t.rast.what(1grass) GRASS GIS User's Manual t.rast.what(1grass) NAME t.rast.what - Sample a space time raster dataset at specific vector point coordinates and write the output to stdout using different lay- outs KEYWORDS temporal, sampling, raster, time SYNOPSIS t.rast.what t.rast.what --help t.rast.what [-niv] [points=name] [coordinates=east,north] strds=name [output=name] [where=sql_query] [null_value=string] [separator=character] [order=string[,string,...]] [layout=string] [nprocs=integer] [--overwrite] [--help] [--verbose] [--quiet] [--ui] Flags: -n Output header row -i Use stdin as input and ignore coordinates and point option -v Show the category for vector points map --overwrite Allow output files to overwrite existing files --help Print usage summary --verbose Verbose module output --quiet Quiet module output --ui Force launching GUI dialog Parameters: points=name Name of input vector map Or data source for direct OGR access coordinates=east,north Comma separated list of coordinates strds=name [required] Name of the input space time raster dataset output=name Name for the output file or "-" in case stdout should be used Default: - where=sql_query WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework Example: start_time > ’2001-01-01 12:30:00’ null_value=string String representing NULL value separator=character Field separator Special characters: pipe, comma, space, tab, newline Default: pipe order=string[,string,...] Sort the maps by category Options: id, name, creator, mapset, creation_time, modifica- tion_time, start_time, end_time, north, south, west, east, min, max Default: start_time layout=string The layout of the output. One point per row (row), one point per column (col), all timsteps in one row (timerow) Options: row, col, timerow Default: row nprocs=integer Number of r.what processes to run in parallel Default: 1 DESCRIPTION t.rast.what is designed to sample space time raster datasets at spe- cific point coordinates using r.what internally. The output of r.what is transformed to different output layouts. The output layouts can be specified using the layout option. Three layouts can be specified: • row - Row order, one vector sample point value per row • col - Column order, create a column for each vector sample point of a single time step/raster layer • timerow - Time order, create a column for each time step, this order is the original r.what output, except that the column names are the timestamps Please have a look at the example to see the supported layouts. This module is designed to run several instances of r.what to sample subsets of a space time raster dataset in parallel. Several intermedi- ate text files will be created that are merged into a single file at the end of the processing. Coordinates can be provided as vector map using the points option or as comma separated coordinate list with the coordinates option. An output file can be specified using the output option. Stdout will be used if no output is specified or if the output option is set to "-". EXAMPLES Data preparation In the following examples we sample a space time raster dataset that contains 4 raster map layers. First we create the STRDS that will be sampled with t.rast.what. g.region s=0 n=80 w=0 e=120 b=0 t=50 res=10 # Generate data r.mapcalc expression="a_1 = 1" -s r.mapcalc expression="a_2 = 2" -s r.mapcalc expression="a_3 = 3" -s r.mapcalc expression="a_4 = 4" -s t.create type=strds output=A title="A test" descr="A test" t.register -i type=raster input=A maps=a_1,a_2,a_3,a_4 \ start=’1990-01-01’ increment="1 month" Example 1 The first approach uses text coordinates as input and stdout as output, the layout is one coordinate(point per column: t.rast.what strds=A coordinates="115,36,79,45" layout=col -n start|end|115.0000000000;36.0000000000|79.0000000000;45.0000000000 1990-01-01 00:00:00|1990-02-01 00:00:00|1|1 1990-02-01 00:00:00|1990-03-01 00:00:00|2|2 1990-03-01 00:00:00|1990-04-01 00:00:00|3|3 1990-04-01 00:00:00|1990-05-01 00:00:00|4|4 Example 2 A vector map layer can be used as input to sample the STRDS. All three available layouts are demonstrated using the vector map for sampling. # First create the vector map layer based on random points v.random output=points n=3 seed=1 # Row layout using a text file as output t.rast.what strds=A points=points output=result.txt layout=row -n cat result.txt 115.0043586274|36.3593955783|1990-01-01 00:00:00|1990-02-01 00:00:00|1 115.0043586274|36.3593955783|1990-02-01 00:00:00|1990-03-01 00:00:00|2 115.0043586274|36.3593955783|1990-03-01 00:00:00|1990-04-01 00:00:00|3 115.0043586274|36.3593955783|1990-04-01 00:00:00|1990-05-01 00:00:00|4 79.6816763826|45.2391522853|1990-01-01 00:00:00|1990-02-01 00:00:00|1 79.6816763826|45.2391522853|1990-02-01 00:00:00|1990-03-01 00:00:00|2 79.6816763826|45.2391522853|1990-03-01 00:00:00|1990-04-01 00:00:00|3 79.6816763826|45.2391522853|1990-04-01 00:00:00|1990-05-01 00:00:00|4 97.4892579600|79.2347263950|1990-01-01 00:00:00|1990-02-01 00:00:00|1 97.4892579600|79.2347263950|1990-02-01 00:00:00|1990-03-01 00:00:00|2 97.4892579600|79.2347263950|1990-03-01 00:00:00|1990-04-01 00:00:00|3 97.4892579600|79.2347263950|1990-04-01 00:00:00|1990-05-01 00:00:00|4 # Column layout order using stdout as output t.rast.what strds=A points=points layout=col -n start|end|115.0043586274;36.3593955783|79.6816763826;45.2391522853|97.4892579600;79.2347263950 1990-01-01 00:00:00|1990-02-01 00:00:00|1|1|1 1990-02-01 00:00:00|1990-03-01 00:00:00|2|2|2 1990-03-01 00:00:00|1990-04-01 00:00:00|3|3|3 1990-04-01 00:00:00|1990-05-01 00:00:00|4|4|4 # Timerow layout, one time series per row # using the where statement to select a subset of the STRDS # and stdout as output t.rast.what strds=A points=points \ where="start_time >= ’1990-03-01’" layout=timerow -n x|y|1990-03-01 00:00:00;1990-04-01 00:00:00|1990-04-01 00:00:00;1990-05-01 00:00:00 115.004358627375|36.3593955782903|3|4 79.681676382576|45.2391522852909|3|4 97.4892579600048|79.2347263950131|3|4 SEE ALSO g.region, r.mask r.neighbors, r.what, t.info, t.rast.aggregate.ds, t.rast.extract, v.what.strds AUTHOR Sören Gebbert, Thünen Institute of Climate-Smart Agriculture SOURCE CODE Available at: t.rast.what source code (history) Accessed: unknown Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index © 2003-2022 GRASS Development Team, GRASS GIS 7.8.7 Reference Manual GRASS 7.8.7 t.rast.what(1grass)
Generated by dwww version 1.14 on Fri Jan 24 09:31:07 CET 2025.