r.in.gdal(1grass) GRASS GIS User's Manual r.in.gdal(1grass)
NAME
r.in.gdal - Imports raster data into a GRASS raster map using GDAL li-
brary.
KEYWORDS
raster, import, create location
SYNOPSIS
r.in.gdal
r.in.gdal --help
r.in.gdal [-ojeflakcrp] input=name output=name [band=integer[,inte-
ger,...]] [memory=memory in MB] [target=name] [title=phrase]
[offset=integer] [num_digits=integer] [map_names_file=name] [lo-
cation=name] [table=file] [gdal_config=string] [gdal_doo=string]
[--overwrite] [--help] [--verbose] [--quiet] [--ui]
Flags:
-o
Override projection check (use current location’s projection)
Assume that the dataset has same projection as the current location
-j
Perform projection check only and exit
-e
Extend region extents based on new dataset
Also updates the default region if in the PERMANENT mapset
-f
List supported formats and exit
-l
Force Lat/Lon maps to fit into geographic coordinates (90N,S;
180E,W)
-a
Auto-adjustment for lat/lon
Attempt to fix small precision errors in resolution and extents
-k
Keep band numbers instead of using band color names
-c
Create the location specified by the "location" parameter and exit.
Do not import the raster file.
-r
Limit import to the current region
-p
Print number of bands and exit
--overwrite
Allow output files to overwrite existing files
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog
Parameters:
input=name [required]
Name of raster file to be imported
output=name [required]
Name for output raster map
band=integer[,integer,...]
Band(s) to select (default is all bands)
memory=memory in MB
Maximum memory to be used (in MB)
Cache size for raster rows
Default: 300
target=name
Name of GCPs target location
Name of location to create or to read projection from for GCPs
transformation
title=phrase
Title for resultant raster map
offset=integer
Offset to be added to band numbers
If 0, no offset is added and the first band is 1
Default: 0
num_digits=integer
Zero-padding of band number by filling with leading zeros up to
given number
If 0, length will be adjusted to ’offset’ number without leading
zeros
Default: 0
map_names_file=name
Name of the output file that contains the imported map names
location=name
Name for new location to create
table=file
File prefix for raster attribute tables
The band number and ".csv" will be appended to the file prefix
gdal_config=string
GDAL configuration options
Comma-separated list of key=value pairs
gdal_doo=string
GDAL dataset open options
Comma-separated list of key=value pairs
DESCRIPTION
r.in.gdal allows a user to create a GRASS GIS raster map layer, or im-
agery group, from any GDAL supported raster map format, with an op-
tional title. The imported file may also be optionally used to create a
new location.
GDAL supported raster formats
Full details on all GDAL supported formats are available at:
http://www.gdal.org/formats_list.html
Selected formats out of the more than 140 supported formats:
Long Format Name Code Creation Georeferencing Maximum file size
---------------------------------------------+-------------+----------+--------------+-----------------
ADRG/ARC Digitilized Raster Graphics ADRG Yes Yes --
Arc/Info ASCII Grid AAIGrid Yes Yes 2GB
Arc/Info Binary Grid (.adf) AIG No Yes --
Arc/Info Export E00 GRID E00GRID No Yes --
ArcSDE Raster SDE No Yes --
ASCII Gridded XYZ XYZ Yes Yes --
BSB Nautical Chart Format (.kap) BSB No Yes --
CEOS (Spot for instance) CEOS No No --
DB2 DB2 Yes Yes No limits
DODS / OPeNDAP DODS No Yes --
EarthWatch/DigitalGlobe .TIL TIL No No --
ENVI .hdr Labelled Raster ENVI Yes Yes No limits
Envisat Image Product (.n1) ESAT No No --
EOSAT FAST Format FAST No Yes --
Epsilon - Wavelet compressed images EPSILON Yes No --
Erdas 7.x .LAN and .GIS LAN No Yes 2GB
