dwww Home | Manual pages | Find package

r3.in.xyz(1grass)           GRASS GIS User's Manual          r3.in.xyz(1grass)

NAME
       r3.in.xyz   - Create a 3D raster map from an assemblage of many coordi-
       nates using univariate statistics

KEYWORDS
       raster3d, import, voxel, LIDAR,  statistics,  conversion,  aggregation,
       binning

SYNOPSIS
       r3.in.xyz
       r3.in.xyz --help
       r3.in.xyz     [-sgi]     input=name     output=name     [method=string]
       [type=string]     [separator=character]     [x=integer]     [y=integer]
       [z=integer]      [value_column=integer]      [vrange=min,max]      [vs-
       cale=float]   [percent=integer]   [pth=integer]   [trim=float]   [work-
       ers=integer]   [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -s
           Scan data file for extent then exit

       -g
           In scan mode, print using shell script style

       -i
           Ignore broken lines

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           ASCII file containing input data

       output=name [required]
           Name for output raster map

       method=string
           Statistic to use for raster values
           Options:  n,  min,  max,  range,  sum,  mean, stddev, variance, co-
           eff_var, median, percentile, skewness, trimmean
           Default: mean

       type=string
           Storage type for resultant raster map
           Options: float, double
           Default: float

       separator=character
           Field separator
           Special characters: pipe, comma, space, tab, newline
           Default: pipe

       x=integer
           Column number of x coordinates in input file (first column is 1)
           Default: 1

       y=integer
           Column number of y coordinates in input file
           Default: 2

       z=integer
           Column number of z coordinates in input file
           Default: 3

       value_column=integer
           Column number of data values in input file
           If not given or set to 0, the data points’ z-values are used
           Default: 0

       vrange=min,max
           Filter range for value column data (min,max)

       vscale=float
           Scaling factor to apply to value column data
           Default: 1.0

       percent=integer
           Percent of map to keep in memory
           Options: 1-100
           Default: 100

       pth=integer
           pth percentile of the values
           Options: 1-100

       trim=float
           Discard <trim> percent of the smallest and <trim>  percent  of  the
           largest observations
           Options: 0-50

       workers=integer
           Number of parallel processes to launch
           Options: 1-256
           Default: 1

DESCRIPTION
       r3.in.xyz  imports  sparse XYZ data from an ASCII file into a 3D raster
       map (voxels). It does this by  running  the  r.in.xyz  module  multiple
       times  for  different  z-ranges  and  then  assembling  the slices with
       r.to.rast3.

       See the r.in.xyz help page for general parameter usage and tips.

       The map is created using the rows, columns, and depths set  by  current
       region  settings.  Be  sure to check and adjust these with the g.region
       module before performing the import.

       You may either use the z-value as the data value for  the  voxel  (e.g.
       with  the  ’n’  statistic),  or alternately scan another column for the
       data values to bin into the voxels. This alternate data column  can  be
       both filtered by range and have a scaling factor applied to it.

NOTES
       The  2D  and 3D horizontal region resolutions must match. See the EXAM-
       PLES section below.

       Unlike r.in.xyz, reading from stdin and  z-scaling  are  not  possible.
       Filtering by z-range is accomplished by setting the 3D region.

       To enable parallel processing support, set the workers= option to match
       the number of CPUs or CPU-cores available  on  your  system.   Alterna-
       tively,  the  WORKERS  environment variable can be set to the number of
       concurrent processes desired.

       Points falling exactly on a vertical bound will  belong  to  the  depth
       band below them, except for points exactly on the top bound, which will
       belong to the top-most slice.

       The script is expected to be nearly as efficient as  if  it  was  fully
       written in C.

EXAMPLE
       Using the Serpent Mound dataset. (see the GRASS LiDAR wiki page)
         #scan dataset for extent:
         r3.in.xyz -s in=Serpent_Mound_Model_LAS_Data.txt out=dummy \
            x=1 y=2 z=3 separator=space
         # set the 2D and 3D regions:
         g.region n=4323641.57 s=4320942.61 w=289020.90 e=290106.02 res=1 -a
         g.region b=166 t=216 res3=1 tbres=5 -3 -p
         r3.in.xyz in=Serpent_Mound_Model_LAS_Data.txt out=serpent3D \
            method=mean x=1 y=2 z=3 separator=space type=float
       The  same,  but  aggregate and store backscatter strength from column 5
       into voxels in instead of the z-value:
         r3.in.xyz in=Serpent_Mound_Model_LAS_Data.txt out=serpent3D.bakscat \
            method=mean x=1 y=2 z=3 val=5 separator=space type=float

KNOWN ISSUES
       r.to.rast3 always creates a double output map regardless of input.

SEE ALSO
        g.region, r.in.xyz, r.to.rast3

AUTHOR
       Hamish Bowman
       Dunedin, New Zealand

SOURCE CODE
       Available at: r3.in.xyz source code (history)

       Accessed: unknown

       Main index | 3D raster index | Topics index | Keywords index |  Graphi-
       cal index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual

GRASS 7.8.7                                                  r3.in.xyz(1grass)

Generated by dwww version 1.14 on Fri Jan 24 09:45:17 CET 2025.