dwww Home | Manual pages | Find package

t.rast.series(1grass)       GRASS GIS User's Manual      t.rast.series(1grass)

NAME
       t.rast.series   -  Performs different aggregation algorithms from r.se-
       ries on all or a subset of raster maps in a space time raster dataset.

KEYWORDS
       temporal, aggregation, series, raster, time

SYNOPSIS
       t.rast.series
       t.rast.series --help
       t.rast.series  [-tn]  input=name   method=string[,string,...]    [quan-
       tile=float[,float,...]]                     [order=string[,string,...]]
       [where=sql_query]   output=name[,name,...]    [--overwrite]    [--help]
       [--verbose]  [--quiet]  [--ui]

   Flags:
       -t
           Do  not  assign the space time raster dataset start and end time to
           the output map

       -n
           Propagate NULLs

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       method=string[,string,...] [required]
           Aggregate operation to be performed on the raster maps
           Options: average, count, median, mode, minimum,  min_raster,  maxi-
           mum,  max_raster,  stddev,  range, sum, variance, diversity, slope,
           offset, detcoeff, quart1, quart3, perc90, quantile, skewness,  kur-
           tosis
           Default: average

       quantile=float[,float,...]
           Quantile to calculate for method=quantile
           Options: 0.0-1.0

       order=string[,string,...]
           Sort the maps by category
           Options:  id,   name,  creator,  mapset,  creation_time,  modifica-
           tion_time,  start_time,  end_time,  north,   south,   west,   east,
           min,  max
           Default: start_time

       where=sql_query
           WHERE  conditions  of SQL statement without ’where’ keyword used in
           the temporal GIS framework
           Example: start_time > ’2001-01-01 12:30:00’

       output=name[,name,...] [required]
           Name for output raster map(s)

DESCRIPTION
       The input of this module is a single space  time  raster  dataset,  the
       output  is  a single raster map layer. A subset of the input space time
       raster dataset can be selected using the where option. The  sorting  of
       the  raster  map layer can be set using the order option. Be aware that
       the order of the maps can significantly influence the result of the ag-
       gregation (e.g.: slope). By default the maps are ordered by start_time.

       t.rast.series  is  a  simple wrapper for the raster module r.series. It
       supports a subset of the aggregation methods of r.series.

EXAMPLES
   Estimate the average temperature for the whole time series
       Here the entire stack of input maps is considered:
       t.rast.series input=tempmean_monthly output=tempmean_average method=average

   Estimate the average temperature for a subset of the time series
       Here the stack of input maps is limited to a certain period of time:
       t.rast.series input=tempmean_daily output=tempmean_season method=average \
         where="start_time >= ’2012-06’ and start_time <= ’2012-08’"

   Climatology: single month in a multi-annual time series
       By considering only a single month in a multi-annual  time  series  the
       so-called  climatology  can  be computed.  Estimate average temperature
       for all January maps in the time series:
       t.rast.series input=tempmean_monthly \
           method=average output=tempmean_january \
           where="strftime(’%m’, start_time)=’01’"
       # equivalently, we can use
       t.rast.series input=tempmean_monthly \
           output=tempmean_january method=average \
           where="start_time = datetime(start_time, ’start of year’, ’0 month’)"
       # if we want also February and March averages
       t.rast.series input=tempmean_monthly \
           output=tempmean_february method=average \
           where="start_time = datetime(start_time, ’start of year’, ’1 month’)"
       t.rast.series input=tempmean_monthly \
           output=tempmean_march method=average \
           where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
       Generalizing a bit, we  can  estimate  monthly  climatologies  for  all
       months by means of different methods
       for i in `seq -w 1 12` ; do
         for m in average stddev minimum maximum ; do
           t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
           where="strftime(’%m’, start_time)=’${i}’"
         done
       done

SEE ALSO
        r.series, t.create, t.info

       Temporal data processing Wiki

AUTHOR
       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE
       Available at: t.rast.series source code (history)

       Accessed: unknown

       Main index | Temporal index | Topics index | Keywords index | Graphical
       index | Full index

       © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual

GRASS 7.8.7                                              t.rast.series(1grass)

Generated by dwww version 1.14 on Sun Dec 29 19:30:41 CET 2024.