ERDAS Compressed Wavelets (.ecw) ECW Yes Yes
Erdas Imagine (.img) HFA Yes Yes No limits
Erdas Imagine Raw EIR No Yes --
ERMapper (.ers) ERS Yes Yes
ESRI .hdr Labelled EHdr Yes Yes No limits
EUMETSAT Archive native (.nat) MSGN No Yes
FIT FIT Yes No --
FITS (.fits) FITS Yes No --
Fuji BAS Scanner Image FujiBAS No No --
GDAL Virtual (.vrt) VRT Yes Yes --
Generic Binary (.hdr Labelled) GENBIN No No --
GeoPackage GPKG Yes Yes No limits
Geospatial PDF PDF Yes Yes --
GMT Compatible netCDF GMT Yes Yes 2GB
Golden Software Surfer 7 Binary Grid GS7BG Yes Yes 4GiB
Graphics Interchange Format (.gif) GIF Yes No 2GB
GRASS Raster Format GRASS No Yes --
GSat File Format GFF No No --
Hierarchical Data Format Release 4 (HDF4) HDF4 Yes Yes 2GiB
Hierarchical Data Format Release 5 (HDF5) HDF5 No Yes 2GiB
Idrisi Raster RST Yes Yes No limits
ILWIS Raster Map (.mpr,.mpl) ILWIS Yes Yes --
Image Display and Analysis (WinDisp) IDA Yes Yes 2GB
In Memory Raster MEM Yes Yes
Intergraph Raster INGR Yes Yes 2GiB
IRIS IRIS No Yes --
Japanese DEM (.mem) JDEM No Yes --
JAXA PALSAR Product Reader (Level 1.1/1.5) JAXAPALSAR No No --
JPEG2000 (.jp2, .j2k) JP2OpenJPEG Yes Yes
JPEG JFIF (.jpg) JPEG Yes Yes 4GiB
KMLSUPEROVERLAY KMLSUPEROVERLAY Yes Yes
MBTiles MBTiles Yes Yes --
Meta Raster Format MRF Yes Yes --
Meteosat Second Generation MSG No Yes
MG4 Encoded Lidar MG4Lidar No Yes --
Microsoft Windows Device Independent Bitmap BMP Yes Yes 4GiB
Military Elevation Data (.dt0, .dt1, .dt2) DTED Yes Yes --
Multi-resolution Seamless Image Database MrSID No Yes --
NASA Planetary Data System PDS No Yes --
NetCDF netCDF Yes Yes 2GB
Netpbm (.ppm,.pgm) PNM Yes No No limits
NITF NITF Yes Yes 10GB
NLAPS Data Format NDF No Yes No limits
NOAA NGS Geoid Height Grids NGSGEOID No Yes
NOAA Polar Orbiter Level 1b Data Set (AVHRR) L1B No Yes --
OGC Web Coverage Service WCS No Yes --
OGC Web Map Service, and TMS, WorldWind, On EaWMS No Yes --
OGC Web Map Tile Service WMTS No Yes --
OGDI Bridge OGDI No Yes --
Oracle Spatial GeoRaster GEORASTER Yes Yes No limits
OziExplorer .MAP MAP No Yes --
OZI OZF2/OZFX3 OZI No Yes --
PCI Geomatics Database File PCIDSK Yes Yes No limits
PCRaster PCRaster Yes Yes
Planet Labs Mosaics API PLMosaic No Yes --
Portable Network Graphics (.png) PNG Yes No
PostGIS Raster (previously WKTRaster) PostGISRaster No Yes --
RadarSat2 XML (product.xml) RS2 No Yes 4GB
Rasdaman RASDAMAN No No No limits
Rasterlite - Rasters in SQLite DB Rasterlite Yes Yes --
Raster Product Format/RPF (CADRG, CIB) RPFTOC No Yes --
R Object Data Store R Yes No --
ROI_PAC Raster ROI_PAC Yes Yes --
R Raster (.grd) RRASTER No Yes --
SAGA GIS Binary format SAGA Yes Yes --
SAR CEOS SAR_CEOS No Yes --
Sentinel 1 SAR SAFE (manifest.safe) SAFE No Yes No limits
Sentinel 2 SENTINEL2 No Yes No limits
SGI Image Format SGI Yes Yes --
SRTM HGT Format SRTMHGT Yes Yes --
TerraSAR-X Complex SAR Data Product COSAR No No --
TerraSAR-X Product TSX Yes No --
TIFF / BigTIFF / GeoTIFF (.tif) GTiff Yes Yes 4GiB/None for BigTIFF
USGS ASCII DEM / CDED (.dem) USGSDEM Yes Yes --
USGS Astrogeology ISIS cube (Version 3) ISIS3 No Yes --
USGS SDTS DEM (*CATD.DDF) SDTS No Yes --
Vexcel MFF MFF Yes Yes No limits
VICAR VICAR No Yes --
VTP Binary Terrain Format (.bt) BT Yes Yes --
WEBP WEBP Yes No --
WMO GRIB1/GRIB2 (.grb) GRIB No Yes 2GB
Location Creation
r.in.gdal attempts to preserve projection information when importing
datasets if the source format includes projection information, and if
the GDAL driver supports it. If the projection of the source dataset
does not match the projection of the current location r.in.gdal will
report an error message (Projection of dataset does not appear to match
current location) and then report the PROJ_INFO parameters of the
source dataset.
