatterns, the  return
       value from a successful match is 1, indicating that just the first pair
       of offsets has been set.

       If a capturing subpattern is matched repeatedly, it is the last portion
       of the string that it matched that is returned.

       If  the vector is too small to hold all the captured substring offsets,
       it is used as far as possible (up to two-thirds of its length), and the
       function  returns a value of zero. If neither the actual string matched
       nor any captured substrings are of interest, pcre_exec() may be  called
       with  ovector passed as NULL and ovecsize as zero. However, if the pat-
       tern contains back references and the ovector is not big enough to  re-
       member  the  related  substrings, PCRE has to get additional memory for
       use during matching. Thus it is usually advisable to supply an  ovector
       of reasonable size.

       There  are  some  cases where zero is returned (indicating vector over-
       flow) when in fact the vector is exactly the right size for  the  final
       match. For example, consider the pattern

         (a)(?:(b)c|bd)

       If  a  vector of 6 elements (allowing for only 1 captured substring) is
       given with subject string "abd", pcre_exec() will try to set the second
       captured string, thereby recording a vector overflow, before failing to
       match "c" and backing up to try the second alternative.  The  zero  re-
       turn, however, does correctly indicate that the maximum number of slots
       (namely 2) have been filled. In similar cases where there is  temporary
       overflow,  but the final number of used slots is actually less than the
       maximum, a non-zero value is returned.

       The pcre_fullinfo() function can be used to find out how many capturing
       subpatterns  there  are  in  a  compiled pattern. The smallest size for
       ovector that will allow for n captured substrings, in addition  to  the
       offsets of the substring matched by the whole pattern, is (n+1)*3.

       It  is  possible for capturing subpattern number n+1 to match some part
       of the subject when subpattern n has not been used at all. For example,
       if  the string "abc" is matched against the pattern (a|(z))(bc) the re-
       turn from the function is 4, and subpatterns 1 and 3 are matched, but 2
       is  not. When this happens, both values in the offset pairs correspond-
       ing to unused subpatterns are set to -1.

       Offset values that correspond to unused subpatterns at the end  of  the
       expression  are  also  set  to  -1. For example, if the string "abc" is
       matched against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are  not
       matched.  The  return  from the function is 2, because the highest used
       capturing subpattern number is 1, and the offsets for  for  the  second
       and  third  capturing subpatterns (assuming the vector is large enough,
       of course) are set to -1.

       Note: Elements in the first two-thirds of ovector that  do  not  corre-
       spond  to  capturing parentheses in the pattern are never changed. That
       is, if a pattern contains n capturing parentheses, no more  than  ovec-
       tor[0]  to ovector[2n+1] are set by pcre_exec(). The other elements (in
       the first two-thirds) retain whatever values they previously had.

       Some convenience functions are provided  for  extracting  the  captured
       substrings as separate strings. These are described below.

   Error return values from pcre_exec()

       If  pcre_exec()  fails, it returns a negative number. The following are
       defined in the header file:

         PCRE_ERROR_NOMATCH        (-1)

       The subject string did not match the pattern.

         PCRE_ERROR_NULL           (-2)

       Either code or subject was passed as NULL,  or  ovector  was  NULL  and
       ovecsize was not zero.

         PCRE_ERROR_BADOPTION      (-3)

       An unrecognized bit was set in the options argument.

         PCRE_ERROR_BADMAGIC       (-4)

       PCRE  stores a 4-byte "magic number" at the start of the compiled code,
       to catch the case when it is passed a junk pointer and to detect when a
       pattern that was compiled in an environment of one endianness is run in
       an environment with the other endianness. This is the error  that  PCRE
       gives when the magic number is not present.

         PCRE_ERROR_UNKNOWN_OPCODE (-5)

       While running the pattern match, an unknown item was encountered in the
       compiled pattern. This error could be caused by a bug  in  PCRE  or  by
       overwriting of the compiled pattern.

