dwww Home | Manual pages | Find package

t.rast.aggregate(1grass)    GRASS GIS User's Manual   t.rast.aggregate(1grass)

NAME
       t.rast.aggregate   -  Aggregates  temporally  the  maps of a space time
       raster dataset by a user defined granularity.

KEYWORDS
       temporal, aggregation, raster, time

SYNOPSIS
       t.rast.aggregate
       t.rast.aggregate --help
       t.rast.aggregate [-n]  input=name  output=name  basename=string   [suf-
       fix=string]     granularity=string    method=string    [offset=integer]
       [nprocs=integer]    [file_limit=integer]     [sampling=name[,name,...]]
       [where=sql_query]    [--overwrite]   [--help]   [--verbose]   [--quiet]
       [--ui]

   Flags:
       -n
           Register Null maps

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       output=name [required]
           Name of the output space time raster dataset

       basename=string [required]
           Basename of the new generated output maps
           Either a numerical suffix or the start time (s-flag)  separated  by
           an underscore will be attached to create a unique identifier

       suffix=string
           Suffix  to  add at basename: set ’gran’ for granularity, ’time’ for
           the full time format, ’num’ for numerical suffix  with  a  specific
           number of digits (default %05)
           Default: gran

       granularity=string [required]
           Aggregation granularity, format absolute time "x years, x months, x
           weeks, x days, x hours, x minutes, x seconds" or an  integer  value
           for relative time

       method=string [required]
           Aggregate operation to be performed on the raster maps
           Options:  average,  count, median, mode, minimum, min_raster, maxi-
           mum, max_raster, stddev, range, sum,  variance,  diversity,  slope,
           offset,  detcoeff, quart1, quart3, perc90, quantile, skewness, kur-
           tosis
           Default: average

       offset=integer
           Offset that is used to create the output map ids, output map id  is
           generated as: basename_ (count + offset)
           Default: 0

       nprocs=integer
           Number of r.series processes to run in parallel
           Default: 1

       file_limit=integer
           The maximum number of open files allowed for each r.series process
           Default: 1000

       sampling=name[,name,...]
           The method to be used for sampling the input dataset
           Options:  equal,  overlaps,  overlapped, starts, started, finishes,
           finished, during, contains
           Default: contains

       where=sql_query
           WHERE conditions of SQL statement without ’where’ keyword  used  in
           the temporal GIS framework
           Example: start_time > ’2001-01-01 12:30:00’

DESCRIPTION
       t.rast.aggregate  temporally aggregates space time raster datasets by a
       specific temporal granularity. This module support absolute  and  rela-
       tive  time.  The  temporal granularity of absolute time can be seconds,
       minutes, hours, days, weeks, months or years. Mixing  of  granularities
       eg.  "1  year,  3  months 5 days" is not supported. In case of relative
       time the temporal unit of the input space time raster dataset is  used.
       The granularity must be specified with an integer value.

       This module is sensitive to the current region and mask settings, hence
       spatial extent and spatial resolution. In case  the  registered  raster
       maps of the input space time raster dataset have different spatial res-
       olutions, the default nearest neighbor resampling method  is  used  for
       runtime spatial aggregation.

NOTES
       The  raster  module  r.series  is  used internally. Hence all aggregate
       methods of r.series are supported. See the r.series manual page for de-
       tails.

       This  module will shift the start date for each aggregation process de-
       pending on the provided temporal granularity. The following shifts will
       performed:

           •   granularity  years:  will  start at the first of January, hence
               14-08-2012 00:01:30 will be shifted to 01-01-2012 00:00:00

           •   granularity months: will start at the first  day  of  a  month,
               hence 14-08-2012 will be shifted to 01-08-2012 00:00:00

           •   granularity  weeks: will start at the first day of a week (Mon-
               day), hence 14-08-2012 01:30:30 will be shifted  to  13-08-2012
               01:00:00

           •   granularity  days: will start at the first hour of a day, hence
               14-08-2012 00:01:30 will be shifted to 14-08-2012 00:00:00

           •   granularity hours: will start at the first minute  of  a  hour,
               hence   14-08-2012  01:30:30  will  be  shifted  to  14-08-2012
               01:00:00

           •   granularity minutes: will  start  at  the  first  second  of  a
               minute, hence 14-08-2012 01:30:30 will be shifted to 14-08-2012
               01:30:00

       The specification of the temporal relation between the aggregation  in-
       tervals  and the raster map layers is always formulated from the aggre-
       gation interval viewpoint. Hence, the relation contains has to be spec-
       ified to aggregate map layer that are temporally located in an aggrega-
       tion interval.

       Parallel processing is supported in case that more than one interval is
       available for aggregation computation. Internally several r.series mod-
       ules will be started, depending on the  number  of  specified  parallel
       processes (nprocs) and the number of intervals to aggregate.