If the user wishes to ignore the difference between the apparent coor-
dinate system of the source data and the current location, they may
pass the -o flag to override the projection check.
If the user wishes to import the data with the full projection defini-
tion, it is possible to have r.in.gdal automatically create a new loca-
tion based on the projection and extents of the file being read. This
is accomplished by passing the name to be used for the new location via
the location parameter. Upon completion of the command, a new location
will have been created (with only a PERMANENT mapset), and the raster
will have been imported with the indicated output name into the PERMA-
NENT mapset.
Support for Ground Control Points
In case the image contains Ground Control Points (GCP) they are written
to a POINTS file within an imagery group. They can directly be used for
i.rectify.
The target option allows you to automatically re-project the GCPs from
their own projection into another projection read from the PROJ_INFO
file of the location name target.
If the target location does not exist, a new location will be created
matching the projection definition of the GCPs. The target of the out-
put group will be set to the new location, and i.rectify can now be
used without any further preparation.
Some satellite images (e.g. NOAA/AVHRR, ENVISAT) can contain hundreds
or thousands of GCPs. In these cases thin plate spline coordinate
transformation is recommended, either before import with gdalwarp -tps
or after import with i.rectify -t.
Map names: Management of offset and leading zeros
The offset parameter allows adding an offset to band number(s) which is
convenient in case of the import of e.g. a continuous time series split
across different input files.
The num_digits parameter allows defining the number of leading zeros
(zero padding) in case of band numbers (e.g., to turn band.1 into
band.001).
NOTES
Import of large files can be significantly faster when setting memory
to the size of the input file.
The r.in.gdal command does support the following features, as long as
the underlying format driver supports it:
Color Table
Bands with associated colortables will have the color tables trans-
ferred. Note that if the source has no colormap, r.in.gdal in
GRASS 5.0 will emit no colormap. Use r.colors map=... color=grey
to assign a greyscale colormap. In a future version of GRASS
r.in.gdal will likely be upgraded to automatically emit greyscale
colormaps.
Data Types
Most GDAL data types are supported. Float32 and Float64 type bands
are translated as GRASS floating point cells (but not double preci-
sion ... this could be added if needed), and most other types are
translated as GRASS integer cells. This includes 16bit integer
data sources. Complex (some SAR signal data formats) data bands
are translated to two floating point cell layers (*.real and
*.imaginary).
Georeferencing
If the dataset has affine georeferencing information, this will be
used to set the north, south, east and west edges. Rotational co-
efficients will be ignored, resulting in incorrect positioning for
rotated datasets.
Projection
The dataset’s projection will be used to compare to the current lo-
cation or to define a new location. Internally GDAL represents
projections in OpenGIS Well Known Text format. A large subset of
the total set of GRASS projections are supported.
Null Values
Raster bands for which a null value is recognised by GDAL will have
the null pixels transformed into GRASS style nulls during import.
Many generic formats (and formats poorly supported by GDAL) do not
have a way of recognising null pixels in which case r.null should
be used after the import.
GCPs
Datasets that have Ground Control Points will have them imported as
a POINTS file associated with the imagery group. Datasets with
only one band that would otherwise have been translated as a simple
raster map will also have an associated imagery group if there are
ground control points. The coordinate system of the ground control
points is reported by r.in.gdal but not preserved. It is up to the
user to ensure that the location established with i.target has a
compatible coordinate system before using the points with i.rec-
tify.
Raster Attribute Tables
r.in.gdal can write out raster attribute tables as CSV files.
Moreover, information in raster attribute tables is automatically
imported as long as the field definitions contain information about
how to use a field, e.g. for color information or for labels.
Planned improvements to r.in.gdal in the future include support for re-
porting everything known about a dataset if the output parameter is not
set.
Error Messages
"ERROR: Input map is rotated - cannot import."
In this case the image must be first externally rotated, applying the
rotation info stored in the metadata field of the raster image file.