         PCRE_ERROR_NOMEMORY       (-6)

       If  a  pattern contains back references, but the ovector that is passed
       to pcre_exec() is not big enough to remember the referenced substrings,
       PCRE  gets  a  block of memory at the start of matching to use for this
       purpose. If the call via pcre_malloc() fails, this error is given.  The
       memory is automatically freed at the end of matching.

       This  error  is also given if pcre_stack_malloc() fails in pcre_exec().
       This can happen only when PCRE has been compiled with  --disable-stack-
       for-recursion.

         PCRE_ERROR_NOSUBSTRING    (-7)

       This  error is used by the pcre_copy_substring(), pcre_get_substring(),
       and pcre_get_substring_list() functions (see below). It  is  never  re-
       turned by pcre_exec().

         PCRE_ERROR_MATCHLIMIT     (-8)

       The  backtracking  limit,  as  specified  by the match_limit field in a
       pcre_extra structure (or defaulted) was reached.  See  the  description
       above.

         PCRE_ERROR_CALLOUT        (-9)

       This error is never generated by pcre_exec() itself. It is provided for
       use by callout functions that want to yield a distinctive  error  code.
       See the pcrecallout documentation for details.

         PCRE_ERROR_BADUTF8        (-10)

       A  string  that contains an invalid UTF-8 byte sequence was passed as a
       subject, and the PCRE_NO_UTF8_CHECK option was not set. If the size  of
       the  output  vector  (ovecsize)  is  at least 2, the byte offset to the
       start of the the invalid UTF-8 character is placed in  the  first  ele-
       ment,  and  a  reason  code is placed in the second element. The reason
       codes are listed in the following section.  For backward compatibility,
       if  PCRE_PARTIAL_HARD is set and the problem is a truncated UTF-8 char-
       acter at the end of  the  subject  (reason  codes  1  to  5),  PCRE_ER-
       ROR_SHORTUTF8 is returned instead of PCRE_ERROR_BADUTF8.

         PCRE_ERROR_BADUTF8_OFFSET (-11)

       The  UTF-8  byte  sequence that was passed as a subject was checked and
       found to be valid (the PCRE_NO_UTF8_CHECK option was not set), but  the
       value  of startoffset did not point to the beginning of a UTF-8 charac-
       ter or the end of the subject.

         PCRE_ERROR_PARTIAL        (-12)

       The subject string did not match, but it did match partially.  See  the
       pcrepartial documentation for details of partial matching.

         PCRE_ERROR_BADPARTIAL     (-13)

       This  code  is  no  longer  in  use.  It was formerly returned when the
       PCRE_PARTIAL option was used with a compiled pattern  containing  items
       that  were  not  supported  for partial matching. From release 8.00 on-
       wards, there are no restrictions on partial matching.

         PCRE_ERROR_INTERNAL       (-14)

       An unexpected internal error has occurred. This error could  be  caused
       by a bug in PCRE or by overwriting of the compiled pattern.

         PCRE_ERROR_BADCOUNT       (-15)

       This error is given if the value of the ovecsize argument is negative.

         PCRE_ERROR_RECURSIONLIMIT (-21)

       The internal recursion limit, as specified by the match_limit_recursion
       field in a pcre_extra structure (or defaulted) was reached. See the de-
       scription above.

         PCRE_ERROR_BADNEWLINE     (-23)

       An invalid combination of PCRE_NEWLINE_xxx options was given.

         PCRE_ERROR_BADOFFSET      (-24)

       The value of startoffset was negative or greater than the length of the
       subject, that is, the value in length.

         PCRE_ERROR_SHORTUTF8      (-25)

       This error is returned instead of PCRE_ERROR_BADUTF8 when  the  subject
       string  ends with a truncated UTF-8 character and the PCRE_PARTIAL_HARD
       option is set.  Information  about  the  failure  is  returned  as  for
       PCRE_ERROR_BADUTF8.  It  is in fact sufficient to detect this case, but
       this special error code for PCRE_PARTIAL_HARD precedes the  implementa-
       tion  of returned information; it is retained for backwards compatibil-
       ity.

