dwww Home | Manual pages | Find package

t.rast.gapfill(1grass)      GRASS GIS User's Manual     t.rast.gapfill(1grass)

NAME
       t.rast.gapfill  - Replaces gaps in a space time raster dataset with in-
       terpolated raster maps.

KEYWORDS
       temporal, interpolation, raster, time, no-data filling

SYNOPSIS
       t.rast.gapfill
       t.rast.gapfill --help
       t.rast.gapfill  [-t]  input=name   [where=sql_query]    basename=string
       [suffix=string]    [nprocs=integer]    [--help]  [--verbose]  [--quiet]
       [--ui]

   Flags:
       -t
           Assign the space time raster dataset start and end time to the out-
           put map

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       where=sql_query
           WHERE  conditions  of SQL statement without ’where’ keyword used in
           the temporal GIS framework
           Example: start_time > ’2001-01-01 12:30:00’

       basename=string [required]
           Basename of the new generated output maps
           A numerical suffix separated by an underscore will be  attached  to
           create a unique identifier

       suffix=string
           Suffix  to  add at basename: set ’gran’ for granularity, ’time’ for
           the full time format, ’num’ for numerical suffix  with  a  specific
           number of digits (default %05)
           Default: gran

       nprocs=integer
           Number of interpolation processes to run in parallel
           Default: 1

DESCRIPTION
       t.rast.gapfill  fills temporal gaps in space time raster datasets using
       linear interpolation. Temporal all gaps will be detected in  the  input
       space  time raster dataset automatically. The predecessor and successor
       maps of the gaps will be identified and used to linear interpolate  the
       raster map between them.

NOTES
       This  module uses r.series.interp to perform the interpolation for each
       gap independently. Hence several interpolation processes can be run  in
       parallel.

       Each  gap  is  re-sampled by the space time raster dataset granularity.
       Therefore several time stamped raster map layers will  be  interpolated
       if the gap is larger than the STRDS granularity.

Examples
       In  this  example we will create 3 raster maps and register them in the
       temporal database an then  in  the  newly  created  space  time  raster
       dataset.   There  are  gaps  of one and two day size between the raster
       maps. The values of the maps are chosen so that the interpolated values
       can  be  estimated.   We expect one map with a value of 2 for the first
       gap and two maps (values 3.666 and 4.333) for the second gap after  in-
       terpolation.
       r.mapcalc expression="map1 = 1"
       r.mapcalc expression="map2 = 3"
       r.mapcalc expression="map3 = 5"
       t.register type=raster maps=map1 start=2012-08-20 end=2012-08-21
       t.register type=raster maps=map2 start=2012-08-22 end=2012-08-23
       t.register type=raster maps=map3 start=2012-08-25 end=2012-08-26
       t.create type=strds temporaltype=absolute \
                output=precipitation_daily \
                title="Daily precipitation" \
                description="Test dataset with daily precipitation"
       t.register type=raster input=precipitation_daily maps=map1,map2,map3
       # the output shows three missing maps
       t.rast.list input=precipitation_daily columns=name,start_time,min,max
       name|start_time|min|max
       map1|2012-08-20 00:00:00|1.0|1.0
       map2|2012-08-22 00:00:00|3.0|3.0
       map3|2012-08-25 00:00:00|5.0|5.0
       t.rast.list input=precipitation_daily method=deltagaps
       id|name|mapset|start_time|end_time|interval_length|distance_from_begin
       map1@PERMANENT|map1|PERMANENT|2012-08-20 00:00:00|2012-08-21 00:00:00|1.0|0.0
       None|None|None|2012-08-21 00:00:00|2012-08-22 00:00:00|1.0|1.0
       map2@PERMANENT|map2|PERMANENT|2012-08-22 00:00:00|2012-08-23 00:00:00|1.0|2.0
       None|None|None|2012-08-23 00:00:00|2012-08-25 00:00:00|2.0|3.0
       map3@PERMANENT|map3|PERMANENT|2012-08-25 00:00:00|2012-08-26 00:00:00|1.0|5.0
       t.rast.gapfill input=precipitation_daily basename=gap
       t.rast.list input=precipitation_daily columns=name,start_time,min,max
       name|start_time|min|max
       map1|2012-08-20 00:00:00|1.0|1.0
       gap_6_1|2012-08-21 00:00:00|2.0|2.0
       map2|2012-08-22 00:00:00|3.0|3.0
       gap_7_1|2012-08-23 00:00:00|3.666667|3.666667
       gap_7_2|2012-08-24 00:00:00|4.333333|4.333333
       map3|2012-08-25 00:00:00|5.0|5.0

SEE ALSO
        r.series.interp, t.create, t.info

AUTHOR
       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE
       Available at: t.rast.gapfill source code (history)

       Accessed: unknown

       Main index | Temporal index | Topics index | Keywords index | Graphical
       index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual

GRASS 7.8.7                                             t.rast.gapfill(1grass)

Generated by dwww version 1.14 on Sun Dec 29 19:28:28 CET 2024.