For example, the gdalwarp software can be used to transform the map to
North-up (note, there are several gdalwarp parameters to select the re-
sampling algorithm):
gdalwarp rotated.tif northup.tif
"ERROR: Projection of dataset does not appear to match the current lo-
cation."
You need to create a location whose projection matches the data you
wish to import. Try using location parameter to create a new location
based upon the projection information in the file. If desired, you can
then re-project it to another location with r.proj. Alternatively you
can override this error by using the -o flag.
"WARNING: G_set_window(): Illegal latitude for North"
Latitude/Longitude locations in GRASS can not have regions which exceed
90° North or South. Non-georeferenced imagery will have coordinates
based on the images’s number of pixels: 0,0 in the bottom left;
cols,rows in the top right. Typically imagery will be much more than 90
pixels tall and so the GIS refuses to import it. If you are sure that
the data is appropriate for your Lat/Lon location and intentd to reset
the map’s bounds with the r.region module directly after import you may
use the -l flag to constrain the map coordinates to legal values.
While the resulting bounds and resolution will likely be wrong for your
map the map’s data will be unaltered and safe. After resetting to known
bounds with r.region you should double check them with r.info, paying
special attention to the map resolution. In most cases you will want to
import into the datafile’s native projection, or into a simple XY loca-
tion and use the Georectifaction tools (i.rectify et al.) to properly
project into the target location. The -l flag should only be used if
you know the projection is correct but the internal georeferencing has
gotten lost, and you know the what the map’s bounds and resolution
should be beforehand.
EXAMPLES
ECAD Data
The European Climate Assessment and Dataset (ECAD) project provides
climate data for Europe ranging from 1950 - 2015 or later (Terms of
use). To import the different chunks of data provided by the project
as netCDF files, the offset parameter can be used to properly assign
numbers to the series of daily raster maps from 1st Jan 1950 (in case
of importing the ECAD data split into multi-annual chunks). The ECAD
data must be imported into a LatLong location.
By using the num_digits parameter leading zeros are added to the map
name numbers, allowing for chronological numbering of the imported
raster map layers, so that g.list lists them in the correct order.
Here, use num_digits=5 to have a 5 digit suffix with leading zeros
(00001 - 99999).
# Import of ECAD data split into chunks
# Import precipitation data
r.in.gdal -o input=rr_0.25deg_reg_1950-1964_v12.0.nc output=precipitation num_digits=5 offset=0
r.in.gdal -o input=rr_0.25deg_reg_1965-1979_v12.0.nc output=precipitation num_digits=5 offset=5479
r.in.gdal -o input=rr_0.25deg_reg_1980-1994_v12.0.nc output=precipitation num_digits=5 offset=10957
r.in.gdal -o input=rr_0.25deg_reg_1995-2015_v12.0.nc output=precipitation num_digits=5 offset=16436
# Import air pressure data
r.in.gdal -o input=pp_0.25deg_reg_1950-1964_v12.0.nc output=air_pressure num_digits=5 offset=0
r.in.gdal -o input=pp_0.25deg_reg_1965-1979_v12.0.nc output=air_pressure num_digits=5 offset=5479
r.in.gdal -o input=pp_0.25deg_reg_1980-1994_v12.0.nc output=air_pressure num_digits=5 offset=10957
r.in.gdal -o input=pp_0.25deg_reg_1995-2015_v12.0.nc output=air_pressure num_digits=5 offset=16436
# Import min temperature data
r.in.gdal -o input=tn_0.25deg_reg_1950-1964_v12.0.nc output=temperatur_min num_digits=5 offset=0
r.in.gdal -o input=tn_0.25deg_reg_1965-1979_v12.0.nc output=temperatur_min num_digits=5 offset=5479
r.in.gdal -o input=tn_0.25deg_reg_1980-1994_v12.0.nc output=temperatur_min num_digits=5 offset=10957
r.in.gdal -o input=tn_0.25deg_reg_1995-2015_v12.0.nc output=temperatur_min num_digits=5 offset=16436
# Import max temperature data
r.in.gdal -o input=tx_0.25deg_reg_1950-1964_v12.0.nc output=temperatur_max num_digits=5 offset=0
r.in.gdal -o input=tx_0.25deg_reg_1965-1979_v12.0.nc output=temperatur_max num_digits=5 offset=5479
r.in.gdal -o input=tx_0.25deg_reg_1980-1994_v12.0.nc output=temperatur_max num_digits=5 offset=10957
r.in.gdal -o input=tx_0.25deg_reg_1995-2015_v12.0.nc output=temperatur_max num_digits=5 offset=16436
# Import mean temperature data
r.in.gdal -o input=tg_0.25deg_reg_1950-1964_v12.0.nc output=temperatur_mean num_digits=5 offset=0
r.in.gdal -o input=tg_0.25deg_reg_1965-1979_v12.0.nc output=temperatur_mean num_digits=5 offset=5479
r.in.gdal -o input=tg_0.25deg_reg_1980-1994_v12.0.nc output=temperatur_mean num_digits=5 offset=10957
r.in.gdal -o input=tg_0.25deg_reg_1995-2015_v12.0.nc output=temperatur_mean num_digits=5 offset=16436
GTOPO30 DEM
To avoid the GTOPO30 data being read incorrectly, you can add a new
line "PIXELTYPE SIGNEDINT" in the .HDR to force interpretation of the
file as signed rather than unsigned integers. Then the .DEM file can be
imported. Finally, e.g. the ’terrain’ color table can be assigned to
the imported map with r.colors.