         PCRE_ERROR_RECURSELOOP    (-26)

       This error is returned when pcre_exec() detects a recursion loop within
       the  pattern. Specifically, it means that either the whole pattern or a
       subpattern has been called recursively for the second time at the  same
       position in the subject string. Some simple patterns that might do this
       are detected and faulted at compile time, but more  complicated  cases,
       in particular mutual recursions between two different subpatterns, can-
       not be detected until run time.

         PCRE_ERROR_JIT_STACKLIMIT (-27)

       This error is returned when a pattern that was successfully studied us-
       ing a JIT compile option is being matched, but the memory available for
       the just-in-time processing stack is not large enough. See the  pcrejit
       documentation for more details.

         PCRE_ERROR_BADMODE        (-28)

       This error is given if a pattern that was compiled by the 8-bit library
       is passed to a 16-bit or 32-bit library function, or vice versa.

         PCRE_ERROR_BADENDIANNESS  (-29)

       This error is given if  a  pattern  that  was  compiled  and  saved  is
       reloaded  on  a  host  with  different endianness. The utility function
       pcre_pattern_to_host_byte_order() can be used to convert such a pattern
       so that it runs on the new host.

         PCRE_ERROR_JIT_BADOPTION

       This error is returned when a pattern that was successfully studied us-
       ing a JIT compile option is being matched, but the matching mode  (par-
       tial  or  complete  match)  does  not correspond to any JIT compilation
       mode. When the JIT fast path function is used, this error may  be  also
       given  for  invalid options. See the pcrejit documentation for more de-
       tails.

         PCRE_ERROR_BADLENGTH      (-32)

       This error is given if pcre_exec() is called with a negative value  for
       the length argument.

       Error numbers -16 to -20, -22, and 30 are not used by pcre_exec().

   Reason codes for invalid UTF-8 strings

       This  section  applies only to the 8-bit library. The corresponding in-
       formation for the 16-bit and 32-bit libraries is given  in  the  pcre16
       and pcre32 pages.

       When pcre_exec() returns either PCRE_ERROR_BADUTF8 or PCRE_ERROR_SHORT-
       UTF8, and the size of the output vector (ovecsize) is at least  2,  the
       offset  of  the  start  of the invalid UTF-8 character is placed in the
       first output vector element (ovector[0]) and a reason code is placed in
       the  second  element  (ovector[1]). The reason codes are given names in
       the pcre.h header file:

         PCRE_UTF8_ERR1
         PCRE_UTF8_ERR2
         PCRE_UTF8_ERR3
         PCRE_UTF8_ERR4
         PCRE_UTF8_ERR5

       The string ends with a truncated UTF-8 character;  the  code  specifies
       how  many bytes are missing (1 to 5). Although RFC 3629 restricts UTF-8
       characters to be no longer than 4 bytes, the  encoding  scheme  (origi-
       nally  defined  by  RFC  2279)  allows  for  up to 6 bytes, and this is
       checked first; hence the possibility of 4 or 5 missing bytes.

         PCRE_UTF8_ERR6
         PCRE_UTF8_ERR7
         PCRE_UTF8_ERR8
         PCRE_UTF8_ERR9
         PCRE_UTF8_ERR10

       The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of
       the  character  do  not have the binary value 0b10 (that is, either the
       most significant bit is 0, or the next bit is 1).

         PCRE_UTF8_ERR11
         PCRE_UTF8_ERR12

       A character that is valid by the RFC 2279 rules is either 5 or 6  bytes
       long; these code points are excluded by RFC 3629.

         PCRE_UTF8_ERR13

       A  4-byte character has a value greater than 0x10fff; these code points
       are excluded by RFC 3629.