EXAMPLES
   Aggregation of monthly data into yearly data
       In this example the user is going to aggregate monthly data into yearly
       data, running:
       t.rast.aggregate input=tempmean_monthly output=tempmean_yearly \
                        basename=tempmean_year \
                        granularity="1 years" method=average
       t.support input=tempmean_yearly \
                 title="Yearly precipitation" \
                 description="Aggregated precipitation dataset with yearly resolution"
       t.info tempmean_yearly
        +-------------------- Space Time Raster Dataset -----------------------------+
        |                                                                            |
        +-------------------- Basic information -------------------------------------+
        | Id: ........................ tempmean_yearly@climate_2000_2012
        | Name: ...................... tempmean_yearly
        | Mapset: .................... climate_2000_2012
        | Creator: ................... lucadelu
        | Temporal type: ............. absolute
        | Creation time: ............. 2014-11-27 10:25:21.243319
        | Modification time:.......... 2014-11-27 10:25:21.862136
        | Semantic type:.............. mean
        +-------------------- Absolute time -----------------------------------------+
        | Start time:................. 2009-01-01 00:00:00
        | End time:................... 2013-01-01 00:00:00
        | Granularity:................ 1 year
        | Temporal type of maps:...... interval
        +-------------------- Spatial extent ----------------------------------------+
        | North:...................... 320000.0
        | South:...................... 10000.0
        | East:.. .................... 935000.0
        | West:....................... 120000.0
        | Top:........................ 0.0
        | Bottom:..................... 0.0
        +-------------------- Metadata information ----------------------------------+
        | Raster register table:...... raster_map_register_514082e62e864522a13c8123d1949dea
        | North-South resolution min:. 500.0
        | North-South resolution max:. 500.0
        | East-west resolution min:... 500.0
        | East-west resolution max:... 500.0
        | Minimum value min:.......... 7.370747
        | Minimum value max:.......... 8.81603
        | Maximum value min:.......... 17.111387
        | Maximum value max:.......... 17.915511
        | Aggregation type:........... average
        | Number of registered maps:.. 4
        |
        | Title: Yearly precipitation
        | Monthly precipitation
        | Description: Aggregated precipitation dataset with yearly resolution
        | Dataset with monthly precipitation
        | Command history:
        | # 2014-11-27 10:25:21
        | t.rast.aggregate input="tempmean_monthly"
        |     output="tempmean_yearly" basename="tempmean_year" granularity="1 years"
        |     method="average"
        |
        | # 2014-11-27 10:26:21
        | t.support input=tempmean_yearly \
        |        title="Yearly precipitation" \
        |        description="Aggregated precipitation dataset with yearly resolution"
        +----------------------------------------------------------------------------+

   Different aggregations and map name suffix variants
       Examples of resulting naming schemes for  different  aggregations  when
       using the suffix option:

   Weekly aggregation
       t.rast.aggregate input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp method=average granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_02|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_03|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_04|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_05|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_06|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_07|climate|2003-02-14 00:00:00|2003-02-21 00:00:00
       Variant with suffix set to granularity:
       t.rast.aggregate input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp suffix=gran method=average \
         granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01_03|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_01_10|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_01_17|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_01_24|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_01_31|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_02_07|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_02_14|climate|2003-02-14 00:00:00|2003-02-21 00:00:00

   Monthly aggregation
       t.rast.aggregate input=daily_temp output=monthly_avg_temp \
         basename=monthly_avg_temp suffix=gran method=average \
         granularity="1 months"
       t.rast.list monthly_avg_temp
       name|mapset|start_time|end_time
       monthly_avg_temp_2003_01|climate|2003-01-01 00:00:00|2003-02-01 00:00:00
       monthly_avg_temp_2003_02|climate|2003-02-01 00:00:00|2003-03-01 00:00:00
       monthly_avg_temp_2003_03|climate|2003-03-01 00:00:00|2003-04-01 00:00:00
       monthly_avg_temp_2003_04|climate|2003-04-01 00:00:00|2003-05-01 00:00:00
       monthly_avg_temp_2003_05|climate|2003-05-01 00:00:00|2003-06-01 00:00:00
       monthly_avg_temp_2003_06|climate|2003-06-01 00:00:00|2003-07-01 00:00:00

   Yearly aggregation
       t.rast.aggregate input=daily_temp output=yearly_avg_temp \
         basename=yearly_avg_temp suffix=gran method=average \
         granularity="1 years"
       t.rast.list yearly_avg_temp
       name|mapset|start_time|end_time
       yearly_avg_temp_2003|climate|2003-01-01 00:00:00|2004-01-01 00:00:00
       yearly_avg_temp_2004|climate|2004-01-01 00:00:00|2005-01-01 00:00:00

SEE ALSO
          t.rast.aggregate.ds,  t.rast.extract,  t.info,  r.series,  g.region,
       r.mask

       Temporal data processing Wiki

AUTHOR
       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE
       Available at: t.rast.aggregate source code (history)

       Accessed: unknown

       Main index | Temporal index | Topics index | Keywords index | Graphical
       index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual

GRASS 7.8.7                                           t.rast.aggregate(1grass)

Generated by dwww version 1.14 on Sun Dec 29 19:30:12 CET 2024.