GLOBE DEM
To import GLOBE DEM tiles (approx 1km resolution, better than GTOPO30
DEM data), the user has to download additionally the related HDR
file(s). Finally, e.g. the ’terrain’ color table can be assigned to
the imported map with r.colors. See also their DEM portal.
Raster file import over network
Since GDAL 2.x it is possible to import raster data over the network
(see GDAL Virtual File Systems) including Cloud Optimized GeoTIFF, i.e.
access uncompressed and compressed raster data via a http(s) or ftp
connection. As an example the import of the global SRTMGL1 V003 tiles
at 1 arc second (about 30 meters) resolution, void-filled:
r.in.gdal /vsicurl/https://www.datenatlas.de/geodata/public/srtmgl1/srtmgl1.003.tif output=srtmgl1_v003_30m memory=2000
g.region raster=srtmgl1_v003_30m -p
r.colors srtmgl1_v003_30m color=srtm_plus
Worldclim.org data
To import the BIL data from Worldclim, the following line has to be
added to each .hdr file:
PIXELTYPE SIGNEDINT
To import the ESRI Grd data from Worldclim, the broken spatial extent
(exceeding the boundaries) needs to be fixed prior to import:
# example: tmean dataset
gdal_translate -a_ullr -180 90 180 -60 tmean_1 tmean_1_fixed.tif
r.in.gdal input=tmean_1_fixed.tif output=tmean_1
HDF
The import of HDF bands requires the specification of the individual
bands as seen by GDAL:
# Example MODIS FPAR
gdalinfo MOD15A2.A2003153.h18v04.004.2003171141042.hdf
...
Subdatasets:
SUBDATASET_1_NAME=HDF4_EOS:EOS_GRID:"MOD15A2.A2003153.h18v04.004.2003171141042.hdf":MOD_Grid_MOD15A2:Fpar_1km
SUBDATASET_1_DESC=[1200x1200] Fpar_1km MOD_Grid_MOD15A2 (8-bit unsigned integer)
SUBDATASET_2_NAME=HDF4_EOS:EOS_GRID:"MOD15A2.A2003153.h18v04.004.2003171141042.hdf":MOD_Grid_MOD15A2:Lai_1km
SUBDATASET_2_DESC=[1200x1200] Lai_1km MOD_Grid_MOD15A2 (8-bit unsigned integer)
...
# import of first band, here FPAR 1km:
r.in.gdal HDF4_EOS:EOS_GRID:"MOD15A2.A2003153.h18v04.004.2003171141042.hdf":MOD_Grid_MOD15A2:Fpar_1km \
out=fpar_1km_2003_06_02
# ... likewise for other HDF bands in the file.
SEE ALSO
r.colors, r.import, r.in.ascii, r.in.bin, r.null, t.register
GRASS GIS Wiki page: Import of Global datasets
REFERENCES
GDAL Pages: http://www.gdal.org/
AUTHOR
Frank Warmerdam (email).
SOURCE CODE
Available at: r.in.gdal source code (history)
Accessed: unknown
Main index | Raster index | Topics index | Keywords index | Graphical
index | Full index
© 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual
GRASS 7.8.7 r.in.gdal(1grass)
Generated by dwww version 1.14 on Fri Nov 21 21:09:36 CET 2025.