         PCRE_UTF8_ERR14

       A 3-byte character has a value in the  range  0xd800  to  0xdfff;  this
       range  of code points are reserved by RFC 3629 for use with UTF-16, and
       so are excluded from UTF-8.

         PCRE_UTF8_ERR15
         PCRE_UTF8_ERR16
         PCRE_UTF8_ERR17
         PCRE_UTF8_ERR18
         PCRE_UTF8_ERR19

       A 2-, 3-, 4-, 5-, or 6-byte character is "overlong", that is, it  codes
       for  a  value that can be represented by fewer bytes, which is invalid.
       For example, the two bytes 0xc0, 0xae give the value 0x2e,  whose  cor-
       rect coding uses just one byte.

         PCRE_UTF8_ERR20

       The two most significant bits of the first byte of a character have the
       binary value 0b10 (that is, the most significant bit is 1 and the  sec-
       ond  is  0). Such a byte can only validly occur as the second or subse-
       quent byte of a multi-byte character.

         PCRE_UTF8_ERR21

       The first byte of a character has the value 0xfe or 0xff. These  values
       can never occur in a valid UTF-8 string.

         PCRE_UTF8_ERR22

       This  error  code  was  formerly  used when the presence of a so-called
       "non-character" caused an error. Unicode corrigendum #9 makes it  clear
       that  such  characters should not cause a string to be rejected, and so
       this code is no longer in use and is never returned.

EXTRACTING CAPTURED SUBSTRINGS BY NUMBER

       int pcre_copy_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber, char *buffer,
            int buffersize);

       int pcre_get_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber,
            const char **stringptr);

       int pcre_get_substring_list(const char *subject,
            int *ovector, int stringcount, const char ***listptr);

       Captured substrings can be accessed directly by using the  offsets  re-
       turned  by  pcre_exec()  in  ovector.  For  convenience,  the functions
       pcre_copy_substring(),    pcre_get_substring(),    and    pcre_get_sub-
       string_list()  are  provided for extracting captured substrings as new,
       separate, zero-terminated strings. These functions identify  substrings
       by  number.  The  next section describes functions for extracting named
       substrings.

       A substring that contains a binary zero is correctly extracted and  has
       a  further zero added on the end, but the result is not, of course, a C
       string.  However, you can process such a string  by  referring  to  the
       length  that  is  returned  by  pcre_copy_substring() and pcre_get_sub-
       string().  Unfortunately, the interface to pcre_get_substring_list() is
       not  adequate for handling strings containing binary zeros, because the
       end of the final string is not independently indicated.

       The first three arguments are the same for all  three  of  these  func-
       tions:  subject  is  the subject string that has just been successfully
       matched, ovector is a pointer to the vector of integer offsets that was
       passed to pcre_exec(), and stringcount is the number of substrings that
       were captured by the match, including the substring  that  matched  the
       entire regular expression. This is the value returned by pcre_exec() if
       it is greater than zero. If pcre_exec() returned zero, indicating  that
       it  ran out of space in ovector, the value passed as stringcount should
       be the number of elements in the vector divided by three.

       The functions pcre_copy_substring() and pcre_get_substring() extract  a
       single  substring,  whose  number  is given as stringnumber. A value of
       zero extracts the substring that matched the  entire  pattern,  whereas
       higher  values  extract  the  captured  substrings.  For pcre_copy_sub-
       string(), the string is placed in buffer,  whose  length  is  given  by
       buffersize, while for pcre_get_substring() a new block of memory is ob-
       tained via pcre_malloc, and its address is returned via stringptr.  The
       yield  of  the  function is the length of the string, not including the
       terminating zero, or one of these error codes:

         PCRE_ERROR_NOMEMORY       (-6)

       The buffer was too small for pcre_copy_substring(), or the  attempt  to
       get memory failed for pcre_get_substring().

         PCRE_ERROR_NOSUBSTRING    (-7)

       There is no substring whose number is stringnumber.

       The  pcre_get_substring_list()  function  extracts  all  available sub-
       strings and builds a list of pointers to them. All this is  done  in  a
       single block of memory that is obtained via pcre_malloc. The address of
       the memory block is returned via listptr, which is also  the  start  of
       the  list  of  string pointers. The end of the list is marked by a NULL
       pointer. The yield of the function is zero if all went well, or the er-
       ror code

         PCRE_ERROR_NOMEMORY       (-6)

       if the attempt to get the memory block failed.

       When  any of these functions encounter a substring that is unset, which
       can happen when capturing subpattern number n+1 matches  some  part  of
       the  subject, but subpattern n has not been used at all, they return an
       empty string. This can be distinguished from a genuine zero-length sub-
       string  by inspecting the appropriate offset in ovector, which is nega-
       tive for unset substrings.

       The two convenience functions pcre_free_substring() and  pcre_free_sub-
       string_list()  can  be  used  to free the memory returned by a previous
       call  of  pcre_get_substring()  or  pcre_get_substring_list(),  respec-
       tively.  They  do  nothing  more  than  call the function pointed to by
       pcre_free, which of course could be called directly from a  C  program.
       However,  PCRE is used in some situations where it is linked via a spe-
       cial  interface  to  another  programming  language  that  cannot   use
       pcre_free  directly;  it is for these cases that the functions are pro-
       vided.

EXTRACTING CAPTURED SUBSTRINGS BY NAME

       int pcre_get_stringnumber(const pcre *code,
            const char *name);

       int pcre_copy_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            char *buffer, int buffersize);

       int pcre_get_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            const char **stringptr);

       To extract a substring by name, you first have to find associated  num-
       ber.  For example, for this pattern

         (a+)b(?<xxx>\d+)...

       the number of the subpattern called "xxx" is 2. If the name is known to
       be unique (PCRE_DUPNAMES was not set), you can find the number from the
       name by calling pcre_get_stringnumber(). The first argument is the com-
       piled pattern, and the second is the name. The yield of the function is
       the  subpattern  number,  or PCRE_ERROR_NOSUBSTRING (-7) if there is no
       subpattern of that name.

       Given the number, you can extract the substring directly, or use one of
       the functions described in the previous section. For convenience, there
       are also two functions that do the whole job.

       Most   of   the   arguments    of    pcre_copy_named_substring()    and
       pcre_get_named_substring()  are  the  same  as  those for the similarly
       named functions that extract by number. As these are described  in  the
       previous  section,  they  are not re-described here. There are just two
       differences:

       First, instead of a substring number, a substring name is  given.  Sec-
       ond, there is an extra argument, given at the start, which is a pointer
       to the compiled pattern. This is needed in order to gain access to  the
       name-to-number translation table.

       These  functions call pcre_get_stringnumber(), and if it succeeds, they
       then call pcre_copy_substring() or pcre_get_substring(),  as  appropri-
       ate.  NOTE:  If PCRE_DUPNAMES is set and there are duplicate names, the
       behaviour may not be what you want (see the next section).

       Warning: If the pattern uses the (?| feature to set up multiple subpat-
       terns  with  the  same number, as described in the section on duplicate
       subpattern numbers in the pcrepattern page, you  cannot  use  names  to
       distinguish  the  different subpatterns, because names are not included
       in the compiled code. The matching process uses only numbers. For  this
       reason,  the  use of different names for subpatterns of the same number
       causes an error at compile time.

DUPLICATE SUBPATTERN NAMES

       int pcre_get_stringtable_entries(const pcre *code,
            const char *name, char **first, char **last);

       When a pattern is compiled with the  PCRE_DUPNAMES  option,  names  for
       subpatterns  are not required to be unique. (Duplicate names are always
       allowed for subpatterns with the same number, created by using the  (?|
       feature.  Indeed,  if  such subpatterns are named, they are required to
       use the same names.)

       Normally, patterns with duplicate names are such that in any one match,
       only  one of the named subpatterns participates. An example is shown in
       the pcrepattern documentation.

       When   duplicates   are   present,   pcre_copy_named_substring()    and
       pcre_get_named_substring()  return the first substring corresponding to
       the given name that is set. If  none  are  set,  PCRE_ERROR_NOSUBSTRING
       (-7)  is  returned;  no  data  is returned. The pcre_get_stringnumber()
       function returns one of the numbers that are associated with the  name,
       but it is not defined which it is.

       If  you want to get full details of all captured substrings for a given
       name, you must use  the  pcre_get_stringtable_entries()  function.  The
       first argument is the compiled pattern, and the second is the name. The
       third and fourth are pointers to variables which  are  updated  by  the
       function. After it has run, they point to the first and last entries in
       the name-to-number table for the given name. The  function  itself  re-
       turns the length of each entry, or PCRE_ERROR_NOSUBSTRING (-7) if there
       are none. The format of the table is described above in the section en-
       titled  Information  about a pattern above.  Given all the relevant en-
       tries for the name, you can extract each of their  numbers,  and  hence
       the captured data, if any.

FINDING ALL POSSIBLE MATCHES

       The  traditional  matching  function  uses a similar algorithm to Perl,
       which stops when it finds the first match, starting at a given point in
       the  subject.  If you want to find all possible matches, or the longest
       possible match, consider using the alternative matching  function  (see
       below)  instead.  If you cannot use the alternative function, but still
       need to find all possible matches, you can kludge it up by  making  use
       of the callout facility, which is described in the pcrecallout documen-
       tation.

       What you have to do is to insert a callout right at the end of the pat-
       tern.   When your callout function is called, extract and save the cur-
       rent matched substring. Then return  1,  which  forces  pcre_exec()  to
       backtrack  and  try other alternatives. Ultimately, when it runs out of
       matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.

OBTAINING AN ESTIMATE OF STACK USAGE

       Matching certain patterns using pcre_exec() can use a  lot  of  process
       stack,  which  in  certain  environments can be rather limited in size.
       Some users find it helpful to have an estimate of the amount  of  stack
       that  is used by pcre_exec(), to help them set recursion limits, as de-
       scribed in the pcrestack documentation. The estimate that is output  by
       pcretest  when called with the -m and -C options is obtained by calling
       pcre_exec with the values NULL, NULL, NULL,  -999,  and  -999  for  its
       first five arguments.

       Normally,  if  its  first argument is NULL, pcre_exec() immediately re-
       turns the negative error code PCRE_ERROR_NULL, but  with  this  special
       combination  of  arguments,  it returns instead a negative number whose
       absolute value is the approximate stack frame size in bytes.  (A  nega-
       tive  number  is  used so that it is clear that no match has happened.)
       The value is approximate because in  some  cases,  recursive  calls  to
       pcre_exec() occur when there are one or two additional variables on the
       stack.

       If PCRE has been compiled to use the heap instead of the stack for  re-
       cursion,  the value returned is the size of each block that is obtained
       from the heap.

MATCHING A PATTERN: THE ALTERNATIVE FUNCTION

       int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize,
            int *workspace, int wscount);

       The function pcre_dfa_exec()  is  called  to  match  a  subject  string
       against  a  compiled pattern, using a matching algorithm that scans the
       subject string just once, and does not backtrack.  This  has  different
       characteristics  to  the  normal  algorithm, and is not compatible with
       Perl. Some of the features of PCRE patterns are not  supported.  Never-
       theless,  there are times when this kind of matching can be useful. For
       a discussion of the two matching algorithms, and  a  list  of  features
       that  pcre_dfa_exec() does not support, see the pcrematching documenta-
       tion.

       The arguments for the pcre_dfa_exec() function  are  the  same  as  for
       pcre_exec(), plus two extras. The ovector argument is used in a differ-
       ent way, and this is described below. The other  common  arguments  are
       used  in  the  same way as for pcre_exec(), so their description is not
       repeated here.

       The two additional arguments provide workspace for  the  function.  The
       workspace  vector  should  contain at least 20 elements. It is used for
       keeping  track  of  multiple  paths  through  the  pattern  tree.  More
       workspace  will  be  needed for patterns and subjects where there are a
       lot of potential matches.

       Here is an example of a simple call to pcre_dfa_exec():

         int rc;
         int ovector[10];
         int wspace[20];
         rc = pcre_dfa_exec(
           re,             /* result of pcre_compile() */
           NULL,           /* we didn't study the pattern */
           "some string",  /* the subject string */
           11,             /* the length of the subject string */
           0,              /* start at offset 0 in the subject */
           0,              /* default options */
           ovector,        /* vector of integers for substring information */
           10,             /* number of elements (NOT size in bytes) */
           wspace,         /* working space vector */
           20);            /* number of elements (NOT size in bytes) */

   Option bits for pcre_dfa_exec()

       The unused bits of the options argument  for  pcre_dfa_exec()  must  be
       zero.  The  only  bits  that  may  be  set are PCRE_ANCHORED, PCRE_NEW-
       LINE_xxx, PCRE_NOTBOL,  PCRE_NOTEOL,  PCRE_NOTEMPTY,  PCRE_NOTEMPTY_AT-
       START,    PCRE_NO_UTF8_CHECK,    PCRE_BSR_ANYCRLF,    PCRE_BSR_UNICODE,
       PCRE_NO_START_OPTIMIZE,      PCRE_PARTIAL_HARD,      PCRE_PARTIAL_SOFT,
       PCRE_DFA_SHORTEST,  and  PCRE_DFA_RESTART.   All  but  the last four of
       these are exactly the same as for pcre_exec(), so their description  is
       not repeated here.

         PCRE_PARTIAL_HARD
         PCRE_PARTIAL_SOFT

       These  have the same general effect as they do for pcre_exec(), but the
       details are slightly  different.  When  PCRE_PARTIAL_HARD  is  set  for
       pcre_dfa_exec(),  it  returns PCRE_ERROR_PARTIAL if the end of the sub-
       ject is reached and there is still at least  one  matching  possibility
       that requires additional characters. This happens even if some complete
       matches have also been found. When PCRE_PARTIAL_SOFT is set, the return
       code PCRE_ERROR_NOMATCH is converted into PCRE_ERROR_PARTIAL if the end
       of the subject is reached, there have been  no  complete  matches,  but
       there  is  still  at least one matching possibility. The portion of the
       string that was inspected when the longest partial match was  found  is
       set  as  the  first matching string in both cases.  There is a more de-
       tailed discussion of partial and multi-segment matching, with examples,
       in the pcrepartial documentation.

         PCRE_DFA_SHORTEST

       Setting  the  PCRE_DFA_SHORTEST option causes the matching algorithm to
       stop as soon as it has found one match. Because of the way the alterna-
       tive  algorithm  works, this is necessarily the shortest possible match
       at the first possible matching point in the subject string.

         PCRE_DFA_RESTART

       When pcre_dfa_exec() returns a partial match, it is possible to call it
       again,  with  additional  subject characters, and have it continue with
       the same match. The PCRE_DFA_RESTART option requests this action;  when
       it  is  set,  the workspace and wscount options must reference the same
       vector as before because data about the match so far is  left  in  them
       after a partial match. There is more discussion of this facility in the
       pcrepartial documentation.

   Successful returns from pcre_dfa_exec()

       When pcre_dfa_exec() succeeds, it may have matched more than  one  sub-
       string in the subject. Note, however, that all the matches from one run
       of the function start at the same point in  the  subject.  The  shorter
       matches  are all initial substrings of the longer matches. For example,
       if the pattern

         <.*>

       is matched against the string

         This is <something> <something else> <something further> no more

       the three matched strings are

         <something>
         <something> <something else>
         <something> <something else> <something further>

       On success, the yield of the function is a number  greater  than  zero,
       which  is  the  number of matched substrings. The substrings themselves
       are returned in ovector. Each string uses two elements;  the  first  is
       the  offset  to  the start, and the second is the offset to the end. In
       fact, all the strings have the same start  offset.  (Space  could  have
       been  saved by giving this only once, but it was decided to retain some
       compatibility with the way pcre_exec() returns data,  even  though  the
       meaning of the strings is different.)

       The strings are returned in reverse order of length; that is, the long-
       est matching string is given first. If there were too many  matches  to
       fit  into ovector, the yield of the function is zero, and the vector is
       filled with the longest matches.  Unlike  pcre_exec(),  pcre_dfa_exec()
       can use the entire ovector for returning matched strings.

       NOTE:  PCRE's  "auto-possessification"  optimization usually applies to
       character repeats at the end of a pattern (as well as internally).  For
       example,  the  pattern "a\d+" is compiled as if it were "a\d++" because
       there is no point even considering the possibility of backtracking into
       the  repeated digits. For DFA matching, this means that only one possi-
       ble match is found. If you really do  want  multiple  matches  in  such
       cases,   either   use   an   ungreedy   repeat  ("a\d+?")  or  set  the
       PCRE_NO_AUTO_POSSESS option when compiling.

   Error returns from pcre_dfa_exec()

       The pcre_dfa_exec() function returns a negative number when  it  fails.
       Many  of  the errors are the same as for pcre_exec(), and these are de-
       scribed above.  There are in addition the  following  errors  that  are
       specific to pcre_dfa_exec():

         PCRE_ERROR_DFA_UITEM      (-16)

       This  return is given if pcre_dfa_exec() encounters an item in the pat-
       tern that it does not support, for instance, the use of \C  or  a  back
       reference.

         PCRE_ERROR_DFA_UCOND      (-17)

       This  return  is  given  if pcre_dfa_exec() encounters a condition item
       that uses a back reference for the condition, or a test  for  recursion
       in a specific group. These are not supported.

         PCRE_ERROR_DFA_UMLIMIT    (-18)

       This  return  is given if pcre_dfa_exec() is called with an extra block
       that contains a setting of  the  match_limit  or  match_limit_recursion
       fields.  This  is  not  supported (these fields are meaningless for DFA
       matching).

         PCRE_ERROR_DFA_WSSIZE     (-19)

       This return is given if  pcre_dfa_exec()  runs  out  of  space  in  the
       workspace vector.

         PCRE_ERROR_DFA_RECURSE    (-20)

       When  a  recursive subpattern is processed, the matching function calls
       itself recursively, using private vectors for  ovector  and  workspace.
       This  error  is  given  if  the output vector is not large enough. This
       should be extremely rare, as a vector of size 1000 is used.

         PCRE_ERROR_DFA_BADRESTART (-30)

       When pcre_dfa_exec() is called with the PCRE_DFA_RESTART  option,  some
       plausibility  checks  are  made on the contents of the workspace, which
       should contain data about the previous partial match. If any  of  these
       checks fail, this error is given.

SEE ALSO

       pcre16(3),   pcre32(3),  pcrebuild(3),  pcrecallout(3),  pcrecpp(3)(3),
       pcrematching(3), pcrepartial(3), pcreposix(3), pcreprecompile(3), pcre-
       sample(3), pcrestack(3).

AUTHOR

       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.

REVISION

       Last updated: 18 December 2015
       Copyright (c) 1997-2015 University of Cambridge.

PCRE 8.39                      18 December 2015                     PCREAPI(3)

Generated by dwww version 1.14 on Thu Jan 23 22:27:49 CET 2025.